
0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2465386, IEEE Transactions on Software Engineering

1

Automatic Source Code Summarization of
Context for Java Methods

Paul W. McBurney and Collin McMillan

Abstract—Source code summarization is the task of creating readable summaries that describe the functionality of software. Source
code summarization is a critical component of documentation generation, for example as Javadocs formed from short paragraphs
attached to each method in a Java program. At present, a majority of source code summarization is manual, in that the paragraphs are
written by human experts. However, new automated technologies are becoming feasible. These automated techniques have been
shown to be effective in select situations, though a key weakness is that they do not explain the source code’s context. That is, they can
describe the behavior of a Java method, but not why the method exists or what role it plays in the software. In this paper, we propose a
source code summarization technique that writes English descriptions of Java methods by analyzing how those methods are invoked.
We then performed two user studies to evaluate our approach. First, we compared our generated summaries to summaries written
manually by experts. Then, we compared our summaries to summaries written by a state-of-the-art automatic summarization tool. We
found that while our approach does not reach the quality of human-written summaries, we do improve over the state-of-the-art
summarization tool in several dimensions by a statistically-significant margin.

Index Terms—Source code summarization, automatic documentation, program comprehension

F

1 INTRODUCTION

Programmers rely on good software documentation [11],
[22], [27], [48]. Unfortunately, manually-written documen-
tation is notorious for being incomplete, either because it is
very time-consuming to create [6], [19], or because it must
constantly be updated [10], [17], [38]. One result has been the
invention of the documentation generator. A documentation
generator is a programming tool that creates documentation
for software by analyzing the statements and comments in
the software’s source code. The key advantage is that they
relieve programmers of many tedious tasks while writing
documentation. They offer a valuable opportunity to im-
prove and standardize the quality of documentation.

Still, a majority of documentation generators are manual.
They need considerable human intervention. Prominent ex-
amples include Doxygen [50] and Javadoc [23]. These tools
streamline the task of writing documentation by standardiz-
ing its format and presentation. But, they rely on program-
mers to write the documentation’s content (in particular, a
summary of each function or method) as specially-formatted
metadata in the source code comments. The tools cannot
generate documentation without this metadata. The burden
of writing the documentation still lies with the program-
mers.

Recent research has made inroads towards automatic
generation of natural language descriptions of software [2],
[29], [33], [42]–[44]. In particular, work by Sridhara et al. can
form natural language summaries of Java methods [42]. The
summaries can then be aggregated to create the software’s
documentation. The technique works by first selecting a
method’s most important statements, and then extracting
keywords from the identifier names in those statements.
Next, a natural language generator stitches the keywords
into English sentences. Finally, these sentences are used

to make a method summary. The process is automatic; so
long as the source code contains meaningful identifiers, the
summaries will describe the main behaviors of a given Java
method.

What is missing from the method summaries is informa-
tion about the context which surrounds the method being
summarized. The context includes the dependencies of the
method, and any other methods which rely on the output
of the method [24]. A method’s context is important for
programmers to know because it helps answer questions
about why a method exists and what role it plays in the
software [7], [39], [40]. Because they summarize only those
statements within a method, existing techniques will supply
only limited context about a method. Programmers explor-
ing a software system they are unfamiliar with can use
summaries with context to more quickly understand how
a given method in a project, at a high-level, fits in with the
rest of the project.

In this paper, we hypothesize that existing documenta-
tion generators would be more effective if they included
information from the context of the methods, in addition
to the data from within the methods. We define “more
effective” in terms of three criteria: programmers find the
documentation’s method summaries to be more helpful in
understanding 1) what the methods do internally, 2) why
the methods exist, and 3) how to use the methods. To test
our hypothesis, we introduce a novel technique to automati-
cally generate documentation that includes context. We then
perform two case studies. Our first case study compares
source summaries generated by our automatic approach to
manually written source code summaries via Javadocs. Our
second study compares source code summaries generated
by our automatic approach to source code summaries gen-
erated by a state-of-the-art automatic approach.

Our tool works by collecting contextual data about Java



0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2465386, IEEE Transactions on Software Engineering

2

methods from the source code, namely method calls, and
then using the keywords from the context of a method to
describe how that method is used. We use related work,
the Software Word Usage Model, to identify the parts of
speech for the different keywords. We choose the contextual
information to summarize using the algorithm PageRank,
which we compute for the program’s call graph. We then
build a novel Natural Language Generation system to inter-
pret the keywords and infer meaning from the contextual
information. Our system then generates a readable English
description of the context for each method in a Java pro-
gram. We will describe typical natural language generation
systems and supporting technologies for our approach in
Section 3, followed by our approach, our evaluation, and
our evaluation results. Specifically, we contribute the fol-
lowing:

• A novel approach for generating natural language
descriptions of source code. Our approach is differ-
ent from previous approaches in that we summarize
context as readable English text.

• An expanded case study of our previous work [31].
This case study evaluates summaries generated by
our approach and compares these summaries against
manually written documentation via Javadocs.

• A case study evaluating our approach and compar-
ing it against documentation generated by a state-
of-the-art approach. Our case study shows that our
approach can improve existing documentation by
adding important contextual information.

• A complete implementation of our approach for Java
methods. For the purpose of reproducibility of our
results, we have released our implementation to the
public as an open-source project via our online ap-
pendix1.

2 THE PROBLEM

The long-term problem we target in this paper is that much
software documentation is incomplete [28], which costs
programmers time and effort when trying to understand the
software [11]. In Java programs, a typical form of this doc-
umentation is a list of inputs, outputs, and text summaries
for every method in the software (e.g., JavaDocs). Only if
these summaries are incomplete, do the programmers resort
to reading the software’s source code [37]. What they must
look for are clues in the source code’s structure about how
the methods interact [16], [22], [47]. The term “structure”
refers to both the control flow relationships and the data
dependencies in source code. The structure is important
because it defines the behavior of the program: methods
invoke other methods, and the chain of these invocations
defines how the program acts. In this paper, we aim to gen-
erate documentation that is more complete than previous
approaches, in that our generated documentation contains
structural information in each method’s summary.

We include this structural information from the context
surrounding each method in the program. A method’s
“context” is the environment in which the method is in-
voked [24]. It includes the statement which called the

1. http://www.nd.edu/∼pmcburne/summaries/

method, the statements which supplied the method’s in-
puts, and the statements which use the method’s output.
Context-sensitive program slicing has emerged as one effective
technique for extracting context [24]. Given a method, these
techniques will return all statements in its context. However,
some statements in the context are more relevant to the
method than other statements. This issue of relevance is
important for this paper because we must limit the size
of the text summaries, and therefore select only a small
number of statements for use in generating the summaries.

Consider the manually-written examples of method
summaries from NanoXML, a Java program for parsing
XML, below. Item 1 is an example method we selected. It
demonstrates how the default summary from documenta-
tion can be incomplete. In isolation, the method summary
leaves a programmer to guess: What is the purpose of
reading the character? For what is the character used? Why
does the method even exist?

Example method with default summary
from JavaDocs
1) StdXMLReader.read() / Method Name

“Reads a character.” / Method Summary

Methods from context of example, with
summaries from JavaDocs
2) XMLUnit.skipWhitespace()

“Skips whitespace from the reader.”
3) XMLElement.addChild()

“Adds a child element.”
4) StdXMLBuilder.startElement()

“This method is called when a new XML element is
encountered.”

5) StdXMLBuilder.addAttribute()
“This method is called when a new attribute of an XML
element is encountered.”

These questions can be answered by reading the context.
The example method may be easier to understand when
we know that Items 2 through 5 are in the the example’s
context. These methods are in the context because they
all rely on the method read (e.g., they either call read
directly, or are called by read). We selected Items 2 through
5 above by hand to demonstrate this motivating example.
However, in the remainder of this paper we will discuss
how we automatically choose methods from the context
and generate natural language descriptions, such as the one
below in Item 6, for arbitrary Java methods. Our summaries
provide programmers with key clues about how a method
is used, and provides this information as English readable
sentences:

Example method with summary including the me-
thod’s contextual information

6) StdXMLReader.read()
“This method reads a character. That character is used in methods
that add child XML elements and attributes of XML elements.
Calls a method that skips whitespace.”

