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Abstract—Traceability recovery is a key software mainte-
nance activity in which software engineers extract the relation-
ships among software artifacts. Information Retrieval (IR) has
been widely accepted as a method for automated traceability
recovery based on the textual similarity among the software
artifacts. However, a notorious difficulty for IR-based methods
is that artifacts may be related even if they are not textually
similar. A growing body of work addresses this challenge by
combining IR-based methods with structural information from
source code. Unfortunately, the accuracy of such methods is
highly dependent on the IR methods. If IR methods perform
poorly, the combined approaches may perform even worse.

In this paper, we propose to use the feedback provided by
software engineers when classifying candidate links to regulate
the effect of using structural information. Specifically, our
approach only considers structural information when the trace-
ability links from the IR methods are verified by developers and
classified as correct links. An empirical evaluation conducted
on three systems suggests that our approach outperforms both
a pure IR-based method and a simple approach for combining
textual and structural information.

Keywords-Traceability Link Recovery, Empirical studies.

I. INTRODUCTION

Traceability links are a valuable resource during software
maintenance because they provide a connection from high-
level software documents such as use cases to low-level
implementation details, such as source code and test cases
[3]. Unfortunately, traceability links are notoriously difficult
to extract from software [3], [13], [28]. Software engineers
must read and understand different artifacts to determine
whether a link exists between two artifacts. Meanwhile,
the artifacts are constantly being modified in the midst of
an evolving software system. Maintaining a list of up-to-
date traceability links inevitably becomes an overwhelming,
error-prone task. Semi-automated tools for traceability re-
covery offer an opportunity to reduce this manual effort and
increase productivity.

Information Retrieval (IR) [5] has gained wide-spread
acceptance as a method for automating traceability recovery
[3], [13], [21], [28]. The IR-based methods, such as those

based on Vector Space Model (VSM) [5] or probabilistic
Jensen and Shannon (JS) model [1], identify traceability
links using the textual information from the software arti-
facts. For example, the keywords from documents describing
use cases may match keywords in the comments of a
source code file. Textual information has the advantage of
being widely available, but it is unfortunately also highly
subjective. Words may have multiple meanings, identifiers
from software are often misleading if taken out of the
context, and comments are frequently out of date [2].
Different strategies have been successful in improving IR-
based methods, including text pre-processing (e.g., [37],
[39]), smoothing filters [12], and combinations of these
approaches [17]. Nevertheless, imprecision remains a major
barrier to using IR for traceability link recovery in practice.

Structural information contained in source code (e.g.,
function calls or inheritance relationships) has been proposed
in solutions to increase the precision of IR-based traceability
recovery [31]. In general, a combined approach will use
an IR-based method to locate a set of candidate links,
and then either augment or filter the set of links based on
the structural information. However, combined approaches
tend to be sensitive to a given IR method. If the candidate
links are correct, then the structural information can help
locate additional correct links. Otherwise, the structural
information offers little help, or will even pollute the results
with incorrect links.

Our conjecture is that the traceability links recovered by
IR-methods should be verified by software engineers prior to
expanding the set of links with structural information. For
example, consider the use case Authorize User from
a hospital management system. The system contains a class
called User, and there is a traceability link between the use
case Authorize User and the class. This link is likely
to be located by IR methods because of shared keywords
such as “user.” However, there are other links, which the
IR methods do not recognize. The use case is also relevant
to the class Doctor, which extends User. If a software



engineer classifies the link from the class User to the use
case Authorize User as correct, then we recommend a
link from the use case to the class Doctor, because of the
inheritance relationship between Doctor and User.

On the other hand, consider the use case Bill User. A
link exists between this use case and the class Patient.
However, because of the keyword matches, an IR method
would locate a link between the use case and the class User
in addition to Patient (because of the keyword “user”).
Yet, this new link would be a false positive. A canonical
application of structural information would aggravate the
situation by recommending a link to Doctor, based on the
link to User. In our approach, the links recovered via IR
techniques are verified incrementally by software developers
before using the structural information. As a result, only the
correct link to Patient class would be identified.

