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Abstract—Rapid prototypes are often developed early in
the software development process in order to help project
stakeholders explore ideas for possible features, and to discover,
analyze, and specify requirements for the project. As prototypes
are typically thrown-away following the initial analysis phase, it
is imperative for them to be created quickly with little cost and
effort. Tool support for finding and reusing components from
open-source repositories offers a major opportunity to reduce
this manual effort. In this paper, we present a system for rapid
prototyping that facilitates software reuse by mining feature
descriptions and source code from open-source repositories.
Our system identifies and recommends features and associated
source code modules that are relevant to the software product
under development. The modules are selected such that they
implement as many of the desired features as possible while
exhibiting the lowest possible levels of external coupling. We
conducted a user study to evaluate our approach and the results
indicated that our proposed system returned packages that
implemented more features and were considered more relevant
than the state-of-the-art approach.

Keywords-software prototyping; domain analysis; recom-
mender systems

I. INTRODUCTION

Rapid prototyping is a software development activity in
which programmers build a prototype of a software product
by iteratively proposing, reviewing, and demonstrating the
features of that product [22]. It is designed to help project
stakeholders explore the features they would like to include
in a product, and to interact with the prototype in order
to discover and specify requirements. As prototypes are
generally thrown-away, they must be built quickly and
inexpensively, and must provide the flexibility to easily
add or remove features. Other factors, such as efficiency
or portability, are less important as the prototype may not
even share the same programming language or hardware
platform as the final product [22]. Therefore, it is essential to
minimize the manual effort involved in building prototypes,
and to maximize automation and source code reuse. As
such, tool support for automatically locating and reusing
features from open-source repositories offers a tremendous
opportunity for reducing this manual effort [22].

Rapid prototyping is often divided into a horizontal and a
vertical phase [25]. In the horizontal phase, domain analysts
identify an initial set of candidate features for implementa-
tion in the product. These features, which are often cursorily

defined, are presented to the stakeholders for discussion,
feedback, and refinement. This activity is often supported
by domain analysis tools and techniques which identify
features that are common across similar or competitive
software systems [12], [15], [11]. However, such approaches
provide only limited information about the implementation
of those features. In contrast, during the vertical phase of
rapid prototyping, developers build full functionality for a
selection of features identified during the horizontal phase.
This provides a much richer user experience, in which
project stakeholders can run the software and interact with
the features in order to decide on specific use cases and to
identify potential problems.

To reduce programming effort and shorten time-to-market,
programmers can find and reuse existing solutions for their
prototypes. Source code search engines have been developed
to locate implementations that are highly-relevant to a fea-
ture specified by a programmer (e.g., via a natural-language
query) [20], [24]. However, although these engines are effec-
tive for locating single features, they are not designed for the
more complex, yet common case, in which a prototype will
incorporate a set of interacting features. As a result, existing
search engines often return packages that match only a
small subset of the desired features, and developers have to
invest considerable effort to integrate features from several
different packages and projects. Under these circumstances,
the cost and effort required for a programmer to comprehend
and integrate the returned source code can significantly
reduce the benefits of reuse [16].

In this paper we present a novel recommender system for
supporting rapid prototyping. Our system directly addresses
several shortcomings of existing techniques and tools, by
integrating the horizontal and vertical phases of rapid pro-
totyping. Our approach first recommends features, and then
locates and recommends relevant source code. We utilize
a hybrid set of algorithms based on PageRank [17], set
coverage, and Coupling Between Objects (CBO) [9] in order
to maximize the coverage of features while proposing a set
of packages that minimize the integration effort involved in
building a prototype.

We implemented the recommender system and have con-
ducted a cross-validation user study with 31 participants to
compare the effectiveness of our approach against that of
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Figure 1. Overview of the architecture of our approach.

a state-of-the-art search engine, Portfolio [24]. During the
study, users entered product descriptions and selected fea-
tures recommended by our system. The users then evaluated
the packages recommended by each of the approaches. The
results from the study showed that our approach returned
more of the desired features per recommendation than
Portfolio, that a greater proportion of the source code was
relevant to the product description, and that users spent
less time evaluating the results from our approach. Our
recommender and user study data are online for public use1.

II. OVERVIEW

Before describing the specific details of the underlying
algorithms, we provide an architectural overview of our
approach. As depicted in in Figure 1, there are ten primary
steps. Steps (1) and (2) focus on extracting features and mod-
ules from one or more software repositories. First, the Mod-
ule Extractor retrieves software modules from one or more
repositories (1). These modules are collections of source
code related to a particular application or functionality, such
as C# namespaces or Java packages; in this paper, we focus
on Java packages. Next, the Feature Extractor discovers the
set of features implemented in the repositories (2). Each
feature describes a common function of the software, such
as “email spam detection”. These features are discovered by
analyzing the written specifications of applications in the
repositories. Further details are provided in Section III.

