
Exemplar: EXEcutable exaMPLes ARchive

Mark Grechanik, Chen
Fu, Qing Xie

Accenture Technology Labs
Chicago, IL 60601

{mark.grechanik,chen.fu,
qing.xie}@accenture.com

Collin McMillan, Denys
Poshyvanyk

The College of William and
Mary

Williamsburg, VA 23185
{cmc,denys}@cs.wm.edu

Chad Cumby
Accenture Technology Labs

Chicago, IL 60601
chad.c.cumby@accenture.com

ABSTRACT
Searching for applications that are highly relevant to development
tasks is challenging because the high-level intent reflected in the
descriptions of these tasks doesn’t usually match the low-level im-
plementation details of applications. In this demo we show a novel
code search engine called Exemplar (EXEcutable exaMPLes ARchive)
to bridge this mismatch. Exemplar takes natural-language query
that contains high-level concepts (e.g., MIME, data sets) as input,
then uses information retrieval and program analysis techniques to
retrieve applications that implement these concepts.

Categories and Subject Descriptors
D.2.13 [Reusable Software]: Reusable libraries

General Terms
Algorithms, Experimentation

1. INTRODUCTION
Creating software from existing components is a fundamental

challenge of software reuse. It is estimated that around one trillion
lines of code have already been written with an additional 35 bil-
lion lines of source code being written every year [3]. Reusing
fragments of existing applications is beneficial to programmers
because complete applications provide them with the contexts in
which these fragments exist. Unfortunately, a few major challenges
make it difficult to locate existing applications that contain relevant
code fragments.

First and foremost, bridging the mismatch between the high-
level intent reflected in the descriptions of these applications and
low-level implementation details is hard. This problem is known as
the concept assignment problem [2]. Many search engines match
keywords in queries to words in the descriptions of the applications,
comments in their source code, and the names of program variables
and types. If no match is found, then potentially relevant applica-
tions are never retrieved from repositories. This situation is ag-
gravated by the fact that many application repositories are polluted
with poorly functioning projects [11]; a match between a keyword

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’10, May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

from the query with a word in the description or in the source code
of an application does not guarantee that this application is relevant
to the query.

Second, the only way nowadays for programmers to determine
if an application is relevant to their task(s) is to download the ap-
plication, locate and examine fragments of the code that implement
features of interest, and observe and analyze the runtime behavior
to ensure that the features behave as desired. This process is manual
and laborious; programmers study the source code and executions
profiles of the retrieved applications in order to determine whether
they match task descriptions.

Finally, short code snippets that are returned as results to user
queries (as many existing code search engines do) do not give
enough background or context to help programmers determine how
to reuse these snippets, and programmers typically invest a signif-
icant intellectual effort (i.e., they need to overcome a high cogni-
tive distance [12]) to understand how to use these code snippets in
larger scopes. On the contrary, if code fragments are retrieved in
the contexts of applications, it makes it easier for programmers to
understand how to reuse these code fragments.

We demonstrate a novel code search engine called Exemplar
(EXEcutable exaMPLes ARchive) that helps users to find highly
relevant executable applications for reuse. Exemplar combines in-
formation retrieval and program analysis techniques to reliably link
high-level concepts to the source code of the applications via stan-
dard third-party Application Programming Interface (API) calls
that these applications use. Exemplar is available for public use1.

2. EXEMPLAR APPROACH
In this section we describe the key ideas and give intuition about

why Exemplar works followed by the architecture of Exemplar.

2.1 Key Ideas
We want to mimic and automate parts of the human-driven pro-

cedure of searching for relevant applications. Suppose that re-
quirements specify that a program should encrypt and compress
data. When retrieving sample applications from Sourceforge2 us-
ing the keywords encrypt and compress, programmers look at
the source code to check to see if some API calls from third-party
packages are used to encrypt and compress data. Even though the
presence of these API calls does not guarantee that the applications
are relevant, it is a good starting point for deciding whether to check
these applications further.

