
Reusable Execution Replay:
Execution Record and Replay for Source Code Reuse

Ameer Armaly, Casey Ferris, and Collin McMillan
Department of Computer Science and Engineering

University of Notre Dame
Notre Dame, IN, USA

{aarmaly, cferris1, cmc}@nd.edu

ABSTRACT
A key problem during source code reuse is that, to reuse
even a small section of code from a program, a programmer
must include a huge amount of dependency source code from
elsewhere in the same program. These dependencies are no-
toriously large and complex, and many can only be known at
runtime. In this paper, we propose execution record/replay
as a solution to this problem. We describe a novel reuse
technique that allows programmers to reuse functions from
a C or C++ program, by recording the execution of the
program and selectively modifying how its functions are re-
played. We have implemented our technique and evaluated
it in a preliminary study in which two programmers used
our tool to complete four tasks over four hours.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.13 [Software
Engineering]: Reusable Software—Reusable libraries

General Terms
Algorithms, Design

Keywords
Source code reuse, execution record and replay

1. INTRODUCTION
Source code reuse has long been a centerpiece of software

engineering research [16]. This research has yielded many
effective solutions for designing reusable software, such as
object-oriented architectures [10] and repositories of shared
libraries [12]. While these technologies have proliferated, the
reality is that much source code is not designed with reuse
in mind [9]. As a result, pragmatic reuse (also called “copy-
paste” or “opportunistic” reuse [14]) has become an accepted
practice in many professional environments [13, 11]. Prag-
matic reuse differs from library or component reuse in that
there is no interface to the reused code – the code must be
transplanted from one program into another.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14 Hyderabad, Andhra Pradesh, India
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

A key problem during this transplanting process is that
the reused code’s dependencies must also be transplanted.
As Section 2 will show, to reuse even a small section of
source code, a programmer often needs to include a huge
amount of dependency source code from elsewhere in the
same project. The complexity and size of these dependencies
(typically totaling 30% to 60% of the original program [2])
forces programmers to choose: either cut the reused code
to reduce dependency, or abandon the reuse altogether [9].
This difficulty of understanding dependencies is a consistent
theme in studies of software reuse [20, 6].

In this paper, we propose using execution record/replay to
reduce the number of dependencies that a programmer must
consider when reusing source code. Execution record/replay
is the task of logging the execution of a program, so that the
execution can be duplicated later [15, 19]. Our technique
uses this idea by recording the state of the dependencies
during one program’s execution, and replaying them in the
context of a different program. The advantage is that a pro-
grammer only needs to include the code that he or she would
like to reuse. If that code has dependencies, then those de-
pendencies are restored from the execution log as they are
needed. The programmer can elect to modify these depen-
dencies if desired, otherwise the functionality is available as
it was in the original program.

We have implemented our technique as a library for reusing
functions from C/C++ programs in a Linux environment.
Using our library, a programmer can select a function in a
program that he or she would like to reuse. Then, the pro-
grammer executes the program. Our tool records the state of
the program any time that control is passed to the function.
To reuse the function, the programmer directs the library to
reload that state at a given point in the new program. The
programmer can then alter the state as necessary, such as the
values of the function’s arguments. At runtime, the library
makes these changes, restores the state, and passes control
to the function. Once the function is complete, our library
passes control is back to the new program. The new pro-
gram does not need to include any of the reused function’s
dependencies; instead, they are restored from the scene.

Our work is an exploratory solution to a classic problem
of source code reuse. We present a preliminary study com-
paring our solution to the typical “copy-paste” manual reuse
approach. We recruited two programmers to complete four
programming tasks each in a total of four hours. Both pro-
grammers found our tool to be very effective at reducing
the amount of dependency source code that the program-
mers needed to read, understand, and include.

2. BACKGROUND
This section provides an example demonstrating the prob-

lem and a description of execution record/replay technology.

2.1 Motivating Example
Consider the following reuse scenario from the open-source

program Celestia, which we use as an example to explain our
approach in Section 3. Celestia is planetarium software that
shows a graphical display of the night sky. Consider a pro-
grammer who wants to use code from this application to
calculate the star nearest to another, arbitrary star that the
programmer specifies. The programmer believes this is pos-
sible because the application’s graphical user interface con-
tains a Find Stars window which performs this task. There
are a number of successful techniques to help the program-
mer find relevant code for this task, and it is likely that the
programmer would find the nearestStar function, which
implements the search algorithm behind the Find Stars

window. To reuse this function, shown in Figure 1, the
programmer needs to understand several details behind Ce-
lestia. The programmer must know how it represents space,
including the Universe and Star data types. The program-
mer must investigate the Predicate structure, the position
variable pos, and even the parameters to the function find-

Stars. To include nearestStar in another program, all of
these data types and dependencies would need to be ex-
tracted and included in the new program. Then initializa-
tion functions, such as the one that sets up the star catalog,
also need to be added, along with any external files which
the initialization functions use. The programmer would need
to integrate a non-trivial portion of Celestia, just to reuse
nearestStar. The function depends on so many underlying
details, that it is very difficult to separate from Celestia.