In this paper, we present our approach to using feedback
and structural information to improve IR-based traceability
link recovery. We use IR methods to locate candidate links,
which are certified by programmers. Then, we apply a
“bonus” to additional links to artifacts, which are connected
via the structural information. We present an empirical
evaluation in which we found that our approach outperforms
two IR-based methods as well as a naive combined approach
by a statistically significant margin. We also found that
adding a bonus to correct links is more effective than
applying a penalty to incorrect links. The results in this
paper are consistent across three different systems and
provide practical guidelines to using programmer feedback
for traceability recovery.

Paper structure. Section II provides background infor-
mation on IR methods and traceability recovery. Section III
presents the proposed approach, while Section IV reports
the design and the results of the empirical evaluation of the
proposed approach. Finally, Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

This section provides a background on Information Re-
trieval methods as well as a survey of the related work.

A. Information Retrieval Techniques

Information Retrieval (IR) refers to a type of technique
used to compute textual similarities among different docu-
ments. The textual similarity is computed using the occur-
rence of terms in the documents. If two documents share a
large number of terms, those documents are considered to
be similar. Different IR methods have been proposed, but in
general they can be summarized in three steps [5]. First, a
corpus is built from the documents after pre-processing such
as stop word removal and stemming. Next, each document
is represented as an entry in an index. One common index
is the term-by-document matrix, where each row represents
a document and each column is a term. The values in the
matrix indicate the frequency of the term occurring in the

document. Finally, the similarity among the index entries is
calculated using a formula such as the cosine distance [28].
The representation of the index entries and the formula for
calculating the similarity vary depending on the IR method.
We use two different IR methods in this paper, and briefly
describe each in the following paragraphs.

In the Vector Space Model (VSM) [5] each document
is represented as a vector of terms. Each row in the term-
by-document matrix can be considered as one document’s
vector in the space of terms that occur in all documents.
The similarity of two documents is calculated based on
the angle between each document’s vector. For example,
the similarity may be the cosine of the angle between the
vectors. In general, the angle between two document vectors
will decrease as the documents share more terms. Thus, the
similarity of the documents will be higher.

The Jenson-Shannon (JS) model [1] differs from VSM in
that each document is represented as a probability distribu-
tion. The distribution is based on the probability of a term
occurring in each document. In other words, each document
has some probability of containing each term. For example,
the distribution can be derived from each column in the
term-by-document matrix, where we have first normalized
the columns of the matrix. The similarity of the documents
is calculated from the Jenson-Shannon divergence (e.g., the
“distance” between the probability distributions).

B. IR-based Traceability Recovery Approaches

Traceability recovery has long been recognized as a major
maintenance task in software engineering [19]. Promising
results have been achieved using IR methods (e.g., [3]),
since pairs of source-target artifacts having higher textual
similarities have a high probability to be linked.

These techniques extract textual similarities from high-
level artifacts, such as requirements documents, to the im-
plementation artifacts, such as source code. The terms from
source code are typically the identifier names and comments.
Unfortunately, there is a synonymy problem when using
these terms, in that the authors of the high-level documents
may not use the same terms to describe the same topics as
the programmers writing source code. Efforts to address the
synonymy problem relied on using advanced IR methods
such as Latent Semantic Indexing (LSI) [15]. Despite these
advancements, no single IR method has been shown to
consistently have the highest performance for traceability
[1], [17], [33].

Different improvements have been proposed to the ap-
plication of the IR methods. Some improvements focus on
the terms that are extracted from the artifacts, and some
pre-processing techniques, such as identifier splitting, are
now widely-accepted [16]. Capobianco et al. have suggested
that domain-specific terms (e.g., jargon) best describe the
concepts in the code. They propose to use only the nouns
from the software artifacts [9]. Other work has also adapted



Algorithm 1 Optimistic Combination of Structural and
Textual Information — O-CSTI(List, G(C,E), δ)

1: i← 1
2: while not (end of List) do
3: Get the link (s, cj) in position i of List
4: for all ct ∈ C do
5: if (cj , ct) ∈ E then
6: Sim(s, ct)← Sim(s, ct) + δ ∗ Sim(s, ct)
7: end if
8: end for
9: i← i+ 1

10: end while
11: Reorder List
12: The user classifies the links in List

the weights of the artifacts’ terms depending on the length
of the artifacts [37], a project glossary [39], or external dic-
tionaries [20]. Recently, smoothing filters have been shown
to improve the precision of IR-based traceability [12]. In
addition to these technical improvements, other related work
has concentrated on human factors in traceability, such as
how to help programmers understand how to use the links
for a specific task [11], [22], [26], [34].