What we seek is to augment standard code search to include API
documentations of widely used libraries, such as standard Java De-
velopment Kit (JDK). Of course, existing engines allow users to
1http://www.xemplar.org
2http://sourceforge.net/ as of September 6, 2009.



search for specific API calls, but knowing in advance what calls to
search for is hard. Our idea is to match keywords from queries to
words in help documentation for API calls in addition to finding
keyword matches in the descriptions and the source code of appli-
cations. When programmers read these help documents about API
calls that implement certain high-level concepts, they trust these
documents because they come from known and respected vendors,
were written by different people, reviewed multiple times, and have
been used by other programmers who report their experience at
different forums. Help documents are more verbose and accurate,
and consequently trusted more than the descriptions of applications
from repositories [5].

In addition, we observe that relations between concepts entered
in queries are often preserved as dataflow links between API calls
that implement these concepts in the program code. This obser-
vation is closely related to the concept of the software reflexion
models, formulated by Murphy, Notkin, and Sullivan, where rela-
tions between elements of high-level models (e.g., processing ele-
ments of software architectures) are preserved in their implementa-
tions in source code [15]. For example, if the user enters keywords
secure and send, and the corresponding API calls encrypt
and email are connected via some dataflow, then an application
with these connected API calls are more relevant to the query than
ones where these calls are not connected.

Consider, for example, two API calls string encrypt()
and void email(string). After the call encrypt is in-
voked, it returns a string that is stored in some variable. At some
later point a call to the function email is made and the variable is
passed as the input parameter. In this case we say that these func-
tions are connected using a dataflow link which reflects the implicit
logical connection between keywords in queries, specifically, the
data should be encrypted and then sent to some destination.

To improve the precision of our approach, our idea is to deter-
mine relations between API calls in retrieved applications. All
things equal, if a dataflow link is present between two API calls
in the program code of one application and there is no link between
the same API calls in some other application, then the former ap-
plication should have a higher ranking than the latter. In addition,
knowing how API calls are connected using dataflows enables pro-
grammers to better understand the contexts of the code fragments
that contain these API calls. Finally, it is possible to utilize dataflow
connections to extract code fragments, which is a subject of our fu-
ture work on our S3 architecture [17].

2.2 Our Approach
We describe our approach using an illustration of differences be-

tween the process for standard search engines shown in Figure 1(a)
and the Exemplar process shown in Figure 1(b).

Consider the process for standard search engines (e.g., Source-
forge, Google code search) shown in Figure 1(a). A keyword from
the query is matched against words in the descriptions of the appli-
cations in some repository (Sourceforge, Krugle) or words in the
entire corpus of source code (Google Code Search). When a match
is found, applications app1 to appn are returned.

Consider the process for Exemplar shown in Figure 1(b). A key-
word from the query is matched against the descriptions of different
documents that describe API calls of widely used software pack-
ages. When a match is found, the names of the API calls call1 to
callk are returned. These names are matched against the names
of the functions invoked in these applications. When a match is
found, applications app1 to appn are returned.

A fundamental difference between these search schemes is that
Exemplar uses help documents to obtain the names of the API calls

in response to user queries. Doing so can be viewed as instances
of the query expansion concept in information retrieval systems [1]
and concept location [14]. The aim of query expansion is to reduce
this query/document mismatch by expanding the query with con-
cepts that have similar meanings to the set of relevant documents.
Using help documents, the initial query is expanded to include the
names of the API calls whose semantics unequivocally reflects spe-
cific behavior of the matched applications.

In addition to the keyword matching functionality of standard
search engines, Exemplar matches keywords with the descriptions
of the various API calls in help documents. Since a typical appli-
cation invokes API calls from several different libraries, the help
documents associated with these API calls are usually written by
different people who use different vocabularies. The richness of
these vocabularies makes it more likely to find matches, and pro-
duce API calls API call1 to API callk. If some help docu-
ment does not contain a desired match, some other document may
yield a match. This is how we address the vocabulary problem [6].

As it is shown in Figure 1(b), API calls API call1, API call2,
and API call3 are invoked in the app1. It is less probable that
the search engine fails to find matches in help documents for all
three API calls, and therefore the application app1 will be retrieved
from the repository.

Searching help documents produces additional benefits. API
calls from help documents are linked to locations in the project
source code where these API calls are used thereby allowing pro-
grammers to navigate directly to these locations and see how high-
level concepts from queries are implemented in the source code.
Doing so solves an instance of the concept assignment problem [2].