In order to formulate package recommendations, it is
necessary to understand the relationships between features
and modules, and also the dependencies between modules.
Steps (3) and (4) therefore focus on discovering these
relationships. In step (3) a source code search engine is
used to identify modules that contain specific features and to

1http://www.cs.wm.edu/semeru/prefab

produce a Module × Feature Matrix that is used as input to
the Feature and Module Recommenders. In step (4) Module
Dependencies are extracted through examining the source
code. Further details are provided in Section III.

A user then initiates a request for a recommendation by
describing the required functionality of the product they
intend to prototype (5). This description is parsed and then
elements of the description are matched to features known
by the recommender system (6). If matching features are
found, they are presented to the user who is asked to confirm
or reject their relevance (7). The feature recommender then
generates additional feature recommendations and these are
also presented to the user for feedback. These recommen-
dations support the horizontal phase of rapid prototyping. A
more complete description is provided in Section IV.

Our approach also supports the vertical phase of rapid
prototyping. In this phase, the selected features are sent
to the Module Recommender (8), and a series of compu-
tations are performed in order to generate a set of module
recommendations designed to provide high feature coverage
and low external coupling (9). A detailed explanation of
this process is provided in Section V. The recommended
modules are then presented to the user (10).

We illustrate this process from the users’ perspective with
a simple scenario showing both feature and module rec-
ommendations for the rapid prototyping of a “MIDI music
player.” As depicted in Figure 2(a), the product description
was initially matched to features labeled “Music plays in
the background” and “Sound supported”, and once these
features were accepted by the user, the feature recommender
suggested three additional features. All recommendations
were accepted by the user. The module recommender then
proposed the three packages shown on the right hand side of
Figure 2(b). The projects from which the packages originate
are displayed on the left. The GUI allows the user to see a
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Figure 2. Example of Rapid Prototyping in which the user entered the product description “MIDI music player.”

description of the project as well as browse the Java classes
and source code inside the package.

III. MINING PRODUCT AND FEATURE DATA

In order to construct the recommender environment, two
different types of data are extracted from the software
repositories. First, the feature recommender requires rich
textual descriptions of features to provide meaningful and
descriptive information to software developers, and second,
the module recommender requires high quality source code
for effective rapid prototyping. Although both of these
artifact types could in theory be extracted from a single
repository, in practice different repositories contain different
types of artifacts. This difference created the additional
requirement that there be significant overlap between the
features contained in each repository.

A. Feature Descriptions

Feature descriptions were extracted from applications in
Softpedia2. Although SoftPedia is not a source code repos-
itory; it does provide a repository of product descriptions
that include marketing-like summaries and bullet-point lists
of features. In the remainder of the paper we, therefore,
refer to it as a repository. In general, feature descriptions
are mined from product documentation. In the case of Soft-
pedia, we extracted individual sentences from the product
summary information and bulleted lists describing features

2http://www.softpedia.com/

from 117,265 products, categorized under 21 of Softpedia’s
predefined categories and 159 sub categories. Together these
formed a set of 493,347 feature descriptors [11].

Many feature descriptors describe similar functionality.
For example a product that “monitors CPU usage in real-
time” likely provides similar functionality to one that claims
to “show information about CPU usage.” Our approach
therefore clusters feature descriptors in order to discover
a set of meaningful features. We utilized the incremental
diffusive clustering algorithm (IDC) and feature naming
approach described in our prior work [11]. IDC takes an
iterative approach. In each iteration the SPK-Means clus-
tering algorithm is used to cluster the feature descriptors,
and then to identify and retain the “best” cluster based
on the cohesiveness and size of the cluster. This cluster’s
dominant terms are then identified and removed from all
feature descriptors in order to allow latent topics to emerge
in subsequent clustering iterations. The clustering is repeated
until no further meaningful terms remain. All identified
clusters represent a single feature, and the feature is named
by identifying the most representative descriptor for the
cluster. Using this approach, the Softpedia data produced
a set of 1,135 features.

B. Source Code Modules

Source code modules were extracted from 13,701 Java
applications downloaded from Sourceforge3. The modules

3http://www.sourceforge.net/



contained 241,655 Java packages and 400 million lines
of code. The large size and public accessibility of both
Sourceforge and Softpedia repositories suggests a large
overlap in their domains, meaning that many of the features
discovered through analyzing the Softpedia documentation,
are implemented in Sourceforge applications.

