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ABSTRACT
In this paper, we present an emerging source code summa-
rization technique that uses topic modeling to select key-
words and topics as summaries for source code. Our ap-
proach organizes the topics in source code into a hierarchy,
with more general topics near the top of the hierarchy. In
this way, we present the software’s highest-level function-
ality first, before lower-level details. This is an advantage
over previous approaches based on topic models, that only
present groups of related keywords without a hierarchy. We
conducted a preliminary user study that found our approach
selects keywords and topics that the participants found to
be accurate in a majority of cases.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Software
Engineering]: Management—Productivity

General Terms
Algorithms, Documentation

Keywords
Source code summarization, software topic models

1. INTRODUCTION
Source Code Summarization is the task of creating a brief

description of a section of source code [2, 17, 18, 24, 26].
This description explains the key functionality of the source
code, such as the features the code implements or how the
code is related to other parts of the software. Programmers
read these descriptions to gain an understanding of the code
quickly, and the descriptions are popular in many types of
documentation, such as JavaDocs [15]. Unfortunately, at
present nearly all of these descriptions are written manually.
This manual process is a problem because a typical program
may have descriptions summarizing each method, class, and
file in the program. For a large program, developers need to
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spend a correspondingly large amount of time writing and
maintaining each description by hand. Numerous studies
have shown that this manual process is expensive, and that
programmers take shortcuts when possible [6, 13, 8, 22].

Software engineering research has begun to yield auto-
mated source code summarization techniques [24]. One promi-
nent strategy is to use a topic model. A topic model is a
statistical model in which words are associated with other
words based on their co-occurrence in documents. Different
groups of the words called topics are assigned a probability
of being associated with each documents. In software, each
document is a section of code (e.g., a Java class), and the
words are terms in that code (e.g., identifier names or words
in comments). Code summarization techniques based on
topic models are described extensively in software engineer-
ing literature [19]. But as a recent study by Panichella et.
al points out, these techniques often “have rather low per-
formance when applied on software data” [19].

Panicella et. al also point out that this low performance
is due to the differences between source code and natural
language. At the same time, other studies have shown that
the process of reading source code is different than reading
natural language, involving a different mental process for
comprehension [4]. One of the key differences is that when
programmers read source code summaries, they look for the
highest-level functionality performed by the code, and then
seek to understand how lower-level functionality supports
the higher-level features [14, 12]. This mental process is
akin to the process of understanding hierarchical data such
as web content [29]. Specialized hierarchical topic models
have been designed for this data. Unfortunately, current ap-
plications of topic models to software do not consider these
specialized techniques. The low performance of standard
topic modeling techniques on software may be improved by
using the specialized hierarchical techniques.

In this paper, we present an emerging source code summa-
rization technique that organizes the topics in source code
into a hierarchy. At the top of the hierarchy are topics
which describe the highest-level functionality, while lower-
level supporting functionality are lower in the hierarchy. For
example, a topic “play sound” would be a parent in the hier-
archy to topics“decode mp3”and“open files”. Our technique
employs the HDTM algorithm described by Weninger et.
al [29] to extract a topic hierarchy for a software system,
then we display the hierarchy to programmers in a naviga-
ble web interface. We conducted a preliminary user study
to explore the benefits and drawbacks of the technique, and
to guide future development.



2. BACKGROUND
This section presents the problem we target and the topic

modeling algorithm we use for our approach. Note that this
algorithm has been evaluated elsewhere; we mention it here
because it is a critical component of our work.

2.1 The Problem
The problem we target in this paper is that current topic

modeling approaches in software engineering do not explic-
itly provide information about how the topics are related.
The topics extracted by current approaches are typically
lists of keywords related to one feature in the software. For
example, “midi file reader.” These lists can be helpful to pro-
grammers [7], but what they lack is contextual information
about how different features are connected. For example,
“midi file reader” may be a component of a higher-level fea-
ture such as “music player.”