3 BACKGROUND
This section describes three supporting technologies for our
work: the Software Word Usage Model (SWUM) [15], the de-
sign of Natural Language Generation (NLG) systems [36],
and the algorithm PageRank [25]. These techniques were
proposed and evaluated elsewhere. We emphasize them
here because they are important concepts for our approach.



0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2465386, IEEE Transactions on Software Engineering

3

3.1 Software Word Usage Model

The Software Word Usage Model (SWUM) is a technique
for representing program statements as sets of nouns,
verbs, and prepositional phrases. SWUM works by
making assumptions about different Java naming
conventions, and using these assumptions to interpret
different programs statements. Consider a method from
NanoXML which has the signature static String
scanPublicId(StringBuffer, XMLReader, char,
XMLEntityResolver). SWUM first splits the identifier
names using the typical Java convention of camel case.
Next, it reads verbs from the method as the starting word
from the method identifier (e.g., “scan”). SWUM also
extracts noun phrases, such as “public id”, and deduces a
relationship of the nouns to the verbs. For example, “public
id” is assumed to be the direct object of “scan” because
it follows “scan” in the method identifier. Other nouns,
such as “string” or “xml reader”, are read from the return
types and arguments, and are interpreted under different
assumptions. We direct readers to the relevant literature on
SWUM for complete details [15].

One strategy for using SWUM for text generation is to
define templates of natural language sentences, and use the
output from SWUM to fill these templates [42]. For example,
a template for method call statements is “action theme args
and get return-type”. The template may be further processed
so that items such as return-type actually display as the
variable name. Given a method call statement systemID =
XMLUtil.scanPublicID(publicID, reader, ’& ’,
this.entityResolver);, a summary for the statement
is “scan public id and get system id”. To summarize an
entire method from these summaries of statements, Sridhara
et al. selected a subset of key statements by defining rules
for which statements are typically the most important (e.g.,
return or control-flow statements). A method summary was
a combination of the summaries of these key statements.

3.2 Natural Language Generation Systems

The design of a Natural Language Generation (NLG) sys-
tems typically follows an architecture described by Reiter
and Dale [36]. Figure 1 illustrates this architecture. Concep-
tually, the architecture is not complicated: a “communicative
goal” is translated from a series of facts into readable natural
language sentences, known as “surface text.” The NLG
system has three main components, each of which is made
up of several individual steps.

The first main component is the Document Planner. The
input to this component is a list of facts that need to
be communicated to a human reader. Through “content
determination”, the document planner interprets the facts
and creates “messages.” Messages are an intermediate rep-
resentation between the communicative goal and readable
text. For example, in a weather forecast generator such as
FOG [13], facts about the temperature on given days result
in a message offering an interpretation of those facts, e.g.,
that it is colder today than it was yesterday. After the
messages are created, “document structuring” takes place
which sorts the messages into a sequence that makes sense
to a human reader. This sequence of messages is known as
the document plan.

The next main component, the Microplanner, decides
which words will be used to describe each message. In “lexi-
calization”, the microplanner assigns specific words as parts
of speech in a “phrase” about each message. Typically, the
subject, verb, and object for a given message are identified.
Additionally, any modifiers such as adjectives and adverbs.
Next, two steps smooth the phrases so that they are more
naturally read. “Reference generation” decides how nouns
will be referred to in the phrases, such as whether to use
a proper name or a pronoun. Finally, “aggregation” joins
phrases based on how they are related, e.g., causally (joined
by because) or via coordination (joined by and/or).

The final component of NLG is the Surface Realizer.
The surface realizer generates natural language sentences
from the phrases. Different grammar rules for the natu-
ral language dictate how the sentences should be formed.
The surface realizer follows these rules to create sentences
that contain the parts of speech and words given by the
microplanner. These sentences are the surface text. They
are human-readable descriptions of the information in the
messages, interpreted from the facts given to the document
planner, and in the order defined in the document plan.

3.3 PageRank

PageRank is an algorithm for approximating the importance
of the nodes in a graph [25]. While a complete discussion
of PageRank is beyond the scope of this paper, in general,
PageRank calculates importance based on the number of
edges which point to a given node as well as the importance
of the nodes from which those edges originate. PageRank
is well-known for its usefulness in ranking web pages for
web search engines. However, PageRank has seen growing
relevance in its applications in software engineering. In
particular, a body of work has shown how PageRank can
highlight important functions or methods in a software pro-
gram [5], [18], [32], [35]. A common and effective strategy
is to model a software program as a “call graph”: a graph
in which the nodes are functions or methods, and the edges
are call relationships among the methods. Methods that are
called many times or that are called by other important
methods are ranked as more important than methods which

Fig. 1. The typical design of a Natural Language Generation system as
described by Reiter and Dale [36]. We built our NLG system around
each of these seven steps.



0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2465386, IEEE Transactions on Software Engineering

4

are called rarely, and thus have few edges in the call graph.
We follow this model of using PageRank for this paper.

4 APPROACH

This section describes the details of our approach, includ-
ing each step of our natural language generation system.
Generally speaking, our approach creates a summary of a
given method in three steps: 1) use PageRank to discover
the most important methods in the given method’s context,
2) use data from SWUM to extract keywords about the
actions performed by those most important methods, and
3) use a custom NLG system to generate English sentences
describing for what the given method is used.

The summaries our approach generates are designed to
communicate high-level summaries of a method and its
context. Our goal is to allow a programmer inexperienced
with a given system to be able to understand not just what
a method does, by why the method exists by examining its
interactions. Our summaries point to examples of a given
method being used. These examples are chosen to briefly
inform the user how a method can be used. The examples,
however, are designed to be simple and short as a summary
that is inconcise can be a limiting factor to programmer com-
prehension. The examples do not describe all the neccessary
pre-conditions or the resulting post-conditions of running
a method, as the summaries would become inconcise as a
result.

The architecture of our approach is shown in Figure 2.
In theory our system could summarize functions in many
languages, but in this paper we limit the scope to Java
methods. The data we collect about these Java methods is
our “communicative goal” (see Section 3.2) and is the basis
for the information we convey via NLG.

4.1 Data Collection
The comment generator requires three external tools to
produce the necessary input data: SWUM, the call graph
generator, and PageRank. SWUM parses the grammatical
structure from the function and argument names in a
method declaration. This allows us to describe the method
based on the contents of its static features. Specifically,
SWUM outputs the keywords describing the methods, with
each keyword tagged with a part of speech (Figure 2, area
3). Next, we produce a call graph of the project for which
we are generating comments. Our call graph2 allows us to
see where a method is called so that we can determine the
method’s context (Figure 2, area 2). Finally, we obtain a
PageRank value for every method by executing the Page-
Rank algorithm with the procedure outlined in Section 3.3.

In addition to gleaning this information from the project
to produce our comments, we also use the source code of
the project itself. For every method call in the call graph,
the Data Organizer searches through the code to find the
statement that makes that call. The purpose of collecting
these statements is to provide a concrete usage example to
the programmer. The Data Organizer combines these exam-
ple statements with the call graph and SWUM keywords to
create the Project Metadata (Figure 2, area 4).

2. Generated using java-callgraph, available via https://github.com/
gousiosg/java-callgraph, verified 9/12/2013

4.2 Natural Language Generation
This section covers our NLG system. Our system processes
the Project Metadata as input (Figure 2, area 5), following
each of the NLG steps shown in Table 1.

Content Determination. We create six different types
of “messages” (see Section 3.2) that represent information
about a method’s context. These messages are briefly de-
scribed in Table 1.

First, a Quick Summary Message represents a brief, high-
level action summarizing a whole method. For example,
“skips whitespace in character streams.” We create these
messages from the noun/verb labeling of identifier names
extracted by SWUM from the method’s signature. Our
system makes a simplifying assumption that all methods
perform some action on some input. If the keyword associ-
ated with the input is labeled as a noun by SWUM, and the
keyword associated with the method name is a verb, we as-
sume that there is a verb/direct-object relationship between
the method name and the input name. This relationship is
recorded as a Quick Summary Message.

The Return Message is a message created to reflect the
return type of the message. This method uses the return
type of a Java method signature. For primitive datatypes, we
use the natural language interpretations of Java datatypes.
For example, int is interpreted as Integer. For methods that
return objects, we use SWUM to generate a natural language
representation of the object name. This usually is a noun
phrase where the object name is split on camel-casing. The
return message is often combined with the Quick Summary
Message (see Lexicalization below).