C. Relating Features to Modules

A module is considered related to a feature if that module
implements the feature. In order to discover these relations,
we used the Portfolio search engine [24]. Portfolio takes
a natural-language query as input and locates chains of
function invocations relevant to that query. For this paper, we
modified Portfolio to locate Java packages, and instantiated
it over the source code modules we mined from Sourceforge.
Then, we used the 1,135 features identified by our IDC algo-
rithm as queries for Portfolio. The Module × Feature matrix
is a matrix where the rows are the modules, the columns are
the features, and the cells indicate whether Portfolio detected
that feature as implemented by the package.

IV. FEATURE RECOMMENDATION

When the user provides a description of the product
to be prototyped, the feature recommendation algorithm
constructs an initial profile of the product by using the
cosine similarity metric to match parts of the description to
relevant features in our model. We established a threshold
score of 0.6 in order for the product to be matched to a
feature in keeping with previous practice [11]. As previously
explained, these features are presented to the user in order
to confirm that the matching has been performed correctly.

Given the feature set of the new product, our feature
recommender module identifies similar products and uses
their feature profiles to make predictions about the existence
of other relevant features in the new product. In our prior
work we used a Product × Feature matrix, based on fea-
tures found in the Softpedia products, in order to generate
recommendations [11]. The objective of the recommender
system was to suggest features to include in a product. In
contrast, the recommender system described in this paper
is designed to recommend actual source code packages.
Therefore, although we utilize the algorithm defined in our
previous work to recommend features [11], we use a Product
× Feature matrix mined from the open-source repositories.
One benefit of this approach is that recommendations are
based on the actual co-occurrence of features in implemented
source code, as opposed to the more abstract and incomplete
descriptions of features provided by the Softpedia product
descriptions. Given the Module × Feature matrix generated
by the source code search engine, the feature recommender
module merges the rows representing modules originating
from a single product to form a binary Product × Feature
matrix, M := (mi, j)P×F , where P represents the number of
products mined from Sourceforge (13,701), F is the number

of features mined from Softpedia (1,135), and mi, j is 1 if
and only if the feature j is implemented in product i.

A. Recommending Additional Features

Next, our feature recommender module generates an addi-
tional set of feature recommendations, which are presented
to the user. This is accomplished using the k-Nearest Neigh-
bor (kNN) algorithm. This method has been shown to be
efficient for recommending features and requirements [7].
For the purpose of feature recommendation, the similarity
of the new product and each of the existing products in the
Product × Feature matrix, M, is computed and the top k
(20) most similar products are selected as neighbors of the
new product. The binary equivalent of cosine similarity is
used to compute the similarity of the new product p with
each existing product n as follows:

similarity(p,n) =
|Fp∩Fn|√
|Fp| · |Fn|

(1)

where Fp denotes the set of features of product p [32]. After
forming the neighborhoods, features are recommended to the
new product using an approach based on Schafer’s technique
[28] to predict the likelihood of feature f being relevant to
product p as follows:

pred(p, f ) =
∑n∈nbr(p) similarity(p,n) ·mn, f

∑n∈nbr(p) similarity(p,n)
(2)

where n ∈ nbr(p) represents a neighbor of p, and mn, f is
an entry in the binary matrix M indicating whether product
n contains feature f . In general, prediction scores will be
computed for each candidate feature, and the features with
highest predictions will be recommended.

B. Evaluating Feature Recommender

To statistically evaluate the performance of the feature
recommender based on the integration of Softpedia and
Sourceforge data, we performed a standard leave-one-out
cross validation experiment. Given the Product × Feature
matrix, M, at each run of the experiment, a random feature is
removed from one of the products and the recommendation
algorithm is executed. The results are then analyzed to
see if the recommender was able to recommend back the
removed feature. The Hit Ratio measures the likelihood that
the removed feature is recommended as part of the top N
recommendations. In order to calculate the hit ratio, for
each test product p, a feature f is randomly removed from
the product profile and N recommendations are generated
using the remaining features. If feature f is contained in the
recommendation list, then the hit ratio for p is 1.0, otherwise,
it is 0.0. The hit ratio of the recommendation algorithm
is calculated by averaging over the hit ratio values of all
the test products. Figure 3 compares the hit ratio values of
our feature recommender and a random recommender for
different values of N. The results show that there was a sharp
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Figure 3. Hit ratio comparison for kNN and Random Recommender

improvement over the random case for the early recommen-
dations, meaning that targeted features were recommended
towards the top of the list of recommendations, and that the
feature recommender was effective.