2.3 Exemplar Architecture
The architecture for Exemplar is shown in Figure 2. The main

elements of the Exemplar architecture are the database holding ap-
plications (i.e., the Apps Archive), the Search and Ranking engines,
and the API call lookup. Applications metadata describes dataflow
links between different API calls invoked in the applications. Ex-
emplar is being built on an internal, extensible database of help
documents that come from the JDK API documentation. It is easy
to extend Exemplar by plugging in different help documents for
other widely used third-party libraries.

The inputs to Exemplar are shown in Figure 2 with thick solid
arrows labeled (1) and (4). The output is shown with the thick
dashed arrow labeled (14).

Exemplar works as follows. The input to the system are help
documents describing various API calls (1). The Help Page Pro-
cessor indexes the description of the API calls in these help doc-
uments and outputs the API Calls Dictionary, which is the set of
tuples <<word1, . . ., wordn >, API call> linking selected
words from the descriptions of the API calls to the names of these
API calls (2). Our approach for mapping words in queries to API

Help
Pages

API call 
lookup

API 
calls

Search
Engine Apps

Archive

Analyzer

Applications
Metadata

Retrieved
Applications

Ranking
Engine

Relevant
Applications

Help Page
Processor

API calls
Dictionary

1

2 4

5 6 7

8
9

10

12

11

13

3

14

Figure 2: Exemplar architecture.



keyword

app1

appn

…descriptions
of apps

(a) Standard search engines.

keyword

app1

appn

…descriptions
of API calls

API call1

API call3

API call2

(b) Exemplar search engine.

Figure 1: Illustrations of the processes for standard and Exemplar search engines.

calls is different from the keyword programming technique [13],
since we derive mappings between words and APIs from external
documentation rather than source code.

When the user enters a query (4), it is passed to the API call
lookup component along with the API Calls Dictionary (3). The
lookup engine searches the dictionary using the words in the query
as keys and outputs the set of the names of the API calls whose
descriptions contain words that match the words from the query
(5). These API calls serve as an input (6) to the Search Engine
along with the Apps Archive (7). The engine searches the Archive
and retrieves applications that contain input API calls (8).

The Analyzer pre-computes the Applications Metadata (10)
that contains dataflow links between different API calls from the
applications source code (9). Since this is done offline, precise pro-
gram analysis can be accommodated in this framework to achieve
better results in dataflow ranking. This metadata is supplied to
the Ranking Engine (12) along with the Retrieved Applications
(11), and the Ranking Engine combines keyword matching score
with API call scores to produce a unified rank for each retrieved
application. Finally, the engine sorts applications using their ranks
and it outputs Relevant Applications (13), which are returned to
the user (14).

3. EXEMPLAR IMPLMENTATION
As mentioned in Section 2.3, we need to implement several ma-

jor components of Exemplar: (1) crawler that populates the applica-
tions archive, (2) analyzer that pre-computes the dataflow between
different API calls from the applications, and (3) ranking engine
that sorts the applications based on the computed ranking scores.

3.1 Crawlers
Exemplar consists of two crawlers: Archiver that populated Ex-

emplar’s repository by retrieving from Sourceforge more than 30,000
Java projects that contain close to 50,000 submitted archive files,
which comprise the total of 414,357 files. Walker traverses Exem-
plar’s repository, opens each project by extracting its source code
from zipped archive, and applies a dataflow computation utility
to the extracted source code. In addition, the Archiver regularly
checks Sourceforge to see if there are new updates and it down-
loads these updates into the Exemplar repository.

Both crawlers are multithreaded, the Archiver is written in Scala
and the Walker is written in Java. Currently, it takes approximately
35 hours for the four-threaded Walker to run through all applica-
tions in the Exemplar repository without any dataflow computation
payload (only unpack each project) on a computer with Intel Core
Quad CPU Q9550 at 2.83GHz.

3.2 Dataflow Computation
Our approach relies on the tool PMD 3 for computing approxi-

mate dataflow links, which are based on patterns of dataflow depen-

3http://pmd.sourceforge.net/ as of September 6, 2009.

dencies. Using these patterns it is possible to recover a large num-
ber of possible dataflow links between API calls; however, some
of these recovered links can be false positives. In addition, we
currently recover links among API calls within files (intraprocedu-
rally), hence it is likely that some intraprocedural links are missed
and no interprocedural analyses are performed.