2.2 Execution Record/Replay
Execution record and replay is the task of logging and du-

plicating the execution of a program. The ability to dupli-
cate the execution is valuable in domains such as debugging
[17] and security [7], because it helps reveal to program-
mers the causes behind a program’s behavior. The idea be-
hind execution replay is simple: record the instructions as
a program executes, and duplicate the instructions later by
reading from a log. Most of the instructions are based on de-
terministic events, such as arithmetic, and can be replayed
or re-executed with known inputs. Non-deterministic events
pose a key problem, and much research has been devoted to
execution replay of different non-deterministic situations in
a variety of environments [1, 19, 15].

The record/reuse system Jockey [19] plays an important
role in our approach by providing two key services: 1) pro-
gram checkpointing, and 2) function interception. Check-
pointing is the ability to dump program state to a file at a
given time in the program’s execution. Interception is the

const Star* StarBrowser::nearestStar() {
Universe* univ = appSim->getUniverse();
CloserStarPredicate closerPred;
closerPred.pos = pos;
std::vector<const Star*>* stars =

findStars(*(univ->getStarCatalog()),
closerPred, 1);

const Star *star = (*stars)[0];
delete stars;
return star;

}

Figure 1: From starbrowser.cpp in Celestia.

ability to call an arbitrary function whenever a given func-
tion executes. Due to space limitations, we direct readers to
the related literature for a discussion of these topics [19].

3. OUR APPROACH
Our approach enables the reuse of functions from C and

C++ programs. Given a function to reuse, our approach
works in four steps: 1) from a log file, restore the state
of the program containing the function at a point just prior
to the function’s execution, 2) modify any parameters or
global variables as instructed by the programmer, 3) pass
control to the function so that it executes, and 4) catch
the function return so that the programmer can read the
function’s output.

In this section, we will elaborate on each of these steps.
We will use the example in Figures 2 and 3 to illustrate how
these steps work in practice. These figures show how our ap-
proach can reuse the function nearestStar from Section 2.1.

3.1 Supporting Technology
We have heavily modified the Jockey library [19] for our

approach. The most important modification we made was
to add the ability to “go live.” Many approaches, such as
the one implemented in the GNU debugger, do not actu-
ally re-execute the logged instructions. Instead, they log
the output of each instruction and, during replay, restore
the state as it was after the instruction. This restoration
produces an identical result when the logs are reviewed for
debugging. For our work in reuse, we alter the state before
replay, which means that the instructions will need to be
re-executed, rather than restored. We implement a “go live”
system after the state is restored, inspired by an approach
described by Laadan et al. [15].

3.2 Preparation
To prepare to reuse a function, a programmer must first

record a checkpoint for that function. The checkpoint must
be taken at a point just prior to the function’s execution. We
provide a recording utility based on Jockey’s checkpointing
feature. The utility takes a program and the name of a
function in that program. The utility then executes the
program. The programmer may interact with the program
to ensure that some behavior is recorded, or run a test script.
The utility monitors the process – whenever the function is
called, the utility directs Jockey to record the state of the
program to a checkpoint file. The function may be called
several times, and there will be one checkpoint for each of
these. The programmer can choose a checkpoint that he or
she prefers, otherwise the default is the first checkpoint.

3.3 Reusing Functions
We implemented our approach as a userspace C/C++ li-

brary for 32-bit Linux 2.6.10. While implementation for
different environments is possible, in this paper we limit
the scope to one environment for clarity and reproducibil-
ity. Figure 2 shows an example program using our library.
The remainder of this section will cover the steps of our
approach, using this example for context.

3.3.1 Restoring Function State
The first step to reuse a function is to restore the pro-

gram state that lead to the function being called. We use
Jockey’s checkpoint restoration feature to reload this state
from a checkpoint log file. To make this feature available for

Figure 2: Example program using our library to
reuse nearestStar from Figure 1.

reuse, we have provided flashback_load_scene() in our li-
brary (Figure 2, area 1). Like Jockey, a call to this library
function will load the program associated with the check-
point, copy the variable memory space from the log file back
into memory, and then skip forward in the program to the
point where the checkpoint was recorded. A key difference
between Jockey’s default restoration and restoration in our
approach is that we use libdwarf [8], a debugging library,
to place a breakpoint immediately after memory space has
been allocated for parameters and other local variables. Fig-
ure 3, area 1, shows an example of where this occurs. The
breakpoint causes the program to pause at this location.