V. MODULE RECOMMENDATION

The module recommender takes as input the list of
features agreed upon by the user as a result of the feature rec-
ommendation process and produces a list of recommended
packages for use in creating the desired rapid prototype.

A. Recommender Goals

Our recommendation algorithm is designed to optimize
the following goals in order to minimize the cost and effort
of reusing existing packages in a rapid prototype.

1) Coverage: The recommended packages should pro-
vide coverage of as many targeted features as possible.

2) Minimize number of recommended projects: The over-
head involved in downloading, installing, and integrating
packages from many different projects makes it preferable
to construct a rapid prototype using packages drawn from as
few projects as possible. Our algorithm, therefore, attempts
to minimize the number of projects from which the recom-
mended packages are drawn.

3) Minimize the external coupling of recommended pack-
ages: High external coupling decreases developer com-
prehension of the package, increases the effort needed to
execute code in the package, and makes it difficult and costly
to reuse the packages.

B. Package Coupling Costs

Before describing our module recommender algorithm
we present our technique for computing package coupling
costs. These costs are measured using the Coupling Between
Objects (CBO) metric [9], in which a coupling cost is
defined for each package. The total coupling cost for the

package depends upon both direct and indirect couplings of
that package to other packages; however, the dependency
chain of coupling costs between packages makes the cost
calculation problem nontrivial. In the following section, we
explain how to calculate individual coupling costs, and then
to extend this metric to account for the common case in
which multiple packages are selected from a single project.

The dependency information between packages can be
modeled as a weighted directed graph G = (V,E) with
each vertex v ∈V representing a package and each directed
edge e ∈ E representing the dependency of one package to
another. An edge ei, j from node vi to node v j exists if and
only if one or more classes in package vi use one or more
classes in package v j. The weight, wi, j, on the edge ei, j,
represents the CBO between the two endpoints and is defined
as the fraction of classes in vi that use at least one class in
v j.

Calculating the coupling cost for packages can be seen
as assigning real weights to vertices in the graph, such that
the weight of each vertex is a function of the weights on
the outgoing edges as well as the weights assigned to all
of its outgoing neighbors. In this paper, a variation of the
PageRank algorithm [17] is used to compute the vertices
weights. The PageRank algorithm was first developed to
support the hyperlink analysis of web pages, such that each
page in the web graph is assigned a numerical weight,
between 0 and 1, known as its PageRank, which represents
the relative importance of the page. The PageRank is then
used by the search engine to sort and rank the results for a
given query. The PageRank algorithm is commonly referred
to as the “random surfer model”. When a random surfer
reaches a page with n outgoing links, he or she will take
any of the outgoing links or will jump to a random page in
the graph. The PageRank score for each page depends on
the number of times it has been visited. More formally, in a
directed weighted graph the PageRank score of an arbitrary
vertex vi is iteratively computed as in Equation 3 until the
algorithm converges:

PageRank(vi) =
1−d

N
+d ∗ ∑

v j∈In(vi)

w ji ∗PageRank(v j)

∑vk∈Out(v j) w jk

(3)

where d is a damping factor that ranges between 0.0 and
1.0. If the damping factor is set to one, then pages that have
no outgoing external links will act as rank sinks and absorb
all of the rank in the system. For this reason, the formula is
adjusted so that with some probability, the surfer jumps to
a random node in the graph.

In the original PageRank algorithm, the score of each
node in the graph depends on all its incoming edges. Our
problem is different in the sense that the coupling cost of
a package depends on the cost of all the packages that
it is using and hence depends on all the outgoing edges.
Therefore, in order to apply the PageRank method, all the



Figure 4. Partial reversed package graph for an example project

edges in the package graph G were first reversed and then the
PageRank scores were computed for the reversed graph. The
calculated PageRank scores are an indication of the relative
connectivity level of each package to other packages and so
are used as the coupling cost values.

C. Project Coupling Costs

Given a set of features, a project can contain useful pack-
ages that implement desired features, plus some additional
utility packages that provide essential services to the useful
packages, but which do not directly implement any of the
desired features. The coupling cost associated with each
project depends on the combined external coupling of the
set of useful packages to their utility packages.

In order to accurately compute this cost, all of the useful
packages are merged together in the graph through removing
internal edges that connect the useful packages, and then
replacing external edges, i.e., edges between utility packages
and useful packages, with edges to or from the merged
package. In the case that a utility package is connected to
more than one useful package through outgoing edges, all
these edges are merged into a single edge and the weight
of this newly formed edge is computed as the sum of all
outgoing edges to the useful packages. Similarly, all the
incoming edges from the set of useful packages to the utility
package are replaced with a single edge connecting the
merged package to the utility package. After merging all
useful packages, the PageRank scores are recalculated and
the project coupling cost for the set of given features is
computed as the PageRank score of the merged package.