Structural information has been shown to augment IR-
based methods for traceability. The structural information
generally refers to the relationships in the software’s source
code, such as function calls, inheritance, or realization rela-
tionships. These relationships are valuable for traceability
recovery because the links among the source code are
reflected as links among high-level artifacts (an idea known
as software reflexion [32]). Approaches combining IR and
structural information have been used to compute similarity
among software artifacts in single software systems [8],
[18], [23], [27], [31], [35], [38] and repositories of source
code [6], [25], [29], [30]. While these approaches have sub-
stantially increased the performance of traceability recovery
methods, they still rely on the accuracy of the IR method.

Our work differs from existing methods in that we propose
to filter the links recovered by IR methods using feedback
provided by software engineers. Relevance feedback has
been suggested as an improvement to IR-based methods be-
fore [14], [21]. These approaches ask developers to classify
links as correct or incorrect, and based on the classifications,
modify the weights of the terms in the artifacts. Our work in-
stead proposes to combine the advantages of using feedback
with the increased accuracy from structural information.

III. INTEGRATING STRUCTURAL INFORMATION IN
IR-BASED TRACEABILITY RECOVERY

We conjecture that the structural links in source code
are transitive for the purpose of traceability recovery. If
a structural link exists between two source code artifacts,
and a textual link (from an IR method) exists between a
documentation artifact and one of the source code artifacts,
then we conjecture that a link exists from the documentation

artifact to both source code artifacts. In practice, an approach
combining IR and structural information detects the transi-
tive relationships and assigns a bonus to the textual similarity
of those relationships.

Previously proposed approaches (e.g., [31]) use an IR
method to locate a set of initial links, and then ex-
tend that set using the structural information. The soft-
ware developer evaluates and classifies the final set of
links only at the end. Formally, let G(C,E) be the in-
direct graph of relationships between code classes, where
C = {c1, . . . , cn} is the set of code classes and
E = {(ci, cj), there is a relationship between ci and cj}
is the set of indirect edges. Moreover, let S be the set of
source artifacts (e.g. use cases) and let List = {(s, c), s ∈
S and c ∈ C} be the list of candidate links computed by
using an IR method. Starting from the link (s, c1) in the
first position of List, the similarity between all the pairs
(s, cj) ∈ List such that (c1, cj) ∈ E is increased by a adding
bonus δ (constant or variable). The same process is applied
to all the links in List. Once the list of candidate links is
recomputed and reordered, the software engineer analyzes
the candidate links and determines those that are correct
links, and those that are false positives. In the following we
refer to this approach as O-CSTI, Optimistic Combination
of Structural and Textual Information (see Algorithm 1).
O-CSTI is identical to that proposed by McMillan et. al
[31] except that we use a different IR method to locate the
initial links. We compare O-CSTI to our new approach in
Section IV.

The approach proposed in this paper works by iterating
through the list of links derived by using the IR method.
At each iteration, we provide the first link from the ranked
list to a software engineer. The software engineer classifies
this link either as correct link or as false positive. Then,
we recommend new links based on structural information if
and only if the link is classified as correct. The ranked list is
reordered and the classified links are not shown anymore in
the following iterations while the new top links are classified
by the engineer. The process is stopped when all the correct
links are retrieved or when the number of false positives
becomes too high if compared to the number of correct
links (and thus the software engineer decides to stop the
traceability recovery process [13]). We refer to this approach
as UD-CSTI, User-Driven Combination of Structural and
Textual Information (see Algorithm 2).

It is important to highlight that the proposed approach
does not require recomputing textual similarities between
each pair of source and target artifacts because our approach
does not modify the initial term-by-document matrix. In
other words, unlike the IR-based relevance feedback [36],
our approach does not apply any re-weighting of terms
within the software artifacts.