Our work has the potential to impact many areas of pro-
gram comprehension research. Topic models are widely-used
in software engineering [16, 19]. Unfortunately, the main
weakness to topic modeling approaches is that there is no
agreed-upon technique for labeling the topics so that those
topics can be understood in context [28, 16]. In other words,
currently a programmer can read topics to determine what
features are implemented in software, but it is difficult for
the programmer to determine how those features interact,
or which features are the most important. Our work has
the potential to improve these current approaches by pro-
viding a way for programmers to gain this knowledge via a
hierarchy of topics.

2.2 HDTM Topic Modeling Algorithm
Given a graph of documents (vertices) and links (directed

edges) G = V,E and a root vertex r ∈ V , the Hierarchi-
cal Document Topic Model (HDTM) uses a non-parametric
Bayesian graphical model to generate a hierarchy of the
documents. The details of this algorithm can be found in
[29]; we describe a general overview of the algorithm here.
HDTM defines a document hierarchy to be a directed graph
such that each vertex/document has one and only parent
document except the root vertex/document, which has no
parent. Because HDTM takes as input any directed graph –
where vertices often have several adjacent edges – the over-
arching goal of HDTM is to find the single-best parent for
each vertex. In other words, hierarchy-edges are selected
from the set of existing edges; edges are never created.

HDTM samples hierarchy-edges using the random walk
with restart (RWR aka personalized PageRank) Stochastic
method. RWR starts at the root vertex and stochastically
’walks’ the graph picking a random number x at each succes-
sive vertex. When RWR is ’unlucky’, i.e, x < γ, the walker
’restarts’ at the root node and stochastically walks again.
In this way each vertex in the graph is assigned a probabil-
ity of being reached via some adjacent edge, i.e, from some
parent-vertex. These probabilities are be updated in the
term sampling step.

HDTM requires that each vertex represents some multi-
nomial distribution. For our purposes we represent each
vertex as a multi-set, or bag, of words corresponding to the
text in a function’s comment section. Conceptually speak-
ing, every time that the random walker chooses an edge it
probabilistically chooses to carry some words with it, and
every time the walker arrives at a new vertex it probabilis-

tically deposits some of the words that its carrying. The act
of carrying and depositing terms changes the multinomial
distribution of the vertex, thereby changing the probability
that the walker will visit again.

So HDTM operates in two steps: 1) By walking the graph
based on the global restart probability γ and each vertex’s
multinomial distribution, and 2) by updating the multino-
mial distribution when the walker deposits terms and picks
terms to carry forward. Step 1 and 2 alternate using a
Markov chain Monte Carlo algorithm called Gibbs sampling.
Several thousand Gibbs-iterations are usually required be-
fore a hierarchy emerges.

The resulting hierarchy describes the most probable par-
ent for each vertex, but more importantly the distribution of
terms inside each vertex will have changed such that vertices
higher in the hierarchy contain more general terms, and ver-
tices lower in the hierarchy will contain terms more specific
to their location. All vertices at all levels will contain terms
that are the most descriptive of their respective subtrees.
Thus, HDTM creates not only a document-hierarchy, but
also a topic-hierarchy as well.

3. OUR APPROACH
This section describes our approach to summarization.

Generally speaking, our approach works in four steps: 1)
we represent a software project as a call graph, 2) we pro-
cess the call graph to prepare it for a topic model, 3) we use
the HDTM algorithm with this processed call graph, and 4)
we display the hierarchical structure of the topics in a web
interface. The following details the procedure:

In order to create topic model of a Java project, we first
need to represent that Java project as a directed graph.
Defining a Java project as a graph requires defining the
graph’s nodes and edges. The nodes of the graph are Java
methods within a project. The edges connect the nodes to
one another in a meaningful way. In our graph, the edges
are defined by the method calls within a Java project. Each
edge originates from the calling method, and terminates at
the method called. In this way, we can represent any given
Java project as a directed graph.

However, in our study, we found that in many Java projects,
the generated graph is disconnected. This means that there
does not exist a single method that is connected either di-
rectly or indirectly to all other methods via the directed call
graph. This presents a problem to topic modeling, as in
an unconnected graph, it is impossible to create a single hi-
erarchical structure that contains every method in a given
project. To rectify this, for each Java project, we create a
phantom node. This phantom node is connected to every
other node in the directed graph. While the phantom node
does not represent an actual method in a project, it can
be understood as though it were a method that calls ev-
ery other method in the project and is itself called by every
other method in the project. The phantom node ensures
that the directed graph representing a Java project is fully
connected.