Figure 4 provides an illustrative example. On the left hand
side of the diagram, the reversed package graph depicts a
set of features, F = { f1, f2, f3, f4}, for which the package set
UP= {p1, p2, p3} are useful and they are connected to other
packages that do not implement any of the desired features.
On the right-hand side of Figure 4, the graph is shown after
the useful packages are merged.

Unfortunately this approach can be computationally ex-
pensive, as PageRank scores need to be recalculated each
time a user issues a new recommendation request. Therefore

we considered two computationally inexpensive cost estima-
tion techniques. The first approach sums the individual costs
of all useful packages in the project and has a tendency for
overestimation; while the second approach underestimates
costs by using the cost from the package that exhibits the
highest coupling values. An initial analysis showed that
the second approach produced better results and so it was
adopted for all the remaining experiments described in this
paper.

D. Package Recommendations
Package recommendations are, therefore, made as fol-

lows. Given a set of features F = { f1, ..., fn} , our code
search engine finds the set of all relevant packages, PK =
{pk1, ..., pkn} and relevant projects PR = {pr1, ..., prm}
where each pki is part of a project in PR.

As a single feature can be implemented in different
packages across various projects, the challenge is to find the
optimal set of packages with respect to the objectives and
constraints mentioned in section V-A. By simplifying the
problem to find the minimum number of projects that cover
all the features, our problem can be seen as equivalent to
the set cover optimization problem which has been shown
to be NP-complete [34]. Furthermore, if the problem were
to find the minimum coupling cost combination of projects
that cover all the features, then it would be another variation
of set cover optimization and NP-complete.

The greedy algorithm has previously been used to provide
a good approximation of a near-optimal solution [34]. We,
therefore, adopted this approach. Our method, as described
in Algorithm 1, iteratively selects the best project at each
step and then selects all of the packages in this project
which implement a targeted feature. This process continues
until all the targeted features are covered or there are no
more candidate projects to choose from. Our criterion for
selecting the best project is based on the average cost per
feature, computed by determining the project coupling cost
as described in section V-C, divided by the number of
targeted features implemented by the project.

Algorithm 1 Greedy set-cover algorithm
selectedPackages← /0

selectedPro jects← /0

while F 6= /0 do
best← getBestPro ject(PR)
selectedPro jects← selectedPro jects∪best
selectedPackages← selectedPackages∪
use f ulPackages(best,F)
F ← F− coveredFeatures(best,F)

end while

VI. EVALUATION

In addition to the quantitative study reported in Section
IV-B of this paper, we also conducted a qualitative assess-



ment designed to compare the efficacy of our approach
against the current state-of-the-art approach. This kind of
assessment relies on expert human judgement and is an
accepted practice for evaluating recommendations [23].

A. State-of-the-Art Comparison

The current state-of-the-art technique for locating source
code that is relevant to a given feature utilizes a source
code search engine. For purposes of this study we, therefore,
compared our approach against the Portfolio search engine,
which has been shown to outperform Google Code Search
and Koders in studies where developers search for source
code relevant to features they need to implement [24].
We replaced the Package Recommender from our approach
with Portfolio by concatenating the text descriptions of the
features selected by the user into a single query. This con-
catenation simulates the case where programmers search for
code relevant to multiple features by entering those features
into a search engine as a single query. The Java packages
recommended by Portfolio were then presented to the user
using the same interface we designed for our approach. In
this way the user interface was identical across the user study
regardless of whether the underlying recommendations were
made by our approach or by the search engine.

B. Research Questions

The ultimate goal of our rapid prototyping system is to
support vertical prototyping through recommending relevant
source code packages. Our approach is designed to maxi-
mize the number of features covered by the returned source
code, while minimizing the amount of source code returned
that does not directly implement features. Therefore, our
study was designed to address the following research ques-
tions (RQs):

RQ1 Are the recommendations from our approach more
relevant to the original product description than
the recommendations from the state-of-the-art ap-
proach?

RQ2 Does our approach recommend fewer false posi-
tives than the state-of-the-art approach?

RQ3 Does our approach provide better feature coverage
than the state-of-the-art approach?

RQ4 Do users require less time to understand the rec-
ommendations from our approach than from the
state-of-the-art approach?