A crucial input for both approaches is the choice of the
bonus δ. The simplest way to define the bonus is to fix it as a



Algorithm 2 User-Driven Combination of Structural and
Textual Information — UD-CSTI(List, G(C,E), δ))

1: while not (stopping criterion) do
2: Get the link (s, cj) on top of List
3: The user classifies (s, cj)
4: if (s, cj) is correct then
5: for all ct ∈ C do
6: if (cj , ct) ∈ E then
7: Sim(s, ct)← Sim(s, ct) + δ ∗ Sim(s, ct)
8: end if
9: end for

10: end if
11: Reorder List
12: Hide links already classified
13: end while

constant value in the range of [0, 1], i.e., the range of values
of textual similarities. Alternatively, the similarity value can
be increased by adding a bonus that is a percentage of the
actual similarity value (variable bonus). However, defining
a (constant or variable) bonus a priori is quite difficult and
oftentimes, subjective. In fact, the size (measured as the
difference between the max and min similarity values) of the
ranked list can sensibly differ from one system to another,
or when tracing different types of artifacts. In particular,
there might be very concentrated ranked list, where all the
similarity values are thicken in a small interval of values. On
the other hand, there might be scattered ranked list, where
the similarity values are highly spread in the interval [0, 1].
In the former case, a small bonus is enough, while in the
latter case a quite high bonus is required.

For this reason, we propose an adaptive bonus that is
proportional to the median variability of the similarity values
computed for each software artifact. More precisely, we set
the adaptive bonus as δ = median{vi, . . . , vn} where a
generic vi value denotes the variability of the similarity
values the i− th artifact, i.e. vi = (maxi−mini)/2 where
maxi and mini are the maximum and minimum similarity
values the i− th source artifacts.

The benefits of the proposed approach are as the fol-
lowing. With respect to the constant bonus, the proposed
approach takes into account the variability of the ranked list.
The variability of the ranked list is also taken into account
by the variable bonus. Nevertheless, the adaptive bonus is
superior to the variable bonus because the former does not
require providing any input to the software engineer, that is,
the bonus definition is completely automatic. In Section IV
we empirically analyze the benefits of such a heuristic with
respect to this variable bonus.

IV. EMPIRICAL EVALUATION

In this section we describe in detail the design of a case
study carried out to evaluate the proposed approach. The
description of the study follows the Goal−Question−Metric
guidelines [7].

Table I
CHARACTERISTICS OF THE SYSTEMS USED IN THE CASE STUDY.

System Description KLOC Source Target Correct
Artifact (#) Artifact (#) links

EasyClinic A system used to 20 UC (30) CC (37) 93
manage a doctor’s UML (20) CC (37) 69
office TC (63) CC (37) 204

eTour An electronic touris-
tic guide developed
by students.

45 UC (58) CC (174) 366

SMOS A system used to
monitor high school
students

23 UC (67) CC (100) 1,044

UC: Use case, TC: Test case, CC: Code class

A. Definition and Context

The goal of the experiment was to analyze whether the ac-
curacy of IR-based traceability recovery methods improves
when combining the textual similarity computed by the IR
method with structural information. We also verified whether
it is worthwhile to exploit classification of candidate links
by software engineers by expanding the set of links with
structural information.

The context of our study was represented by three soft-
ware systems, namely EasyClinic, eTour, and SMOS. All
the systems have been developed by final year Master’s
students at the University of Salerno (Italy). Use cases and
code classes are available for eTour and SMOS, while for
EasyClinic we use those two types of artifacts, as well as
the descriptions of UML diagrams and test case scenarios.

Table I shows the characteristics of the considered soft-
ware systems in terms of type and number of source and
target artifacts, as well as Kilo Lines of Code (KLOC). The
natural language of the artifacts for all the systems is Italian.
The table also reports the number of links between different
types of source and target artifacts. Such information (that
we used as an oracle to evaluate the accuracy of the
proposed traceability recovery methods) was derived from
the traceability matrix provided by the original developers.

B. Research Questions

In the context of our study, we formulated the following
research questions:

• RQ1: Can structural information be used to comple-
ment textual information and improve IR-based trace-
ability recovery?

• RQ2: Can we improve the use of structural information
by filtering the IR-based links with feedback from
software developers?