Using this generated graph, we can use the HDTM algo-
rithm described by Weninger et. al to create a topic model.
To do this, we define each node in the graph, meaning each
method in a Java project, as a document in our topic model.
The topics within each document are simply the list of key-
words in the code of each method. We chose not to include
words from author comments within our topics. This is be-



Figure 1: Example display for the findFigureInside

method in jhotdraw. The child method contains-

Point is called by findFigureInside. findFigureInside

was considered the most suitable parent node of con-
tainsPoint by HDTM.

cause we seek to develop an automatic summarization tool
that does not rely manually written documentation. We
then run using HDTM with γ = .75. The value was chosen
via experimentation, as an examination to determine the
best possible gamma value is beyond the scope of this pilot
study. Additionally, the phantom node is selected as the
top node on our tree. This was done to ensure consistency,
as the artificially created phantom node is the only node
certain to exist regardless the input Java project.

HDTM creates a hierarchical tree structure from our Java
project. The hierarchical tree structure originates from our
phantom node. While each node, other than the phantom
node, still represents a method in the input Java project,
the topics in these nodes are no longer keywords from just
that method. As a result of HDTM, each node contains
an ordered list of topics selected from that method and all
descendants of that method. This allows common keywords
of child methods to be visible in the parent method’s topics,
even if that particular keyword does not appear in the parent
method. In this way, we create a hierarchy of topics, with
nodes that contain common and general terms higher in the
tree. By contrast, nodes containing specific methods that
do not provide broad understanding of the project will be
lower in the tree.

3.1 Example
To illustrate how the hierarchical tree structure is used to

find keywords, we present an example taken from our pilot
study (see Section 4). As shown in Figure 1, the method
findFigureInside in the jHotdraw class AbstractFigure is
the parent of the method containsPoint. This shows that,
according to HDTM findFigureInside is the most similar
method that calls containsPoint in jHotDraw.

The keywords from containsPoint, namely contains, point,
and inside appear in the top five keywords in findFigureIn-

side. Each of these keywords help communicate the pur-
pose of the method findFigureInside, which, according to
author comments, returns a figure that contains the given
point inside of it. Because findFigureInside relies on a
call from containsPoint, and both methods contain three
topics, the listed topics are higher in the hierarchical tree,
meaning they are general to both methods. This also means
that while none of those three topics appear in the list of
top five topics in containsPoint, containsPoint still can
be considered related to those topics because it is a child in
a branch below those topics.

4. PRELIMINARY EVALUATION
We conducted a pilot study to evaluate our approach. We

recruited three participants for the study, all graduate stu-
dents with an average of 5 years experience in Java program-
ming.

In this pilot study, we gave the users with the interface
shown in Figure 1. The user would see the top 5 topic key-
words for a given method, as well as the hierarchy of all
child methods and topics. We asked the participants to ex-
plain in their own words what they believe the method does
without looking at the source code. After that, we had the
participants examine the source code and then summarize
the method in their own words. Based upon their sum-
marization, we asked the participants three multiple choice
questions.

Q1 How accurately do you feel the given keywords describe
the method? Very (accurately, somewhat accurately,
somewhat inaccurately, very inaccurately)

Q2 How much do you agree with this statement: “I under-
stand the method’s overall purpose in this project.”?
(Strongly agree, somewhat agree, somewhat disagree,
strongly disagree)

Q3 If you were to select five keywords to describe the method,
you would have used...(All of the same keywords, most
of the same keywords, only few of the same keywords,
none of the same keywords)

The rationale for Q1 is to determine if the participant was
able to predict what the method would do based upon the
keywords and hierarchy given. If participants find the key-
words to be accurate, it implies that the keywords depict
the purpose of the method to the user. The rationale for
Q2 is to determine if our approach does convey meaningful
contextual information. If participants largely agree with
the statement, it implies our approach successfully commu-
nicates how a method fits into a project. The rationale of Q3

is to determine if the participants agree with our keyword
selection. If they agree with all or most of our keywords,
then this implies topic modeling can result in the mostly
the same keywords being selected as the more expensive and
time consuming process of using a human expert.