RQ1 is designed to evaluate the recommendations from
our approach in terms of overall relevance to the original
product description given by the user. This addresses the
possibility that the recommended source code is relevant
to the features selected, but not relevant to the query
entered by the user. RQ2 is designed to evaluate whether the
recommended source code implements the selected features.
Each source code package that is returned should implement
one or more of the previously specified features, and our

Table II
THE CROSS-VALIDATION DESIGN OF OUR USER STUDY. DIFFERENT

PARTICIPANTS USED DIFFERENT TASKS WITH DIFFERENT APPROACHS.

Experiment Group Approach Task Set

1 A Our Approach T1
B State-of-the-Art T2

2 A State-of-the-Art T3
B Our Approach T4

approach attempts to maximize the number of selected fea-
tures implemented per package. RQ3 is designed to evaluate
feature coverage. Finally, a stated goal of our approach
is to reduce manual prototyping effort by minimizing the
external coupling of the recommended source code, as well
as the amount of that source code. We designed RQ4 to
evaluate the effort in terms of time required to understand
the recommendations.

C. Cross-Validation Design of the User Study

A cross-validation design was used in which experts
compared the results from our approach to the results from
a state-of-the-art approach. A cross-validation design is
important because it limits potential threats to validity such
as fatigue, bias towards tasks, and bias due to unrelated
factors (e.g., user interfaces). Table II shows an outline
of the experimental design. The study was split into two
experiments, each lasting one hour. The participants were
randomly placed into two equally sized groups, A and B. The
approaches and tasks were rotated among the groups such
that different participants used different tasks on different
approaches. Also, the participants were prevented from
knowing whether they were evaluating our approach or the
state-of-the-art approach to avoid introducting bias. During
the study our approach was denoted as the Green approach
and the state-of-the-art approach as Orange. The approaches
shared the same interface and participants saw only the color
denotations.

1) Participants: 31 computer science students were re-
cruited from the College of William & Mary to participate in
our user study. Twenty-eight were graduate students, while
three were undergraduates. The participants had an average
of 4.8 years programming experience and 3.4 years experi-
ence with Java. Fourteen reported professional programming
experience in various industries.

2) Tasks: The experiments were designed around a set
of 12 different tasks. These tasks were roughly equal in
difficulty, as determined by a vote of the authors, and
represented a range of potential prototyping tasks. The
following is an example task from the user study. A complete
listing of the tasks and other case study materials may be
downloaded from our online appendix.

Build a video player with adjustable bitrate and
other video and audio paramters. Your program



Table I
SUMMARY OF RESULTS FROM THE USER STUDY SHOWING RELEVANCE (R), PRECISION (P), COVERAGE (C), AND TIME REQUIRED IN MINUTES (T ).

THE COLUMN SAMPLES IS THE NUMBER OF RECOMMENDED PACKAGES FOR R AND C, THE NUMBER OF QUERIES FOR P, AND THE NUMBER OF
QUERIES THAT USERS RECORDED THEIR TIMES FOR T . ANOVA RESULTS ARE F , Fcritical , AND p1 . STUDENT’S T-TEST RESULTS ARE t , tcritical , AND p2 .

H Var Approach Samples Min Max Median µ F Fcritical p1 t tcritical p2 Decision

H1 R Our Approach 331 1 4 2 2.1 25.6 3.85 5e-7 5.06 1.96 <1e-4 RejectState-of-the-Art 673 1 4 1 1.7

H2 P Our Approach 128 0 1 0.50 0.59 11.0 3.88 1e-3 3.32 1.97 1e-3 RejectState-of-the-Art 96 0 1 0.33 0.43

H3 C Our Approach 331 0 1 0.20 0.29 13.4 3.85 2e-4 3.66 1.96 <1e-4 RejectState-of-the-Art 673 0 1 0 0.21

H4 T Our Approach 91 1 38 10 11.5 46.5 3.90 2e-10 6.82 1.98 <1e-4 RejectState-of-the-Art 62 6 46 20 20.2

should support multiple video formats and display
the video inside a resizable GUI window.

In each experiment, a participant was assigned one of
the two approaches and a set of tasks. The participant had
to formulate a query by defining a set of keywords that
represented at least some of the features needed for the task
at hand. The participant then entered the query into the GUI
and selected features relevant to the query. The system then
returned a set of recommended packages.

The participants were asked to evaluate the results ac-
cording to the relevance of the recommended packages, and
through specifying which packages implemented each of the
targeted features.

D. Metrics and Statistical Tests

The following metrics were collected during the study.
1) Relevance: The relevance of a recommended package

was evaluated by the participants on a four-point Likert
score, rated as an integer from one to four, where four is
highly-relevant, three is relevant, two is largely irrelevant,
and one means completely irrelevant. The relevance metric
was used to answer RQ1.