To respond to our first research question, we compared the
accuracy of UD-CSTI with the accuracy obtained by using
canonical IR-based traceability recovery methods. For the
second research question, we compared UD-CSTI with O-
CSTI (see Section III).

To increase the generalizability of our results, we recov-
ered traceability links between different types of software
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(a) VSM: Use cases onto code classes
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(b) VSM: Interaction diagrams onto code classes
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(c) VSM: Test cases onto code classes
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(d) JS: Use cases onto code classes
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(e) JS: Interaction diagrams onto code classes
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(f) JS: Test cases onto code classes

Figure 1. Precision/Recall curves achieved on the EasyClinic repository.

documentation artifacts and source code of the three differ-
ent software systems. In addition, we analyzed the benefits
of the proposed approach when using two different IR
methods, namely the JS method and VSM (see Section II).
To eliminate any bias towards either IR method, we used
identical term-by-document matrices.

C. Metrics

To evaluate the different traceability recovery methods,
we use two well-known IR metrics [5]:

recall =
|cor ∩ ret|
|cor|

% precision =
|cor ∩ ret|
|ret|

%

where cor represents the sets of correct links and ret is the
set of links retrieved by the traceability recovery technique.

A common way to evaluate the performance of retrieval
methods consists of comparing the precision values ob-
tained at different recall levels. This result is a set of re-
call/precision points which are displayed in precision/recall
graphs. In order to provide a single value that summarizes
the performance, we use the average precision, that can be
defined as the mean of the precision scores obtained for each
correct link [5]. It can be mathematically expressed as

AP =

∑n
i=1 xi preci∑n

i=1 xi

where xi represents the binary correctness of i−th link (i.e.
xi = 1 if the i−th is correct; xi = 0 otherwise) while preci
denotes its precision value.

D. Analysis of the Results

This section discusses the results of our experiments,
aimed at answering two research questions stated in Section
IV. Figures 1 and 2 compare the precision/recall curves sum-
marizing the performance of (i) the proposed approach (UD-
CSTI), (ii) the canonical approach to combine structural and
textual information (O-CSTI), and (iii) the pure IR-based
traceability recovery. The results are grouped by software
systems and IR methods.

The results achieved indicate that structural information
is useful to improve the performances of pure VSM- and
JS-based traceability recovery methods. In addition, UD-
CSTI generally outperforms O-CSTI, indicating that the
classification of the software engineer is worthwhile to
consider in order to regulate the effect of structural in-
formation. Specifically, for recall values lower than 100%
the UD-CSTI provides an improvement—compared to the
other methods—in terms of precision ranging between 10%
and 20%. This result corresponds to a substantial reduction
in false positives, ranging between 75% and 20%. From
the software engineer’s point of view who has to inspect
the ranked list of candidate traceability links, this results
represent a substantial improvement since such a drastic
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(a) Using VSM on SMOS
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(b) Using JS on SMOS
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(c) Using VSM on eTour
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(d) Using JS on eTour

Figure 2. Precision/Recall curves achieved on SMOS and eTour.

reduction of false positives mirrors a drastic reduction of
time needed for the manual classification. Indeed, the num-
ber or false positives measures the waste of manual effort
required before reaching a given recall value. For example,
when tracing use cases to code classes of eTour using a pure
JS-based traceability recovery method we can retrieve 314
correct links (about 85% of recall level) discarding 3,007
false positives (i.e., with a precision value about 9.5%). With
UD-CSTI, we can obtain 17.2% precision for the same level
of recall, discarding only 1,505 false positives (i.e., with
a false positives reduction about 50%). Thus, the software
engineer is able to retrieve the 85% of all the correct links
saving the 50% of time she should uselessly spent for
analyze irrelevant links when using the other methods.

When the goal is to recover all correct links (100% of
recall), it is possible to achieve an improvement of the
accuracy only in a few cases, i.e., when tracing UML
diagrams onto code classes and when tracing test cases onto
code classes for EasyClinic. For the other traceability activ-
ities, tracing all the correct links requires the same effort—
intended as number of false positives to be discarded—for all
the presented traceability techniques. This is probably due to
the low textual similarity of the links in the lower part of the
ranked list. If the textual similarity of the correct link is very
small, then the usage of the bonus does not allow the link
to effectively “climb” in the ranked list. For example, the
last correct link on eTour has a textual similarity equivalent
to 0.03%. When applying the structural feedback its textual
similarity will be increased by only 0.007%, enabling the
possibility for this link to increase its ranking.