Another type of message is the Importance Message. The
idea behind an importance message is to give programmers
clues about how much time to spend reading a method.
The importance message is created by interpreting both the
PageRank value of the method and the PageRank values
of all other methods. The importance message represents
how high this value is above or below average. At the same
time, an importance message will trigger our NLG system to
include more information in the method’s description if the
method is ranked highly (see Aggregation below). It should
be noted that the Importance Message was removed from
our summarization tool after an initial study comparing
our summaries to human written summaries. When we
compared to the automatic state of the art approach, this
message was omitted due to several programmers in our
study specifically saying that the Importance Message was
unnecessary and did not provide useful understanding of
the method(see Section 8).

A third message type is the Output Usage Message. This
message conveys information about the method’s output,
such as “the character returned by this method is used to
skip whitespace in character streams.” Our system uses data
from quick summary messages, importance messages, and
the call graph to create output usage messages. Given a
method, our system creates an output usage message by first
finding the methods in the call graph which depend on the
given method. Then, it picks the two of those methods with
the highest PageRank. It uses the quick summary message
from those two methods to describe how the output is used.

Very similar to the Output Usage Message, the Call
Message is used to say what methods a given method calls.



0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2465386, IEEE Transactions on Software Engineering

5

TABLE 1
A quick reference guide for types of messages our approach creates.

Message Type Explanation
Quick Summary Message Short sentence that describes method

Return Message Notes the return type of the method
Importance Message States how important a method is based on PageRank

Output Used Message Describe at most 2 methods that call this method
Call Message Describe at most 2 methods that this method calls
Use Message Gives an example of how the message can be used.

Fig. 2. Overview of our approach.

Saying what methods are called by a given method can help
illuminate how the method performs a particular action. The
call message, for example, could be “Calls a method that
loads a file.” This would illustrate to a programmer that this
method is reliant on some form of file input to complete its
task. Similar to how we handle the Output Usage Message,
we consider all the methods called by the method being
summarized, and select the two methods with the highest
PageRank. The Call Message also used the Quick Summary
Message from those selected methods.

The last message type we will examine in detail is
the Use Message. This message serves to illustrate how
a programmer can use the message by highlighting
a specific example in the code. For example, one
message we generated was “the method can be
used in an assignment statement ; for example:
Date releaseDate=getReleaseDate();.” Our
system can also generate a Use Message classifying
a conditional statement. For example “The method
can be used in an assignment statement ; for
example: if (getAddedFigure() != null & &
!getCreatedFigure().isEmpty())”. Our system uses
the call graph to find a line of code that calls the method
for which we are generating the message. It then classifies,
based on static features with the line of code, whether the
calling statement is a conditional, iteration, assignment, or
procedural statement.

Document Structuring. After generating the initial mes-
sages in the content determination phase, we organize
all the messages into a single document plan. We use a
templated document plan where messages occur in a pre-
defined order: Quick Summary Messages, Return Messages,
Output Used Messages, Called Messages, Importance Mes-
sages, and then Use Messages. This ordering was decided
based on internal exploratory pilot studies. We decided on
this order as we felt this order was the most natural to read.
This order puts the Quick Summary Message first, which
we believe is the most important piece of information. Due
to Lexicalization (see below) the Quick Summary Message

was usually combined with the Return Message. We believe
the next most important piece of information is the Output
Usage Message, which provides summary readers with
some understanding of context, and can clarify the Quick
Summary Message. The Usage Message is last as we believe
readers already need to have a high level understanding of a
method in order to understand a given usage example from
source code. Note that this order may change during the
Aggregation phase below.

Lexicalization. Each type of message needs a different
type of phrase to describe it. This section will describe how
we decide on the words to be used in each of those phrases,
for the six message types described under Content Determi-
nation. Note that the phrases we generate are not complete
sentences; they will be grouped with other phrases during
Aggregation and formed into sentences during realization.

The Quick Summary Message records a verb/direct-object
relationship between two words extracted by SWUM. The
conversion to a sentence is simple in this case: the verb
becomes the verb in the sentence, and likewise for the direct-
object. The subject is assumed to be “the method”, but is left
out for brevity. The message is then created as “This method
verb direct object.” In some cases, the article “the” is added
before the direct object.

The Importance Message holds both the method’s Page-
Rank and an average PageRank. To create a phrase for
this type of message, we set the subject as “this method”,
the verb as “seems”, and the object as “important.” If the
method’s PageRank is more than 150% of the average, we
add the modifier “far more.” If it is between 100% and 150%,
we consider it “slightly more”, while if it is less than 100%,
we use the modifier “less”. We decided on these thresholds
during exploratory pilot studies, though improving them is
part of our future work (see Section 8). As the Importance
Message was removed in our second study, we do not
perform this lexicalization in the summaries we compare
to a state-of-the-art approach.

We create a phrase for an Output Usage Message by setting
the object as the return type of the method, and the verb as
“is”. The subject is the phrase generated from the Quick
Summary Message. We set the voice of the phrase to be
passive. We decided to use passive voice to emphasize how
the return data is used, rather than the contents of the Quick
Summary Message. An example of the phrase we output is
under the Content Determination section.

The Use Message is created with the subject “this
method”, the verb phrase “can be used”, and appending the
prepositional phrase ”as a statement type;”. Statement type is
pulled from the data structures populated in our content
determination step. Additionally, we append a second de-
pendent clause ”for example: code”.



0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2465386, IEEE Transactions on Software Engineering

6

Reference Generation and Aggregation. During Aggre-
gation, we create more complex and readable phrases from
the phrases generated during Lexicalization. Our system
works by looking for patterns of message types, and then
grouping the phrases of those messages into a sentence.
For example, if two Output Usage Messages are together,
and both refer to the same method, then the phrases of
those two messages are conjoined with an “and” and the
subject and verb for the second phrase is hidden. In an-
other case, if a Quick Summary Message follows a Quick
Summary Message for a different method, then it implies
that the messages are related, and we connect them using
the preposition “for”. The result is a phrase such as “skips
whitespace in character streams for a method that processes
xml”. Notice that Reference Generation occurs alongside
Aggregation. Rather than hiding the subject in the phrase
“processes xml”, we make it explicit as “method” and non-
specific using the article “a” rather than “the.” We direct
readers to our online appendix for a complete listing of the
Aggregation techniques we follow.

Surface Realization. We use an external library,
simplenlg [12], to realize complete sentences from the
phrases formed during Aggregation. In the above steps, we
set all words and parts of speech and provided the struc-
ture of the sentences. The external library follows English
grammar rules to conjugate verbs, and ensure that the word
order, plurals, and articles are correct. This step outputs an
English summary of the method (Figure 2, area 6).

5 EXAMPLE
In this section, we explore an example of how we form a
summary for a specific method. We will elaborate on how
we use SWUM, call graph, PageRank, and source code to
form our messages. Note that in these examples, we do not
discuss the Importance Message, as the more recent version
of our approach in the second study left this off. To see how
the Importance Message is generated, see the Lexicalization
section in Section 4.2.

Consider getResult() from StdXMLBuilder.java in
Nano-XML. The method’s signature, public Object
getResult(), is parsed by SWUM which will tell us
the verb is “get”and the object is “result.” Additionally,
it will note the return type as “object.” This will be used
to generate the Quick Summary Message “This method gets
the result and returns an Object.” Then, using the call
graph, we determine that the top two methods (as scored
by PageRank) that call getResult() are scanData()
and parse(). Initially, in the document planning phase,
we generate two separate messages, one using the SWUM
information for each function. However, these are combined
in the aggregation step with the conjunction “and”, and
eventually produce the Output Usage Message “That Object
is used by methods that scans the data and that parses the
std XML parser.”

The last message we generate is the Use Message. We
search through the most important calling method, which
in this case is scanData(). We take a line of code that
calls getResult(), and determine based on its content
whether it is a conditional, iteration, assignment, or proce-
dural statement. Using this information, we generate the Use
Message “The method can be used in an iteration statement;

for example: while ((!this.reader.atEOF()) &&
(this.builder.getResult() == null)) { ”. Each
of these messages are then appended together to make the
final summary.