Our participants were given methods from a randomly se-
lected group of methods used in our prior work [21]. The
projects studied are nanoXML, jTopas, Siena, jHotdraw, ja-
juk, and jEdit. Two participant answered questions for all
15 methods given, while one participant only had time to
answer questions for 9 methods. In total, this gives us 39
answers to each question.

4.1 Quantitative Results
For Q1, our participants felt the keywords were at least

“somewhat accurate” 76.9% of the time, with a plurality of
43.6% of the time the answer being “very accurate.” Par-
ticipants selected “very inaccurate” only 12.8% of the time.
For Q2, participants selected that they “strongly agreed”
that they understood the method’s purpose a majority of
the time: 53.8% of the time. The participants “somewhat
disagreed” or “strongly disagreed” 17.9% of the time. For
Q3, participants most frequently said they would use “most
of the same keywords” 43.6% of the time, and “all of the
same keywords” 33.3% of the time. Only once in all 39 re-
sponses did a participant say they would use none of the
same keywords, which is equal to 2.6% of the time.



In summary, our quantitative results are promising but
point to needed improvement. They suggest that keyword
selection using topic modeling can be accurate and can help
a reader of the source code understand a methods purpose.
Additionally, readers agree with most of the keywords se-
lected 76.9% of the time, which implies that our rapid au-
tomated approach can very frequently produce results that
human experts agree with.

4.2 Qualitative Results
Throughout the study, we asked participants to provide

general comments for each method they summarized. Most
of the comments referred to specific keyword selections. Par-
ticipants suggested certain selected keywords should not have
been included, and suggested other keywords. For exam-
ple, “buffer keyword should be included” and “As a keyword,
properties does not make sense to me.”

There were some cases where the keywords’ purposes were
not understood until the source code context was seen. For
example, one comment on the createElement() function in
XMLElement class in NanoXML read, “From the keywords, it
was clear that the method would generate an XML element,
but it was not clear the method would generate an empty
element.” While there were negative comments on particular
details, on the whole, participants liked our interface, with
one participant saying “I think the interface is great.”

4.3 Threats to Validity
One source of a threat to external validity. An interface

expert was nearby when the participants took the exam.
This was to ensure if the participants were not at any point
confused by the web interface, the expert could help answer
any questions. The expert did not at any point answer any
questions about the keywords or Java source code partici-
pants were asked to summarize. We felt a participant not
knowing how to correctly interact and interpret the interface
would be a larger threat to validity than the possible bias
created by an experts presence. The expert did not inter-
act with the user other than to briefly explain the interface,
nor did the expert monitor the participants’ progress in the
survey.

5. RELATED WORK
Source code summarization is a relatively new technology

with relatively little discussion in the literature. Haiduc et
al. described one approach based on a Vector Space Model
(VSM), in which a summary comprised of the n keywords
with the highest term-frequency/inverse-document-frequency
scores [10]. This approach has been independently con-
firmed to be effective [5, 7]. Most recently, Rodeghero et
al. improved the algorithm by using data from an eye-
tracking study of professional programmers [21]. Sridhara et
al. created different approaches, notably using sentence tem-
plates for Java methods [25] and extraction of comments
for method parameters [26]. Source code summarization is
also related to earlier techniques in natural language sum-
marization. Spärck-Jones [23] surveys numerous text sum-
marization techniques, and broadly categorizes them as ei-
ther “extractive”, by generating summaries from the content
inside a document [3, 9, 11, 20, 27], or “abstractive”, by
generating summaries based on external context or related
documents [23]. Finally, topic modeling is widely used in
software engineering [1, 19] as mentioned in Section 1.

6. CONCLUSION
We have presented an approach to source code summariza-

tion using topic modeling. Initial study implies our approach
is a viable source code summarization methodology.
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