Such a scenario is confirmed by the relation diagrams
showed in Figure 3, that compares the ranking of each
correct links in (i) a ranked list build using only VSM
and (ii) a ranked list build using VSM with UD-CSTI.
Each point in the diagram represents a correct link in
the ranked list. Thus, the relation diagram is particularly
useful to graphically measure the effect of UD-CSTI on
the ranked list of candidate links. As we can see, structural
information is generally useful to increase the ranking of
correct links, which results in a better precision as compared

(a) Use cases onto code classes (b) Test cases onto code classes

Figure 3. Relation diagram achieved on EasyClinic using VSM.

to a canonical stand-alone IR-based traceability recovery
method. However, when the textual similarity between the
two artifacts is too low, it is quite difficult to noticeably
increase the similarity. In this case, we retrieve the links
with the same precision.

Table II reports a typical scenario where the usage of
the structural feedback allows to improve the recovery of
correct links. More precisely, consider the link between
the use case Insert Laboratory Data and the class
GUIData extracted from EasyClinic. This link is correctly
retrieved by the IR method since these artifacts have a
high textual similarity (i.e., 42%). The use case is also
relevant to the class Laboratory, which has a usage
relationship with the class GUIData. If a software engineer
classifies the link between the class GUIData and the
use case Insert Laboratory Data as correct, then
we increase the similarity between the use case and the
class Laboratory, because of the usage relationships
between the two classes. In addition, since the classes
GUIData and Laboratory are both structurally related
to the class GUILaboratoryData by usage relation-
ships, the link between use case Insert Laboratory
Data and the class GUILaboratoryData is increased
as well as applying a bonus two times (one for each
relationship). Thus, such a link—that turns to be a cor-



Table II
USEFULNESS OF STRUCTURAL INFORMATION ON EASYCLINIC.

Use Case Code Class Correct Similarity N. Bonus Similarity + Bonus (10%)

Insert Laboratory Data

GUIData YES 42% 0 42%
Laboratory YES 39% 1 43%
GUILaboratoryData YES 36% 2 41%
LaboratoryManager YES 27% 3 35%

Table III
DIFFERENCES BETWEEN UD-CSTI AND O-CSTI IN PRESENCE OF FALSE POSITIVES.

Use Case Code Class Correct Sim. UD-CSTI O-CSTI
N. Bonus Bonus (10%) N. Bonus Bonus (10%)

Modifiy Visit
GUIExamination NO 49% 0 - 0 -
Examination NO 46% 0 - 1 +5%
GUIExaminationResults NO 31% 0 - 2 +6%

rect link—is able to “climb” the ranked list because
its similarity values are increased by 5%. In the same
way, the similarity between Insert Laboratory Data
and LaboratoryManager is increased because of the
usage relationships between LaboratoryManager and
GUIData, Laboratory and GUILaboratoryData.

The previous example explains how the structural in-
formation can effectively improve the recovery of correct
links. If the candidate link is correct, then the structural
information helps to locate additional correct links. Unlike
O-CSTI, the proposed approach is empirically shown to be
very stable even when candidate links are false positives.
Consider the scenario reported in Table III where the struc-
tural information is combined with textual similarity of false
positives. Consider the link between the use case Modify
Visit and the class GUIExamination.java extracted
from EasyClinic. This link is retrieved by the IR method
because these two artifacts have 49% textual similarity.
However, this link is a false positive. Moreover, the class
GUIExamination has an usage relationship with the class
Examination and an inheritance relationship with the
class GUIExaminationResults. If a software engineer
classifies the link between the class GUIExamination and
the use case Modify Visit as false positives, then the
approach UD-CSTI does not change the similarity values
of the candidate links. Differently, the O-CSTI will erro-
neously increase the similarity between the use case and the
classes Examination and GUIExaminationResults,
because of the structural relationships between them and
the class GUIExamination. For instance, the textual sim-
ilarity (computed using VSM) between Modify Visit
and Examination will be increased by 5% allowing
such false positive link to “climb” the ranked list. The
same happens for the link between Modify Visit and
GUIExaminationResults. Such a situation will have a
negative impact on the accuracy of the traceability recov-
ery method, since two false positives have increased their
ranking in the list of candidate links.