As a second example, we consider an abstract
method. Abstract methods are not called directly, so
when we generate messages, they will not have an
Output Usage Message or a Use Message. For example,
when we look at the signature public IXMLElement
CreatePCDataElement(); in IXMLElement.java, there
will be no other methods connected to it on the callgraph.
We can, however, still generate a Quick Summary Message.
Doing so in the same way as we showed previously in
the section, we get the summary “This method creates the
PC data element and returns an IXMLElement.” Similarly,
API library methods, which are designed to be called by a
programmer in an external program, may only be limited to
a Quick Summary Message.

For a third example, we will look at the method read()
in StdXMLReader.java. This was the method we examined
in Section 2. To generate a Quick Summary Message, we
examine the method signature public char read(). The
method name, “read” is interpreted by SWUM to be a verb.
This means the direct object is the return type, “char”,
or “character.” This results the Quick Summary Message
“This method reads a character.” The Return Message, “This
method returns the character,” is then combined with the
Quick Summary Message in aggregation to produce “This
method reads a character and returns the character.”

To generate the Output Usage Message, we first find
the methods that call read() with the highest Page-
Rank. In this case, the most important methods, the two
with the highest PageRank, are XMLElement.addChild()
and StdXMLBuilder.addAttribute(). The Output Us-
age Message is created by combining the Quick Sum-
mary Messages of those two methods. The Quick Sum-
mary Message of XMLElement.addChild() is “add child
XML elements” and the Quick Summary Message of
XMLElement.addAttribute() is “add attribute of XML
element.” These messages are combined with the Return
Message to produce the sentence “That character is used
in methods that add child XML elements and attributes
of XML elements.” Note that because both methods use
the verb add, we do not repeat it. We combine the two
direct objects into a complex verb phrase. The Called Mes-
sage is generated by finding the most important methods
that read() calls. The only meethod that read() calls
is skipsWhitespace(), which is used to generate the
sentence “This method calls a method that skips the whites-
pace.”

The Usage Message is created by finding a line of code in
one of the methods that calls read(). For example, we find
a line of code char ch = reader.read();. This meets
the definition of an assignment statement. Thus, we gener-
ate the message, “This method can be used in an assignment
statement ; for example: char ch = reader.read();.
Putting all the messages together, the final summary we
generate for read() is “This method reads a character and
returns the character. That character is used in methods that
add child XML elements and attributes of XML elements.
This method calls a method that skips the whitespace. This



0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2465386, IEEE Transactions on Software Engineering

7

Fig. 3. An example of a summary produced by our approach with the
different message types highlighted. The Quick Summary Message is
highlighted blue. The Return Message is highlighted red. The Output
Usage Message is highlighted Green. The Call Message is highlighted
Yellow. The Use Message is highlighted grey. The Importance Message
is not shown, as it was not used in the most recent version of our
approach.

method can be used in an assignment statement; for exam-
ple: char ch = reader.read();.” The fully combined
summary is shown in Figure 3.

6 EVALUATION COMPARING TO MANUAL SUM-
MARIES

Our first evaluation compared automatic summaries of
our approach to the summaries written by human experts
within the source code via Javadocs. The Javadocs for the
program were embedded within the source code written
by the developers. The goals of our evaluation were three-
fold: 1) to assess the degree to which our summaries mimic
the high quality of summaries written by programmers, 2)
to assess whether the summaries provide useful contextual
information about the Java methods, and 3) to determine
whether the generated summaries can be used to improve,
rather than replace, existing documentation.

Assessing Overall Quality. We do not expect an au-
tomated approach to outperform human experts in terms
of the overall quality of the summaries. Nevertheless, one
goal of our evaluation is to quantify any difference in
quality, and to determine in what areas the quality of the
automated summaries can be most improved. We compare
the summaries from our approach to summaries extracted
from the documentation (e.g., the Javadocs) for different
Java programs. To assess quality, we ask three different
Research Questions (RQs):

RQ1 To what degree do the automated and manually-
written summaries differ in overall accuracy?

RQ2 To what degree do the automated and manually-
written summaries differ in terms of missing
important information?

RQ3 To what degree do the automated and manually-
written summaries differ in terms of including
unnecessary information?

These Research Questions are derived from two earlier
evaluations of source code summarization [33], [42], where
the “quality” of the generated comments was assessed
in terms of accuracy, content adequacy, and conciseness.
Content adequacy referred to whether there was missing

information, while conciseness referred to the amount of
unnecessary information in a summary. This strategy for
evaluating generated comments is supported by a recent
study of source code comments [45] in which quality was
modeled as a combination of factors correlating to accuracy,
adequacy, and conciseness.

Assessing Contextual Information. Contextual infor-
mation about a method is meant to help programmers
understand the behavior of that method. But, rather than
describe that behavior directly from the internals of the
method itself, context explains how that method interacts
with other methods in a program. By reading the context,
programmers then can understand what the method does,
why it exists, and how to use it (see Section 2). Therefore,
we study these three Research Questions:

RQ4 Do the summaries help programmers under-
stand what the methods do internally?

RQ5 Do the summaries help programmers under-
stand why the methods exist?

RQ6 Do the summaries help programmers under-
stand how to use the methods?

The rationale behind RQ4 is that a summary should
provide programmers with just enough details to under-
stand the most important internals of the method – for
example, the type of algorithm the method implements –
without forcing them to read the method’s source code. Our
summaries aim to include this information solely from the
context. If our summaries help programmers understand
the methods’ key internals, it means that this information
came from the context. For RQ5, a summary should help
programmers understand why the method is important to
the behavior of the program as a whole. For example, the
programmers should be able to know, from reading the
summary, what the consequences might be of altering or
removing the method. Likewise, for RQ6, the summary
should explain the key details about how a programmer
may use the method in his or her own code.

Orthogonality. While the ultimate goal of this research
is to generate documentation purely from data in the source
code, we also aim to improve existing documentation by
adding contextual information. In particular, we ask:

RQ7 Do the generated summaries contain orthogonal
information to the information already in the
manual summaries?

The idea behind this RQ is that to improve existing sum-
maries, the generated summaries should contribute new
information, not merely repeat what is already in the sum-
maries. We generate summaries by analyzing the context of
methods, so it is plausible that we add information from
this context, which does not exist in the manually-written
summaries.

6.1 Cross-Validation Study Methodology

To answer our Research Questions, we performed a cross-
validation study in which human Java programmers read
the source code of different Java methods, as well as sum-
maries of those methods, for three different rounds. For



0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2465386, IEEE Transactions on Software Engineering

8

TABLE 2
The cross-validation design of our user study. Different participants

read different summaries for different programs.

Round Group Summary Program 1 Program 2

1
A Generated NanoXML Jajuk
B Manual Siena JEdit
C Both JTopas JHotdraw

2
A Both Siena Jajuk
B Generated JTopas JEdit
C Manual NanoXML JHotdraw

3
A Manual JTopas Jajuk
B Both NanoXML JEdit
C Generated Siena JHotdraw

each method and summary, the participants answered eight
questions that covered various details about the summary.
Table 3 lists these questions. The first six correspond to each
of the Research Questions above, and were multiple choice.
The final two were open-ended questions; we study the
responses to these two questions in a qualitative evaluation
in Section 11. If a participant was unable to understand a
method enough to evaluate the given summary, they were
encouraged to not answer any questions about it and skip
to the next method. Additionally, participants could leave
the study at any point.

In the cross-validation study design, we rotated the sum-
maries and Java methods that the human evaluators read.
The purpose of this rotation was to ensure that all evaluators
would read summaries from each different approach for
several different Java programs, and to mitigate any bias
from the order in which the approaches and methods were
presented [30]. Table 2 shows our study design in detail.
Upon starting the study, each participant was randomly as-
signed to one of three groups. Each of those groups was then
assigned to see one of three types of summary: summaries
from our approach, manually-generated summaries, or both
at the same time.

For an example of what a “both” summary contains,
in the case of XMLElement.findAttribute(), we com-
bine the human-written Javadocs summary with our ap-
proach’s generated summary in the order. The human-
written Javadocs summary reads “Searches an attribute.”
Our approach’s summary reads “This method finds the
attribute and returns a XMLAttribute. That XMLAttribute
is used by methods that gets the attribute.” These are then
combined to read “Searches an attribute. This method finds
the attribute and returns a XMLAttribute. That XMLAt-
tribute is used by methods that gets the attribute.” This
can result in some redundancy when our Quick Summary
Message is similar to the Javadocs summary.