Note that the only part of the program executed is the
set of instructions between restoration and the breakpoint
(e.g., the first four instructions in Figure 3). The program
is loaded into memory, and skipped forward using data from
the checkpoint log file, but no further instructions are dis-
patched to the processor. The advantage to this technique
is that the function is prepared to execute exactly as it was
when the checkpoint was recorded: local and global variables
are accessible, and dependency functions are available. The
programmer does not need to include these details in his or
her program. At area 1 in Figure 2, the function is ready to

Figure 3: Disassembled nearestStar from Figure 1,
showing steps taken by the library in Figure 2.

be reused. Different classes from the program are included
for areas 2 and 4, however these are only necessary to make
changes to the execution of the function – they are not re-
quired to load or execute the function.

3.3.2 Modifying Local Variables
The next step in our approach is to modify local vari-

ables. This modification allows programmers to change how
the function will execute. For example, in area 2 of Fig-
ure 2, the value of “pos” in nearestStar is changed to an
arbitrary position, so that nearestStar returns stars near
the given arbitrary position. We accomplish this modifica-
tion in our approach after the breakpoint is reached during
restoration (Figure 3, area 2). We access the memory lo-
cation of the variable, and copy a given variable into that
location. Technically, the function flashback_set_var()

requires the name of the variable and a replacement vari-
able of a compatible type. Our library then uses libdwarf

to find the variable in memory (and ptrace to replace it),
so instrumentation is required to find variable addresses by
name. Currently, we support getting and setting all primi-
tive types, arrays (including strings), and structs.

3.3.3 Executing the Function
The next step is to execute the function following the

breakpoint. When directed by the programmer (Figure 2,
area 3), our approach begins executing in two phases. First,
we set the program to “live” mode by disabling the replay
mechanism in Jockey. We modified Jockey to prevent it from
intercepting system calls during “live” mode, so that these
calls will be sent to the operating system rather than simu-
lated from the log file. Second, we use libdwarf to continue
from the breakpoint. The result is that the instructions after
the breakpoint will be dispatched to the processor, and the
function will execute. The program will behave normally;
calls to other functions will cause control to be passed to
those functions. Our approach does not affect execution un-
til the function returns. For example, in area 3 of Figure 3,
instruction 6 will call getUniverse. When getUniverse re-
turns, the function will continue from instruction 7 to 28.

3.3.4 Catching Function Return
The execution will continue until a breakpoint is hit or

until the function is complete. At that time, we catch the
return value by intercepting the function’s return location,
and sending control back to our library rather than to the
rest of the program being reused. See area 4 of Figure 3.

4. PRELIMINARY EVALUATION
We conducted a preliminary evaluation in which we stud-

ied the following research questions:

RQ1 Does our technique reduce the number of dependencies
that programmers must reuse?

RQ2 Does our technique reduce the time required for pro-
grammers to reuse source code?

Our methodology for answering these questions was to
conduct a user study in which programmers completed pro-
gramming tasks using our tool. To compare our tool with
a competitive approach, the programmers also completed
tasks using a “copy-paste” strategy, which is the typical
strategy that programmers must follow [9]. In a copy-paste

strategy, programmers read the code to reuse, copy that
code into their own programs, then either copy in any de-
pendency code, or modify the reused code so that it does
not need the dependencies.

We asked the programmers to complete four tasks. The
first task was to use the copy-paste method to reuse source
code from the Linux utility date to translate a given Unix
epoch time into a human-readable time format (e.g., 946702800
into 12:00am Jan 1, 2000 EST). The second task was to
reuse the same code using our tool. The third task was to
use our tool to write a program that calculates the position
of Earth’s moon at a given time. The programmers reused
code from predict, a satellite location calculator. For the
fourth task, the programmers used the copy-paste method
to implement the same functionality as in the third task.
Note that predict is a legacy program which does not com-
pile in GCC versions newer than 2.95. Therefore, tasks 3
and 4 required the programmers to port before reusing it.

Two programmers participated in our study and shed light
on our research questions. For RQ1, both programmers cre-
ated substantially smaller programs using our tool than the
copy-paste method. These programs were smaller because
they did not include many of dependencies required for the
copy-paste method. For tasks 1 and 2 (reusing date), the
copy-pasted program was 117 LOC for one programmer and
110 LOC for the other, compared to 38 LOC and 29 LOC
when using our tool. Likewise, for tasks 3 and 4, the copy-
pasted program was 236 LOC for one programmer compared
to 37 LOC when using our tool. The other programmer
could not finish the copy-pasted predict code, but wrote
a 32 LOC solution using our tool. Both programmers ex-
pressed frustration during the copy-paste method, writing
“these dependencies are killing me” and “copying source like
this caused numerous header/dependency issues.”