E. Threats to validity
External validity concerns the generalization of these

findings. An important threat is related to the repositories
used in the empirical study, i.e. EasyClinic, SMOS and
eTour. They are software projects implemented by the final
year Master’s students at the University of Salerno (Italy),
thus they are hardly comparable to real industrial projects.
However, they are comparable to repositories used by other
researchers [3], [21], [28] and both EasyClinic and ETour
have been used as benchmark repositories in the last two
editions of the traceability recovery challenge organized
at TEFSE’09 and TEFSE’11. In addition, EasyClinic was
also used by other authors to evaluate the accuracy of IR-
based traceability recovery methods [4]. Nevertheless, we
are planning to replicate the experiment using other artefact
repositories in order to corroborate our findings.

With the aim of making the achieved results more general-
izable we recovered traceability links between different types
of software documentation artifacts (i.e. use cases, UML
diagrams and test cases) and source code on EasyClinic. In
addition, we analyzed the benefits of the proposed approach
when structural information is combined with textual infor-
mation derived by using both vector space and probabilistic
models, namely VSM and JS respectively. Our approach
seems to be able to produce better results regardless of the
underlying type of artifacts being traced and IR method.

Concerning the threats to the construct validity, we
adopted two widely used metrics for assessing IR tech-
niques, namely recall and precision. Moreover, the number
of false positives retrieved by a traceability recovery tool for
each correct link retrieved reflects well its retrieval accuracy.

Concerning the internal validity, several factors may affect
our results. First, choosing the right values of bonus is a
critical issue. We propose to use an adaptive bonus that
is proportional to the size of the ranked list. Since other
heuristic might be used to define a bonus, we compared the
results achieved with an adaptive bonus with those achieved
using a variable bonus (see Section III). We experimented
with different percentage values of the variable bonus,



Table IV
COMPARISON BETWEEN THE AVERAGE PRECISION VALUES ACHIEVED USING VARIABLE AND ADAPTIVE BONUS.

System Activity Method b=10% b=20% b=30% b=40% b=50% b=60% b=70% b=80% b=90% b=100% Adaptive Bonus

EasyClinic

UC→CC VSM 53.54 52.63 51.27 50.31 49.23 49.11 48.53 48.12 47.80 46.58 53.69
JS 49.98 48.29 47.20 46.19 46.19 46.07 46.07 46.07 46.07 46.07 49.65

ID→CC VSM 63.65 61.31 58.07 54.80 52.69 51.68 51.53 51.17 51.17 50.75 64.44
JS 45.46 42.61 41.80 40.53 40.53 40.53 40.53 40.53 40.53 40.53 49.13

TC→CC VSM 45.98 43.98 41.88 40.20 39.83 39.67 39.48 39.15 38.41 38.40 45.79
JS 55.13 58.69 50.91 49.59 49.59 49.59 49.59 49.59 49.59 49.59 57.40

SMOS UC→CC VSM 31.88 34.34 35.98 36.89 36.37 36.63 36.29 35.99 35.70 28.96 36.27
JS 35.26 35.91 35.29 35.22 35.23 35.23 35.23 35.23 35.23 35.23 36.08

eTour UC→CC VSM 53.01 53.40 53.08 52.58 52.13 51.59 51.16 50.82 50.76 50.37 53.22
JS 48.88 43.28 37.13 32.91 30.10 28.50 28.13 28.04 28.04 28.04 49.03

Table V
COMPARISON BETWEEN AVERAGE PRECISION VALUES ACHIEVED

USING UD-CSTI (WITH MALUS) AND IR ALONE

System Activity Method UD-CSTI IR alone

EasyClinic

UC→CC VSM 39.32 45.83
JS 31.39 41.76

ID→CC VSM 53.45 59.40
JS 43.64 46.50

TC→CC VSM 37.50 41.84
JS 50.52 50.89

SMOS UC→CC VSM 29.17 28.96
JS 23.30 23.29

eTour UC→CC VSM 50.87 51.68
JS 38.97 42.19

ranging from 10% to 100% with a step of 10%. Table
IV reports the average precision achieved by considering
different heuristics and different percentage for the variable
bonus. We decided to use the average precision since it
returns a single value for each experimented method and
facilitates the comparison [5]. As we can see, the adaptive
bonus provides generally good results and frees the software
engineer from tuning up the parameter required for the
variable bonus (i.e., percentage of similarity).