6.2 Subject Java Programs
The summaries in the study corresponded to Java methods
from six different subject Java programs, listed in Table 4.
We selected these programs for a range of size (5 to 117
KLOC, 318 to 7161 methods) and domain (including text
editing, multimedia, and XML parsing, among others). Dur-
ing the study, participants were assigned to see methods
from four of these applications. During each of three differ-
ent rounds, we rotated one of the programs that the groups
saw, but retained the fourth program. The reason is so
that the group would evaluate different types of summaries

TABLE 3
The questions we ask during the user study. The first six are

answerable as “Strongly Agree”, “Agree”, “Disagree”, and “Strongly
Disagree.” The last two are open-ended.

Q1-Accuracy
Independent of other factors, I feel that the sum-
mary is accurate.

Q2-Content
The summary is missing important information,
and that can hinder the understanding of the
method.

Q3-Concise
The summary contains a lot of unnecessary in-
formation.

Q4-What
The summary contains information that helps
me understand what the method does (e.g., the
internals of the method).

Q5-Why

The summary contains information that helps
me understand why the method exists in the
project (e.g., the consequences of altering or re-
moving the method).

Q6-How
The summary contains information that helps
me understand how to use the method.

Q7-
Summary

In a sentence or two, please summarize the
method in your own words.

Q8-
Comments

Do you have any general comments about the
given summary?

for different programs, but also evaluate different types of
summaries from a single application. From each application,
we pre-selected (randomly) a pool of 20 methods from
each application. At the start of each round, we randomly
selected four methods from the pool for the rotated applica-
tion, and four from the fixed application. Over three rounds,
participants read a total of 24 methods. Because the methods
were selected randomly from a pool, the participants did
not all see the same set of 24 methods. The programmers
could always read and navigate the source code for these
applications, though we removed all comments from this
code to avoid introducing a bias from these comments.

6.3 Participants
We had 13 participants in our study. Six were graduate
students and three were undergraduates from the Computer
Science and Engineering Department at the University of
Notre Dame. The remaining four were a mix of professionals
and graduate students from three different organizations,
not listed due to our privacy policy. Two participants failed
to complete enough of the study and had their responses
thrown out. Both of these participants were students at
from the Computer Science and Engineering Department at
the University of Notre Dame. One was an undergraduate
student, and the other was a graduate student. Another
user only completed the answers on 2 summaries before
leaving the survey. The remaining 10 participants answered

TABLE 4
The six Java programs used in our evaluation. KLOC reported with all

comments removed. All projects are open-source.

Methods KLOC Java Files
NanoXML 318 5.0 28

Siena 695 44 211
JTopas 613 9.3 64
Jajuk 5921 70 544
JEdit 7161 117 555

JHotdraw 5263 31 466



0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2465386, IEEE Transactions on Software Engineering

9

the questions on an average of 19 summaries, skipping on
average 5.

6.4 Metrics and Statistical Tests
Each of the multiple choice questions could be answered
as “Strongly Agree”, “Somewhat Agree”, “Somewhat Dis-
agree”, or “Strongly Disagree.” We assigned a values to
these answers as 4 for “Strongly Agree”, 3 for “Somewhat
Agree”, 2 for “Somewhat Disagree”, and 1 for “Strongly
Disagree.” For questions 1, 4, 5, and 6, higher values indicate
stronger performance. For questions 2 and 3, lower values
are preferred. We aggregated the responses for each ques-
tion by approach. For example, all responses to question 1
for automatically-generated summaries, and all responses to
question 1 for the manually-written summaries.

To determine statistical significance between these
groups, we use the lrm modeling function within the rms 3

package for the R scripting language 4. The rms:lrm mod-
elling function represents the data as an ordinal logistical
regression model to account for difference in treatments.
Specifically, we use rms:lrm to account for differences
between individual participants, who may have their own
biases, and individual methods, which may be easier or
more difficult to summarize. As such, the inputs our lo-
gistical model consider are the summarization technique
applied, the participant who is performing the evaluation,
and the method the summary is generated to describe. We
use ANOVA within the R scripting language to determine
the p-values that the type of summary significantly affects
the quality of the summary with respect to our six questions.
If the p-value is p < .05, we consider the two compared
populations to be significantly different.

6.5 Threats to Validity
As with any study, our evaluation carries threats to validity.
We identified two main sources of these threats. First, our
evaluation was conducted by human programmers, who
may be influenced by factors such as stress, fatigue, or
variations in programming experience. Stress and fatigue
could make results later in the study less reliable, as pro-
grammers attempt to finish quickly. Additionally, very large
summaries, such as those that can result from combining
summaries from our approach with existing summaries,
may result in the user not reading an entire summary.
We attempted to mitigate these threats through our cross-
validation study design, which altered the order in which
the participants viewed the Java methods and summaries.
We also recruited our participants from a diverse body
of professionals and students, and confirmed our results
with accepted statistical testing procedures. Still, we cannot
guarantee that a different group of participants would not
produce a different result.

Another source for a threat to validity is the set of Java
programs we selected. We chose a variety of applications
of different sizes and from different domains. In total, we
generated summaries for over 19,000 Java methods from six
projects, and randomly selected 20 of these methods from
each project to be included in the study (four to twelve
of which were ultimately shown to each participant). Even

3. http://cran.r-project.org/web/packages/rms/rms.pdf
4. http://www.r-project.org/

with this large pool of methods, it is still possible that
our results would change with different projects. To help
mitigate this threat, we have released our tool implementa-
tion and all evaluation data in an online appendix, so that
other researchers may reproduce our work in independent
studies.

A third threat to validity arises from the learning effect.
In our study, in order to mitigate the fatigue effect, we
present programmers with the same Program 2 in each
round of the study. This is because the subset of possible sec-
ond programs (jEdit, jajuk, and jHotDraw) are, programmat-
ically, much larger than the other three programs in terms
of number of methods. Our study relies on programmers
looking at a method source code in order to evaluate method
quality. Programmers, therefore, need to explore the context
of a method within the source code itself in order to verify
the correctness of given summaries. With large programs,
this can create a large amount of fatigue. By using the same
program, the programmer can gain understanding of the
program in question to reduce the fatigue effect that would
arise from switching programs. To reduce the impact of the
learning effect, we change the order of summary type given
to each group, such that each order is represented.

One final threat to validity emerged in our statistical
analysis. We ran into one error using the rms:lrm modelling
tool with R. One programmer responded to a combined
summary (where a human summary was combined with
our approach’s generated summary) by saying they ”Some-
what disagreed.” This individual data element prevented
rms:lrm from being able to fit a model to the data. When we
removed this individual piece of data, or modified which
method it referred to, the model was able to be fitted
to the data. We chose to remove this data element from
the statistical tests. As we will note in the results section,
this could have an effect on the p-value generated for H7.
However, the p-value for H7 was found to be .8917, which
is substantially larger than our decision point of p < .05.
As such, we feel confident that this single data element
being removed would not change our decision regarding
that hypothesis.

6.6 Reproducibility

To ensure reproducibility, we have included all data col-
lected in an online appendix 5. The online appendix includes
our implementation of our approach as well as survey data.
Survey data includes user responses to both quantitative
and qualitative questions, as well as the methods in the
study, the summaries for each approach, and the location
in source code of each method.

7 EMPIRICAL RESULTS

This section reports the results of our evaluation. First,
we present our statistical process and evidence. Then, we
explain our interpretation of this evidence and answer our
research questions.

5. http://www.nd.edu/∼pmcburne/summaries/



0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2465386, IEEE Transactions on Software Engineering

10

TA
B

LE
5

S
ta

tis
tic

al
su

m
m

ar
y

of
re

su
lts

fo
rt

he
pa

rt
ic

ip
an

ts
’r

at
in

gs
fo

re
ac

h
qu

es
tio

ns
.“

S
am

p.
”i

s
th

e
nu

m
be

ro
fr

es
po

ns
es

fo
rt

ha
tq

ue
st

io
n

fo
ra

gi
ve

n
su

m
m

ar
y

ty
pe

,f
or

al
lr

ou
nd

s.
χ
2

is
ca

lc
ul

at
ed

by
ap

pl
yi

ng
A

N
O

VA
to

th
e
r
m
s
:
l
r
m

ge
ne

ra
te

d
lin

ea
rr

eg
re

ss
io

n
m

od
el

an
d

co
ns

id
er

in
g

th
e

di
ffe

re
nc

e
ca

us
ed

by
th

e
ty

pe
of

su
m

m
ar

y.
D

.f.
re

fe
rs

to
th

e
nu

m
be

ro
fd

eg
re

es
of

fre
ed

om
w

ith
in

th
e

ty
pe

of
su

m
m

ar
y.