3.3 Computing Rankings
We use the Lucene search engine4 to implement the core retrieval

based on keyword matches. We indexed descriptions and titles of
Java applications, and independently we indexed Java API call doc-
umentation by duplicating descriptions about the classes and pack-
ages in each methods. Thus when users enter keywords, they are
matched separately using the index for titles and descriptions and
the index for API call documents. As a result, two lists are re-
trieved: the list of applications and the list of API calls. Each entry
in these lists are accompanied by a rank (i.e., conceptual similarity,
C, a float number between 0 and 1).

The next step is to locate retrieved API calls in the retrieved ap-
plications. To improve the performance we configure Exemplar to
use the positions of the top two hundred API calls in the retrieved
list. These API calls are crosschecked against API calls invoked in
the retrieved applications, and the combined ranking score is com-
puted for each application. The list of applications is sorted using
the computed ranks, and returned to the user.

4. EXEMPLAR USAGE
After users go to the Exemplar website they are presented with

a Google-like interface that includes a text box for entering query
keywords and two buttons. One says Exemplar Search and
it is associated with the functionality to retrieve applications us-
ing the basic keyword search, API and the connectivity ranking.
The other button is I Am Feeling Lucky and it is associated
with functionality to retrieve applications using the basic keyword
search and API ranking, no connectivity is used in ranking.

Users can type in any keywords in the search box and click on ei-
ther of the above search buttons. Retrieved applications are sorted
based on their relevance scores and presented on the next page us-
ing two kinds of links. If a link is presented with a button, it means
that relevant API calls are located within this application. Click-
ing on this link leads users to a web page with a list of API calls,
names of application files in which these calls are located, and the
line numbers on which these calls can be found. Otherwise, the link
takes the user directly to the Sourceforge page where this applica-
tion is hosted. It is needless to say that if no source code is uploaded
for an application, it is not presented on the list, which helps users
to reduce the clutter introduced by irrelevant applications.

5. RELATED WORK
4http://lucene.apache.org/ as of September 6, 2009.



Approach Granularity Corpora Query
Search Input Expansion

CodeFinder M C D Yes
CodeBroker M C D Yes
Mica F C C Yes
Prospector F A C Yes
Hipikat A C D,C Yes
xSnippet F A D Yes
Strathcona F C C Yes
AMC F C C No
Google F,M,A C,A D,C No
Sourceforge A C D No
SPARS-J M C C No
Sourcerer A C C No
CodeGenie A C C No
SpotWeb M C C Yes
ParseWeb F A C Yes
S6 F C,A,T C Manual
Krugle F,M,A C,A D,C No
Koders F,M,A C,A D,C No
Exemplar F,M,A C,A D,C Yes

Table 1: Comparison of Exemplar with other related ap-
proaches. Column Granularity specifies how search results are re-
turned by each approach (Fragment of code, Module, or Application),
and how users specify queries (Concept, API call, or Test case). The
column Corpora specifies the scope of search, i.e., Code or Documents,
followed by the column Query Expansion that specifies if an ap-
proach uses this technique to improve the precision of search queries.

Different code mining techniques and tools have been proposed
to retrieve relevant software components from different repositories
as shown in Table 1.

In a nutshell, the differences between Exemplar and other search
engines are listed below:

1. search engines that are heavily dependent on the descriptions
of software projects/components and/or meaningful names
of program variables and types, such as CodeFinder[9], and
Codebroker[21];

2. search engines that do not return relevant applications, but
code fragments or development artifacts, such as AMC[10],
and XSnippet[19];

3. search engines that do not expand the query (automatically),
such as SourcererDB[16], S6[18], and most widely used open
source projects repositories like Sourceforge, Google, etc.

Even though it returns code snippets rather than applications,
Mica is the most relevant work to Exemplar [20]. In using help
pages, Mica is similar to Exemplar, however, Mica uses help doc-
umentation to refine the results of the search while Exemplar uses
help pages as an integral instrument in order to expand the range of
the query. In addition, Exemplar returns executable projects while
Mica returns code snippets as well as non-code artifacts.