For RQ2, we observed a drop in the amount of time re-
quired to complete the tasks when using our tool. One pro-
grammer finished the date task in 40 minutes using copy-
paste, versus 16 minutes with our tool. The other program-
mer finished the same task in 66 minutes compared to 25
minutes with our tool. On tasks 3 and 4, one program-
mer was unable to finish using the copy-paste method, but
took 40 minutes with our tool. The other programmer fin-
ished copy-paste in 12 minutes versus 25 minutes for our
tool – the only instance in which our tool took longer to use
than the copy-paste method. Nevertheless, the programmer
stated that this was only possible due to prior experience
with similar code.

5. RELATED WORK
There are three key areas of related work: execution record

and replay, pragmatic reuse, and return-oriented program-
ming. Execution record/replay is described in Section 2.2.
Pragmatic reuse tools have been studied extensively by Hol-
mes et al. [9]. These tools differ from our work in that the
previous tools help programmers plan reuse tasks by iden-
tifying dependencies and recommending modifications. Our
work focuses on eliminating the need to transplant many of
these dependencies. Return-oriented programming is a tech-
nique from computer security in which malicious software
reuse “gadgets” from existing programs to confuse anti-virus
software [18, 4, 5, 3]. One key difference in our work is that
we do not depend on blueprints of assembly instructions.

6. CONCLUSION
We have presented a new technique for source code reuse.

Our approach uses execution record and replay technology,
from the area of software debugging, to capture the depen-
dencies of source code from a program’s execution. The
state of these dependencies is then made available for reuse.
In a preliminary study, we found that the size of reused pro-
grams was reduced by up to a factor of 6, and that time to
completion was reduced by at least half in 3 of 4 instances.

7. REFERENCES
[1] R. M. Balzer. Exdams: extendable debugging and

monitoring system. In AFIPS, pages 567–580, 1969.

[2] D. Binkley, N. Gold, and M. Harman. An empirical study of
static program slice size. ACM TOSEM, 16(2), Apr. 2007.

[3] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang.
Jump-oriented programming: a new class of code-reuse
attack. In 6th ASIACCS, 2011.

[4] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi,
H. Shacham, and M. Winandy. Return-oriented
programming without returns. In 17th ACM CCS, 2010.

[5] P. Chen, X. Xing, H. Han, B. Mao, and L. Xie. Efficient
detection of the return-oriented programming malicious
code. In 6th ICISS, 2010.

[6] J. W. Davison, D. M. Mancl, and W. F. Opdyke.
Understanding and addressing the essential costs of
evolving systems. Bell Labs Tech. Journal, pages 44–54,
2000.

[7] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and
P. M. Chen. Revirt: enabling intrusion analysis through
virtual-machine logging and replay. SIGOPS Oper. Syst.
Rev., 36(SI):211–224, Dec. 2002.

[8] M. Eager. The dwarf debugging standard, Apr. 2012.
http://www.dwarfstd.org/.

[9] R. Holmes and R. J. Walker. Systematizing pragmatic
software reuse. ACM TOSEM, 21(4):20:1–20:44, Feb. 2013.

[10] R. E. Johnson and B. Foote. Designing reuseable classes.
Journal of Object-Oriented Programming, 1988.

[11] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner.
Do code clones matter? In 31st ICSE, 2009.

[12] H. Kagdi, M. L. Collard, and J. I. Maletic. A survey and
taxonomy of approaches for mining software repositories in
the context of software evolution. J. Softw. Maint. Evol.,
19(2):77–131, Mar. 2007.

[13] C. Kapser and M. W. Godfrey. “cloning considered
harmful” considered harmful. In 13th WCRE, 2006.

[14] G. Kotonya, S. Lock, and J. Mariani. Opportunistic reuse:
Lessons from scrapheap software development. In
Proceedings of the 11th CBSE, 2008.

[15] O. Laadan, N. Viennot, and J. Nieh. Transparent,
lightweight application execution replay on commodity
multiprocessor operating systems. SIGMETRICS Perform.
Eval. Rev., 38(1):155–166, June 2010.

[16] M. D. McIlroy. Mass-produced software components. Proc.
NATO Conf. on Software Engineering, Garmisch,
Germany, 1968.

[17] S. Narayanasamy, G. Pokam, and B. Calder. Bugnet:
Continuously recording program execution for deterministic
replay debugging. SIGARCH Comput. Archit. News,
33(2):284–295, May 2005.

[18] R. Roemer, E. Buchanan, H. Shacham, and S. Savage.
Return-oriented programming: Systems, languages, and
applications. ACM Trans. Inf. Syst. Secur., 15(1):2:1–2:34,
Mar. 2012.

[19] Y. Saito. Jockey: a user-space library for record-replay
debugging. In 6th AADEBUG, 2005.

[20] J. Sillito, G. C. Murphy, and K. De Volder. Asking and
answering questions during a programming change task.
IEEE TSE, 34(4):434–451, July 2008.