If
th

e
p-

va
lu

e
is

le
ss

th
an

.0
5,

w
e

re
je

ct
th

e
nu

ll
hy

po
th

es
is

.

H
Q

Su
m

m
ar

y
Sa

m
p.

x̃
µ

V
ar

i.
χ
2

d.
f.

p-
va

lu
e

D
ec

is
io

n

H
1

Q
1
-A

cc
ur

ac
y

O
ur

63
3

2.
63

5
0.

55
8

5.
19

1
0.

02
3

R
ej

ec
t

M
an

ua
l

63
3

3.
03

2
0.

67
6

H
2

Q
2
-C

on
te

nt
O

ur
63

3
2.

71
4

0.
69

1
0.

02
1

0.
88

2
N

ot
R

ej
ec

t
M

an
ua

l
63

3
2.

58
7

0.
95

6

H
3

Q
3
-C

on
ci

se
O

ur
63

3
2.

93
7

0.
67

3
45

.5
3

1
<

.0
01

R
ej

ec
t

M
an

ua
l

63
1

1.
38

1
0.

30
4

H
4

Q
4
-W

ha
t

O
ur

63
3

2.
41

3
0.

63
3

6.
01

1
0.

01
4

R
ej

ec
t

M
an

ua
l

63
3

2.
71

4
0.

91
7

H
5

Q
5
-W

hy
O

ur
63

3
2.

52
4

0.
51

2
7.

14
1

0.
00

8
R

ej
ec

t
M

an
ua

l
63

2
2.

17
5

0.
92

1

H
6

Q
6
-H

ow
O

ur
63

3
2.

69
8

0.
73

0
14

.5
4

1
<

.0
01

R
ej

ec
t

M
an

ua
l

63
2

2.
17

5
0.

72
7

H
7

Q
1
-A

cc
ur

ac
y

C
om

bi
ne

d
66

3
3.

13
6

0.
45

8
0.

02
1

0.
89

7
N

ot
R

ej
ec

t
M

an
ua

l
63

3
3.

03
2

0.
67

6

H
8

Q
2
-C

on
te

nt
C

om
bi

ne
d

67
2

2.
14

9
0.

37
1

15
.0

2
1

<
.0

01
R

ej
ec

t
M

an
ua

l
63

3
2.

58
7

0.
95

6

H
9

Q
3
-C

on
ci

se
C

om
bi

ne
d

67
3

2.
59

7
0.

54
7

39
.5

4
1

<
.0

01
R

ej
ec

t
M

an
ua

l
63

1
1.

38
1

0.
30

4

H
1
0

Q
4
-W

ha
t

C
om

bi
ne

d
67

3
3.

11
9

0.
47

0
7.

75
1

0.
00

5
R

ej
ec

t
M

an
ua

l
63

3
2.

71
4

0.
91

7

H
1
1

Q
5
-W

hy
C

om
bi

ne
d

67
3

2.
76

1
0.

51
8

9.
91

1
0.

00
2

R
ej

ec
t

M
an

ua
l

63
2

2.
17

5
0.

92
1

H
1
2

Q
6
-H

ow
C

om
bi

ne
d

67
3

2.
85

6
0.

68
5

27
.7

1
1

<
.0

01
R

ej
ec

t
M

an
ua

l
63

2
2.

17
5

0.
72

7



0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2465386, IEEE Transactions on Software Engineering

11

(a) Generated vs. Manual Summaries (b) Both vs. Manual Summaries

Fig. 4. Performance comparison of the summaries. The chart shows the difference in the means of the responses to each question. For example
in (a), the mean of Q5-Why for our approach is 0.349 higher than for the Manual summaries. The sign is reversed for Q2-Content and Q3-Concise
because lower scores, not higher scores, are better values for those questions. Solid bars indicate differences which are statistically-significant. In
general, the manual summaries were more accurate and contained less unnecessary information, but our generated summaries provided more
thorough contextual information.

7.1 Statistical Analysis

The main independent variable was the type of summary
rated by the participants: summaries generated by our so-
lution, summaries from Javadocs written by programmers,
or both presented together. The dependent variables were
the ratings for each question: 4 for “Strongly Agree” to 1 for
“Strongly Disagree”.

For each question, we compare the mean of the partic-
ipants’ ratings for our generated summaries to the manual
summaries. We also compare the ratings given when both
summaries were shown, versus only the manual summaries.
We compared these values using ANOVA on the rms:lrm
modelling function in the R scripting language (see Sec-
tion 6.4). Specifically, we posed 12 hypotheses of the form:

Hn The difference in the reported ratings of the
responses for Qm is not statistically-significant.

where n ranges from 1 to 12, and m ranges from 1 to 6,
depending on which question is being tested. For example,
in H11, we compare the answers to Q5-Why for the manual
summaries to the answers to Q5-Why for the combined
summaries.

Table 5 shows the statistical analysis of our null hypothe-
ses and notes which ones were rejected (e.g., the means with
a statistically-significant difference). We made a decision to
reject a hypothesis only when the calculated p-value was
less than .05.

7.2 Interpretation
Figure 4 showcases the key evidence we study in this
evaluation. We use this evidence to answer our Research
Questions along the three areas highlighted in Section 9.

Overall Quality. The manually-written summaries are
superior in overall quality to the generated summaries. Fig-
ure 4(a) shows the difference in the means of the responses
for survey questions. Questions Q1-Accuracy through Q3-
Concise refer to aspects of the summaries related to overall
quality, in particular to our Research Questions RQ1 to
RQ3. In short, participants rated the generated summaries
as less accurate and as including more unnecessary informa-
tion by a statistically-significant margin. While these results
may be expected when comparing computer-generated text
to text written by human experts, it nevertheless points to

a need to improve in these areas. In particular, in Section 8,
we explore what information that the participants felt was
unnecessary in our summaries.

Contextual Information. The generated summaries in-
cluded more contextual information than the manual sum-
maries. The differences in responses for questions Q5-Why
and Q6-How are significantly higher for the generated
summaries. These results mean that, in comparison to the
manual summaries, the generated summaries helped the
programmers understand why the methods exist and how to
use those methods. Therefore, we answer RQ5 and RQ6 as
a positive result. However, we found RQ4 to be a negative
result. That is, on average, programmers disagreed our
summaries explained what a method does to a statistically
signficant margin. However, the answers to RQ5 and RQ6

point to an important niche filled by our approach: the ad-
dition of contextual information to software documentation.

Orthogonality. We found substantial evidence show-
ing that our generated summaries improve the manually-
written summaries. When participants read both types of
summary for a given method, the responses for Q5-Why
and Q6-How improved by a significant margin, pointing
to an increase in useful contextual information in the doc-
umentation. Overall quality did not decrease as sharply
as when only the generated solutions were given. Con-
sider Figure 4(b): Accuracy was nearly identical, with no
statistical difference. The amount of missing information
dropped, as indicated by better responses to Q2-Content.
Additionally, the responses to Q4-What increased by a sta-
tistically significant margin. While the combined summaries
did show a marked increase in unnecessary information, we
still find evidence to positively answerRQ7: the information
added to manual summaries by our generated summaries is
orthogonal. This answer suggests that our approach can be
used to improve existing documentation.

8 QUALITATIVE RESULTS
Participants in the evaluation study had the opportunity to
write an opinion about each summary (see Q8-Comments
in Table 3). In this section, we explore these opinions for
feedback on our approach and directions for future work.

One result from the survey was the substantial amount
of information in the generated summaries that participants



0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2465386, IEEE Transactions on Software Engineering

12

rated as unnecessary (see Q3-Concise in Figure 3). Several
of these complaints centered around the Importance Message.
One source of confusion seems to be that the structure
implies that the number of calling functions is the pri-
mary determinant of importance, when in fact importance
is derived from PageRank. Still, several users found the
Importance Message altogether unnecessary. The following
comments about our summaries or the combination of our
summaries and the manual summaries illustrate this:

• “It doesn’t seem meaningful to say that the method
has less importance than average by counting the
number of calls. Maybe the method is very important
for external users of the library. If so, then it should
be annotated as part of the external API.”