2) Precision: Precision is the percent recommendations
which implement at least one of the targeted features.
Precision will be high when the number of false positives
(packages that implement no features) is low; precision is
intended to help us answer RQ2.

3) Coverage: Coverage measures the number of features
implemented by a recommended package, and is used to
answer RQ3. Coverage is defined as |FI |

|FS|
, where FI is the set

of features implemented by a given package, and FS is the
set of features selected by the user. Coverage is high when
the recommended packages implement a large portion of the
features selected by the user.

4) ANOVA: One-way ANOVA and the Student’s t-test
[31] were used to evaluate the statistical significance of
differences in relevance, precision, and coverage. ANOVA is
a parametric test that assumes a normally-distributed sample.
According to the law of large numbers, the central limit
theorem applies when the sample size is greater than 30

[30]. The study included 31 participants, indicating that the
results are statically-significant.

E. Threats to Validity

There are two main threats to internal validity in our study.
First, the partipants manually judged the recommendations
and their ratings could be influenced by external factors such
as fatigue, prior knowledge of the approaches being evalu-
ated, programming proficiency, or lack of motivation. We
addressed threats due to fatigue and prior knowledge in the
design of our user study by rotating the tools among different
groups of participants and denoting the different tools with
only a color, rather than a name. The programming profi-
ciency participants could also affect results because users
with different proficiency levels could take different factors
into consideration. This threat was minimized by randomly
distributing participants to the various groups. Finally, the
potential motivation problem was at least partially addressed
by providing a small stipend to participants who completed
the study.

The second main source of threats to internal validity are
the tasks. We selected tasks which were easily understood
by the authors, and which are in the scope of the projects
in the repositories we used. Still, tasks that are out of scope
or which are too complex to be understood could cause
our recommendation engine to produce low quality results.
Therefore, we rotated the sets of tasks that participants used
so that in each experiment, each group used different tasks
on different tools. Also, we ensured that our approach and
the state-of-the-art approach both recommended packages
from the same repository.

Sources of threats to external validity include the repos-
itories we used and a potential mismatch of the features
from one repository and the source code in another. Our
approach relies on a search engine to determine which
features are implemented in which packages (see Section
III). The search engine we used has shown to perform well
in controlled experiments [24], however an external threat
to validity remains in that the performance may vary on
different repositories.
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Figure 5. Boxplots showing the relevance, precision, coverage, and time per query (in minutes) reported during the user study for the two different
approaches. The thick white line is the median. The lower dark box is the lower quartile, while the light box is the upper quartile.

VII. EMPIRICAL RESULTS

Confidence, precision, and coverage were measured for
both our approach and a state-of-the-art approach in a cross-
validated user study. The statistical differences were then
tested for these metrics. In this section, we present the results
of these tests in order to answer our research questions.

A. Hypotheses

The following null hypotheses are meant to evaluate the
directionality of the difference of means for relevance, pre-
cision, and coverage. These hypotheses are used in the case
when ANOVA indicates a statistically-significant difference
in the values of the metrics.

H1 The mean values of relevance are greater for the
state-of-the-art approach than for our approach.

H2 The mean values of precision are greater for the
state-of-the-art approach than for our approach.

H3 The mean values of coverage are greater for the
state-of-the-art approach than for our approach.

H4 The mean time per query (in minutes) is lower for
the state-of-the-art approach than for our approach.

Table I is a summary of the results from the user study.
We reject the three null hypotheses. For ANOVA, the value
of F is greater than Fcritical , and p < 0.05 in all cases.
Moreover, for the Student’s t-test of directionality, t exceeds
tcritical . Therefore, the mean values of relevance, precision,
and coverage are all greater for our approach than the state-
of-the-art approach.

B. RQ1 - Overall Relevance

In Section VII-A we found that the mean values of
relevance were greater for our approach than for the state-
of-the-art approach. This result indicates that our approach
recommends packages which are more-relevant to queries
than the state-of-the-art approach. A key difference in the
relevance values is that our approach returns a larger number
of packages rated as 4 (that is, highly-relevant), as shown
in Figure 5(a). Seventeen percent of the packages from our
approach were rated highly-relevant, while only 7% from
the state-of-the-art approach were, and these results were

considered outliers. The tasks required multiple features to
be implemented, and it is likely that the users only rated
packages as highly-relevant if those packages implemented
many of the necessary features. However, the state-of-the-art
approach, a source code search engine, focuses on locating
packages that are relevant to single features. Thus our
approach outperforms the state-of-the-art approach in terms
of relevance to the queries.