SNIFF extends our original idea [7] of using API calls as basic
code search abstractions [4]. Exemplar’s internals differ substan-
tially from previous attempts to use API calls for searching, includ-
ing SNIFF: our search results contain multiple levels of granularity,
and we are not tied to a specific IDE.

6. CONCLUSION
We offer a novel code search engine called Exemplar for finding

highly relevant software projects from a large archive of executable
examples. We evaluated Exemplar with 39 professional Java pro-
grammers and found with strong statistical significance that it per-
formed better than Sourceforge in terms of reporting higher confi-
dence levels and precisions for retrieved Java applications [8]. To
our knowledge, it is the first attempt to combine program analy-
sis techniques with information retrieval to convert high-level user
queries to basic functional abstractions that are used automatically
in code search engines to retrieve highly relevant applications.

Acknowledgments
We warmly thank anonymous reviewers for their comments and
suggestions that helped us to improve the quality of this paper. We
are especially grateful to Dr. Kishore Swaminathan, the Chief Sci-
entist and Director of Research for his invaluable support. This
work is supported by NSF CCF-0916139, CCF-0916260, Accen-
ture, and United States AFOSR grant number FA9550-07-1-0030.
Any opinions, findings and conclusions expressed herein are the
authors’ and do not necessarily reflect those of the sponsors.

7. REFERENCES
[1] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern Information Retrieval.

ACM Press / Addison-Wesley, 1999.
[2] T. J. Biggerstaff, B. G. Mitbander, and D. E. Webster. Program understanding

and the concept assigment problem. Commun. ACM, 37(5):72–82, 1994.
[3] G. Booch. Keynote speech: The complexity of programming models. In AOSD,

page 1, 2005.
[4] S. Chatterjee, S. Juvekar, and K. Sen. Sniff: A search engine for java using

free-form queries. In FASE, pages 385–400, 2009.
[5] U. Dekel and J. D. Herbsleb. Improving api documentation usability with

knowledge pushing. In ICSE, pages 320–330, 2009.
[6] G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais. The vocabulary

problem in human-system communication. Commun. ACM, 30(11):964–971,
1987.

[7] M. Grechanik, K. M. Conroy, and K. Probst. Finding relevant applications for
prototyping. In MSR, page 12, 2007.

[8] M. Grechanik, C. Fu, Q. Xie, C. McMillan, D. Poshyvanyk, and C. Cumby. A
search engine for finding highly relevant applications. In ICSE, 2010.

[9] S. Henninger. Supporting the construction and evolution of component
repositories. In ICSE, pages 279–288, 1996.

[10] R. Hill and J. Rideout. Automatic method completion. In ASE, pages 228–235,
2004.

[11] J. Howison and K. Crowston. The perils and pitfalls of mining Sourceforge. In
MSR, 2004.

[12] C. W. Krueger. Software reuse. ACM Comput. Surv., 24(2):131–183, 1992.
[13] G. Little and R. C. Miller. Keyword programming in java. Automated Software

Engg., 16(1):37–71, 2009.
[14] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich. Feature location via

information retrieval based filtering of a single scenario execution trace. In ASE,
pages 234–243, 2007.

[15] G. C. Murphy, D. Notkin, and K. J. Sullivan. Software reflexion models:
Bridging the gap between source and high-level models. In SIGSOFT FSE,
pages 18–28, 1995.

[16] J. Ossher, S. Bajracharya, E. Linstead, P. Baldi, and C. Lopes. Sourcererdb: An
aggregated repository of statically analyzed and cross-linked open source java
projects. MSR, 0:183–186, 2009.

[17] D. Poshyvanyk and M. Grechanik. Creating and evolving software by
searching, selecting and synthesizing relevant source code. In ICSE
Companion, pages 283–286, 2009.

[18] S. P. Reiss. Semantics-based code search. In ICSE, pages 243–253, 2009.
[19] N. Sahavechaphan and K. T. Claypool. XSnippet: mining for sample code. In

OOPSLA, pages 413–430, 2006.
[20] J. Stylos and B. A. Myers. A web-search tool for finding API components and

examples. In IEEE Symposium on Visual Languages and Human-Centric
Computing, pages 195–202, 2006.

[21] Y. Ye and G. Fischer. Supporting reuse by delivering task-relevant and
personalized information. In ICSE, pages 513–523, 2002.