• “The name of the method alone is about all the
description it needs, and I also don’t think being
called by 1 method merits the ”far more important
than average” description.”

• “’IsKeyword() seems far more important than aver-
age because it is called by 1 method’ is unnecessary.”

• “First 3 sentences have a very good summary. 4th
sentence [Importance Method] seems unnecessary. 5th
sentence [Use Message] is a good example”

As a result of this feedback paired with our approaches
poor performance in Q3-Concise, we removed the Impor-
tance Message from our summaries in the study comparing
our approach to the state-of-the-art automatic summariza-
tion approach.

One positive result is the dramatic increase in the scores
for Q5-Why and Q6-How, which deal with how a program-
mer can use the method within the system. This appears
to be drawn primarily from the Use Message – several users
cite it either directly or indirectly in their comments. For
example, the last comment in the list above refers to the
Use Message as a good example. Some additional examples
follow:

• “I like that the comment describes how to use the
method.”

• “...The information about how it is used is useful.”
• “I think an example of how to use the method is

not really needed, though it might be useful for
convenience.”

Additionally, in a method that did not generate a Use
Message, one user noted “...it would be nice to have an
example of how it is used like others have.”

Along with our empirical results, these comments show
that our approach improves programmer understanding
of why a method exists and how a method is used. We
believe that this fills our target niche of improving context in
software documentation. Typically, programmers try to un-
derstand a system so that they can use the system effectively.
By providing contextual information, we help improve a
programmers understanding of the structure of the source
code.

Several of our generated summaries had grammar issues
that distracted users. These complaints seemed less common
in the combined summaries than when the user was just
given our summary, possibly because the user was given
a human-written sentence that explains the code alongside

our generated comment. However, poor grammar can be a
hindrance to effectively conveying a message. These gram-
mar errors usually result from incorrect interpretation of
part-of-speech by SWUM or by selecting incorrect articles or
subject-verb agreement within the framework of our natural
language generation tool. In some method signatures, the
direct object of the verb phrase is misidentified, such as us-
ing the object name as the direct object when the argument
name should be the direct object, or vice versa. We aim to
correct these issues in future work with refinement of our
NLG tool.

It is worth noting that several users, when commenting
on the manually-generated comments alone (without our
generated summary as a supplement) said that many of the
comments were insufficient. The following comments were
pulled from sections where the programmer was only given
the manually-generated comment:

• “Should be a little more clear about what the wrap-
ping process is, I think.”

• “More information would be appreciated for this
one.”

• “Why is this method important?”

9 EVALUATION COMPARING TO AUTOMATIC SUM-
MARIES

Our second evaluation compares our approach to the state-
of-the-art approach described by Sridhara et al. [42]. The
objective of our evaluation is three-fold: 1) to assess the de-
gree to which our summaries meet the quality of summaries
generated by a state-of-the-art solution, 2) to assess whether
the summaries provide useful contextual information about
the Java methods, and 3) to determine whether the gener-
ated summaries can be used to improve, rather than replace,
existing documentation.

Our study design is very similar to the study design
for our previous approach. In this section, we will only
include changes to our evaluation, such as the number of
participants in our second study and changes in the research
questions. For information on how the study is conducted,
see Section 6.

9.1 Approach Modification

For this evaluation, we removed the Importance Message
from our approach’s summaries. Our rationale for this
decision is that in our first study, participants found our
approach’s summaries to contain a large amount of un-
neccesary information. The qualitative results (Section 8)
suggest that the Importance Message is to blame. No other
modifications to our approach are made.

9.2 Research Questions

This section defines the research questions for our second
evaluation. These research questions are very similar to
those in Section 6.

Assessing Overall Quality. In this evaluation, we seek to
quantify the difference in summary quality between our ap-
proach and the existing state-of-the-art approach. To assess



0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2465386, IEEE Transactions on Software Engineering

13

quality, we propose the three following Research Questions
(RQs):

RQ8 To what degree do the summaries from our ap-
proach and the state-of-the-art approach differ
in overall accuracy?

RQ9 To what degree do the summaries from our ap-
proach and the state-of-the-art approach differ
in terms of missing important information?

RQ10 To what degree do the summaries from our ap-
proach and the state-of-the-art approach differ
in terms of including unnecessary information?

As in our first study, these research questions are derived
from work by Moreno et al. [33] and Sridhara et al. [42].
The questions address, respectively, a summary’s accuracy,
content adequacy, and conciseness.

Assessing Contextual Information. In the evaluation,
we want to examine which automatic summarization ap-
proach better provides programmers with contextual infor-
mation. Our questions are designed to determine if sum-
maries generated by our approach are better than the state-
of-the-art approach in helping programmers understand
what a method does, why the method exists, and how to
use it. We evaluate the following research questions:

RQ11 Do the summaries help programmers under-
stand what the methods do internally?

RQ12 Do the summaries help programmers under-
stand why the methods exist?

RQ13 Do the summaries help programmers under-
stand how to use the methods?

The rationale for these questions is the same as in our
first study (see Section 6)

Orthogonality. While the ultimate goal of this research
is to generate documentation purely from data in the source
code, we also aim to improve upon the state-of-the-art
approach by adding contextual information. In particular,
we ask:

RQ14 Do the summaries generated by our solution
contain orthogonal information to the informa-
tion already in the summaries from the state-of-
the-art solution?

The idea behind this RQ is that to improve existing sum-
maries, the generated summaries should contribute new
information, not merely repeat what is already in the sum-
maries. We generate summaries by analyzing the context of
methods, so it is plausible that we add information from
this context, which does not exist in the summaries from the
state-of-the-art solution.

9.3 Cross-Validation Study Methodology

To answer our Research Questions, we performed a cross-
validation study in which human experts (e.g., Java pro-
grammers) read the source code of different Java methods,
as well as summaries of those methods, for three different
rounds. The structure of this study is the same as our first
study (see Section 6.1). Again in our cross-validation study,
we rotate the projects programmers saw summaries from in
order to avoid bias. Table 6 shows the ordering of our study.

TABLE 6
The cross-validation design of our user study. Different participants

read different summaries for different programs.

Round Group Summary Program 1 Program 2

1
A Our NanoXML Jajuk
B S.O.T.A. Siena JEdit
C Combined JTopas JHotdraw

2
A Combined Siena Jajuk
B Our JTopas JEdit
C S.O.T.A. NanoXML JHotdraw

3
A S.O.T.A. JTopas Jajuk
B Combined NanoXML JEdit
C Our Siena JHotdraw

9.4 Subject Java Programs

In our second evaluation, we use the same subject Java
programs as our first evaluation. Information about these
subject Java programs can be found in Section 6.2 and in
Table 4. Our approach to selecting method summaries is the
same as in Section 6.2.

9.5 Participants

We had 12 participants in our study. Nine were graduate
students and from the Computer Science and Engineering
Department at the University of Notre Dame. The remaining
three were professional programmers from two different
organizations, not listed due to our privacy policy. Of our
12 participants, 3 did not complete enough of the study and
had their results thrown out. One of these students was a
graduate student at from the Computer Science and Engi-
neering Department at the University of Notre Dame. The
remaining two were among our professional programmers
from different organizations. On average, the participants
answered questions on 20.2 summaries, skipping an average
of 3.8. Additionally, some participants occasionally failed
to answer one of the six questions. Given the sporadic
nature of when an individual question was not answered,
we assume it was unintentional.

9.6 Metrics and Statistical Tests

We define the metrics identically as in the first study. See
Section 6.4 for our statistical analysis, including information
on statistiscal tests used.

9.7 Threats to Validity

This study shares the same threats to validity as our first
study. We address these threats in Section 6.5, as well as
discuss how we mitigate their effect.

10 EMPIRICAL RESULTS

This section reports the results of our evaluation. First,
we present our statistical process and evidence. Then, we
explain our interpretation of this evidence and answer our
research questions.