C. RQ2 - Recommendations Implementing Features

Precision is a measure of the number of recommended
packages which implemented at least one feature that the
user selected (see Section VI-D2). We found that the levels
of precision for our approach were greater than for the state-
of-the-art, which suggests that our approach outperforms the
state-of-the-art in terms of the number of recommendations
containing useful features. Note that both approaches recom-
mended a large number of packages which did not include
any of the selected features, as shown in Figure 5(b). This

Figure 6. A histogram showing the number of features implemented per
package, as a percentage of the total number of packages recommended in
the user study. Our approach recommends more packages that implement
multiple features, compared to the state-of-the-art, and fewer that implement
no features.



result can be expected when recommending source code
because of the difficulty in matching features to source code,
and has been widely documented [3], [1], [29]. On the other
hand, for many queries, our approach recommended a large
number of packages which included relevant features. For
half of the queries, at least 60% of the packages included
desired features. The state-of-the-art approach performed as
well for only 35% of the queries.

D. RQ3 - Features Covered by Recommendations

The packages recommended by our approach should
implement as many features as possible. We measured
the amount of selected features in each package with the
coverage metric, and we found that our approach has greater
levels of coverage that the state-of-the-art, showing that our
approach outperforms the state-of-the-art techniques in terms
of features covered by each package recommendation.

Figure 5(c) shows the levels of coverage from the user
study. While both approaches returned packages that did
not implement the selected features, our approach made
recommendations that covered a larger percentage of the fea-
tures. For example, 20% of the packages from our approach
implemented at least half of the features selected by the user,
compared to 11% of the state-of-the-art’s recommendations.
A histogram of our results (Figure 6) illustrates that our
approach returns packages that implement multiple features.
Roughly 30% of recommendations from both approaches
implemented one feature. For packages with more than one
feature, our approach outperforms the state-of-the-art.

E. RQ4 - Time per Query

We found that the participants in the user study were
able to complete their evaluations of the recommendations
in less time when using our approach than when using the
state-of-the-art approach. A stated goal of our approach is
to reduce the effort programmers must expend in reusing
code for prototypes, and this result indicates that users of
our approach are able to understand the source code more
quickly than with a state-of-the-art approach.

VIII. RELATED WORK

Our technique for rapid prototyping combines domain
analysis for horizontal prototyping with source code rec-
ommendation for vertical prototyping. This section gives a
brief summary of these areas.

Domain analysis is the process of analyzing a set of
relevant software systems to identify, organize, and repre-
sent features common to systems within a domain [15].
Most approaches involve either the manual or automated
extraction of domain vocabulary from requirements spec-
ifications and then use clustering to identify associations
and common domain entities [12], [2]. Some authors have
taken more structural approaches, for example Chen et. al.
constructed requirements relationship graphs (RRG) from

several different requirements specifications which they then
merged into a single domain tree [8]. Other researchers, such
as Niu et. al. have applied similar techniques to analyze
functional requirements in a product line [26]. In contrast
to our approach, these techniques are generally applied to
a set of requirements specifications with associated design
documents, code, and test cases stored in a project reposi-
tory, making it relatively simple to retrieve code alongside a
list of desired features. However, such approaches are con-
strained by the scope of an organization’s project repository,
while our approach incorporates hundreds of thousands of
project descriptions and source code packages to identify
and recommend a far broader set of features.

Building prototypes from existing source code has long
been a goal of rapid prototyping tool support [21]. Studies
of rapid prototyping have shown that programmers often
build prototypes through an iterative process of adding
features by using source code examples [5], [18]. This
iterative process is known as opportunistic programming
[6]. Our approach builds on opportunistic programming by
allowing programmers to locate source code relevant to
several features. In addition, we recommend features that
frequently occur in software alongside the features that the
programmer needs to implement. Other techniques have
been proposed for locating relevant source code, including
source code search engines. These engines commonly match
keywords in user queries to keywords from source code [14]
or documentation [33], [13]. Recent efforts have focused on
improving search results using contextual information either
from the programmer’s development environment [4], [10],
the dependencies of the source code being searched [24],
[20], or test cases and use cases [27], [19].

IX. CONCLUSION

The continuing growth of open source software creates
ongoing opportunities for mining useful domain knowledge
and for reusing code across projects. In this paper we have
explored the idea of using these repositories to support
rapid prototyping. Our work has demonstrated that different
types of repositories can be used synergistically to create
an effective recommender system which can be used to
help developers identify relevant source code packages. It
has advanced the current state of practice in which source
code search engines consider only individual features. In
contrast, our approach recommends sets of packages which
are designed to facilitate the prototyping and development
tasks, and has demonstrated that source code recommen-
dation can be substantially improved with algorithms that
consider multiple features as selected by the developer.
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