Another important factor to be considered relates to the
possibility of using not only a “bonus” for correct links,
but also a “malus” for false positives. Specifically, when
the software engineer classifies a candidate link between
a documentation artifact and a class as a false positive,
the structural information can be used to reduce (instead
of increase) the textual similarity between the same docu-
mentation artifact and other structurally related classes. We
experimented with such a variant of the proposed approach
by using, also in this case, an adaptive and a variable bonus.
Table V compares the best results (in terms of average
precision) achieved with UD-CSTI and those achieved with
IR alone. As we can see, this variant of UD-CSTI was not
able to improve the performance of a pure IR-based recovery
method, and often the obtained results were even worse.

F. TraceLab Implementation

We also implemented the experiment using the TraceLab
framework [24], [10], which allowed us to use existing tools

to quickly design and set up our approach. We extended
the framework by designing two new components – which
correspond to the two models used in the evaluation, O-CSTI
and UD-CSTI – using the TraceLab software development
kit (SDK) in C#.NET.

The two new components take a previously computed
rank-list of similarities from an IR model and a set of
relationships between code classes, which we implement as a
similarity matrix of pairs with a score of 1. Additionally, the
UD-CSTI component takes into account developer feedback.
We use the oracle to simulate the process of selecting true
or false positives described in in Algorithm 2.

The overall TraceLab implementation is designed in the
following manner (Figure 4): a setup component reads the
experiment meta-information and stores it to the Workspace.
The experiment then enters the main loop, which iterates
over each dataset under study. At the beginning of each
iteration, an artifacts importer stores the source artifacts, tar-
get artifacts, oracle, code relationships, and dataset-specific
stopwords to the Workspace. After preprocessing the ar-
tifacts, the two IR models, VSM and JS, are run. The
similarity rank-lists from these models are then input to the
O-CSTI and UD-CSTI components. Each model’s results are
analyzed and their metrics are collected into a single data
structure and stored into the Workspace. Once each dataset
has been analyzed, the collective data structure is converted
into a format for viewing in a GUI component. Further
components can be added to the graph to save the results
to disk for offline viewing. The graph pictured here has
been slightly truncated to preserve space while conveying
the overall structure of the experiment.

The results of the TraceLab implementation are sim-
ilar to those shown in the evaluation. The differ-
ences can be accounted for by slight variations in
the way TraceLab’s components compute their out-
puts, such as preprocessing or IR model internals.
We provide the experiments and datasets for download
at http://www.cs.wm.edu/semeru/data/csmr13/. We
welcome the readers to reproduce and build on top of our
results by rerunning our experiments in TraceLab.



Figure 4. TraceLab experiment implementation

V. CONCLUSIONS AND FUTURE WORK

Structural information contained in source code (e.g.,
function calls or inheritance relationships) has been repeat-
edly proposed in solutions to increase precision of IR-
based traceability recovery [23], [27], [30]. However, such
approaches are too optimistic, assuming that structural links
in source code are always transitive for the purpose of
traceability recovery. In this paper, we proposed an approach
that considers structural information when the traceabil-
ity links from IR methods are verified by the software
developers and classified as correct links. An empirical
evaluation conducted on three software systems suggests
that our approach outperforms both stand-alone IR-based
methods and an optimistic approach for combining textual
and structural information.

Future work will be devoted to replicating our study in
a larger context to corroborate these findings. Moreover,
there are some potential improvements to our approach that
extend into two areas. First, we plan to experiment with other
heuristics for defining the bonus. While we used an adaptive
bonus in this paper, it is possible that different formulae for
choosing the bonus will further increase the performance of
the proposed technique. The second area of improvement is
related to the combination of the proposed approach with
user feedback analysis [36] and other enhancing strategies
such as smoothing filters [12]).
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