0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2465386, IEEE Transactions on Software Engineering

14

TA
B

LE
7

S
ta

tis
tic

al
su

m
m

ar
y

of
re

su
lts

fo
rt

he
pa

rt
ic

ip
an

ts
’r

at
in

gs
fo

re
ac

h
qu

es
tio

ns
.“

S
am

p.
”i

s
th

e
nu

m
be

ro
fr

es
po

ns
es

fo
rt

ha
tq

ue
st

io
n

fo
ra

gi
ve

n
su

m
m

ar
y

ty
pe

,f
or

al
lr

ou
nd

s.
χ
2

is
ca

lc
ul

at
ed

by
ap

pl
yi

ng
A

N
O

VA
to

th
e
r
m
s
:
l
r
m

ge
ne

ra
te

d
lin

ea
rr

eg
re

ss
io

n
m

od
el

an
d

co
ns

id
er

in
g

th
e

di
ffe

re
nc

e
ca

us
ed

by
th

e
ty

pe
of

su
m

m
ar

y.
D

.f.
re

fe
rs

to
th

e
nu

m
be

ro
fd

eg
re

es
of

fre
ed

om
w

ith
in

th
e

ty
pe

of
su

m
m

ar
y.

If
th

e
p-

va
lu

e
is

le
ss

th
an

.0
5,

w
e

re
je

ct
th

e
nu

ll
hy

po
th

es
is

.

H
Q

Su
m

m
ar

y
Sa

m
p.

x̃
µ

V
ar

i.
χ
2

d.
f.

p-
va

lu
e

D
ec

is
io

n

H
1

Q
1
-A

cc
ur

ac
y

O
ur

65
3

3.
01

5
0.

86
3

13
.9

0
1

<
.0

01
R

ej
ec

t
S.

O
.T

.A
.

59
3

2.
39

0
0.

86
3

H
2

Q
2
-C

on
te

nt
O

ur
65

3
2.

49
2

0.
97

3
7.

08
1

0.
00

8
R

ej
ec

t
S.

O
.T

.A
.

58
3

2.
86

2
1.

13
9

H
3

Q
3
-C

on
ci

se
O

ur
65

2
1.

81
5

0.
49

7
0.

15
1

0.
70

2
N

ot
R

ej
ec

t
S.

O
.T

.A
.

59
2

1.
98

3
0.

98
2

H
4

Q
4
-W

ha
t

O
ur

65
3

2.
87

7
0.

64
1

15
.1

1
1

<
.0

01
R

ej
ec

t
S.

O
.T

.A
.

59
3

2.
40

7
0.

83
2

H
5

Q
5
-W

hy
O

ur
65

3
2.

58
5

0.
80

9
16

.5
8

1
<

.0
01

R
ej

ec
t

S.
O

.T
.A

.
58

3
1.

98
3

0.
93

0

H
6

Q
6
-H

ow
O

ur
65

3
2.

76
9

0.
64

9
31

.9
2

1
<

.0
01

R
ej

ec
t

S.
O

.T
.A

.
58

3
1.

77
6

0.
77

3

H
7

Q
1
-A

cc
ur

ac
y

C
om

bi
ne

d
59

3
2.

84
7

0.
58

0
2.

96
1

0.
08

5
N

ot
R

ej
ec

t
S.

O
.T

.A
.

59
3

2.
39

0
0.

86
3

H
8

Q
2
-C

on
te

nt
C

om
bi

ne
d

59
2

2.
32

2
0.

84
3

13
.3

6
1

<
.0

01
R

ej
ec

t
S.

O
.T

.A
.

58
3

2.
86

2
1.

13
9

H
9

Q
3
-C

on
ci

se
C

om
bi

ne
d

59
2

2.
54

2
1.

14
9

4.
73

1
0.

03
0

R
ej

ec
t

S.
O

.T
.A

.
59

2
1.

98
3

0.
98

2

H
1
0

Q
4
-W

ha
t

C
om

bi
ne

d
58

3
2.

87
9

0.
56

4
7.

85
1

0.
00

5
R

ej
ec

t
S.

O
.T

.A
.

59
3

2.
40

7
0.

83
2

H
1
1

Q
5
-W

hy
C

om
bi

ne
d

59
3

2.
50

8
0.

63
4

10
.3

2
1

0.
00

1
R

ej
ec

t
S.

O
.T

.A
.

58
2

1.
98

3
0.

93
0

H
1
2

Q
6
-H

ow
C

om
bi

ne
d

59
3

2.
74

6
0.

50
3

26
.6

3
1

<
.0

01
R

ej
ec

t
S.

O
.T

.A
.

58
2

1.
77

6
0.

77
3



0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2465386, IEEE Transactions on Software Engineering

15

(a) Our vs. S.O.T.A. Summaries (b) Combined vs. S.O.T.A. Summaries

Fig. 5. Performance comparison of the summaries. The chart shows the difference in the means of the responses to each question. For example
in (a), the mean of Q5-Why for our approach is 0.602 higher than for the state-of-the-art summaries. The sign is reversed for Q2-Content and
Q3-Concise because lower scores, not higher scores, are better values for those questions. Solid bars indicate differences which are statistically-
significant. In general, the our summaries were more accurate and provided more thorough contextual information.

10.1 Statistical Analysis
We perform our statistical analysis in this study identically
to the analysis in our first study (see Section 7.1). We again
define our null hypotheses as follows:

Hn The difference in the reported ratings of the
responses for Qm is not statistically-significant.

where n ranges from 1 to 12, and m ranges from 1 to 6,
depending on which question is being tested. For example,
in H11, we compare the answers to Q5-Why for the state-
of-the-art summaries to the answers to Q5-Why for the
combined summaries. Table 7 shows the the result of our
statistical analysis.

10.2 Interpretation
Figure 5 showcases the key evidence we study in this
evaluation. We use this evidence to answer our Research
Questions along the three areas highlighted in Section 9.

Overall Quality. The summaries from our approach are
superior in overall quality to the summaries from the state-
of-the-art approach. Figure 5(a) shows the difference in the
means of the responses for survey questions. Questions
Q1-Accuracy through Q3-Concise refer to aspects of the
summaries related to overall quality, in particular to our
Research Questions RQ8 to RQ10. In short, participants
rated our summaries as more accurate and as missing less
required information by a statistically-significant margin.
While these results are encouraging progress, they neverthe-
less still point to a need to improve. In Section 11, we explore
what information that the participants felt was unnecessary
in our summaries.

Contextual Information. The summaries from our ap-
proach included more contextual information than the state-
of-the-art summaries. The differences in responses for ques-
tions Q4-What, Q5-Why, and Q6-How are higher for our
summaries by a statistically-significant margin. These re-
sults mean that, in comparison to the state-of-the-art sum-
maries, our summaries helped the programmers understand
why the methods exist and how to use those methods.
Therefore, we answer RQ11, RQ12, and RQ13 as a positive
result. The answers to these research questions point to
an important niche filled by our approach: the addition of
contextual information to software documentation.

Orthogonality. We found substantial evidence showing
that our summaries improve the state-of-the-art summaries.

When participants read both types of summary for a given
method, the responses for Q4-What, Q5-Why, and Q6-How
improved by a significant margin, pointing to an increase in
useful contextual information in the documentation. Overall
quality did not decrease by a significant margin compared
to when only our solutions were given, except in terms
of unnecessary information added. Consider Figure 5(b):
Accuracy and missing information scores showed similar
improvement. While the combined summaries did show a
marked increase in unnecessary information, we still find
evidence to positively answer RQ14: the information added
to state-of-the-art summaries by our approach is orthogonal.
This answer suggests that our approach can be used, after
future work to reduce unnecessary information, to improve
existing documentation.

11 QUALITATIVE RESULTS
Participants in the evaluation study had the opportunity to
write an opinion about each summary (see Q8-Comments
in Table 3). In this section, we explore these opinions for
feedback on our approach and directions for future work.

One of the results in our study was the significantly
worse performance of Q3-Concise in the combined com-
ments, suggesting an increase in the amount of unnecessary
information. Several user comments from our survey note
concerns of repetitious information, as well as difficulties in
processing the longer comments that result of the combina-
tion.

• “The description is too verbose and contains too
many details.”

• “The summary contains too much information and
confuses the purpose of the method...”

• “The summary seems accurate but too verbose.”
• “Too much information, I cannot understand the

comment.”

Another result is the increase in the scores for Q5-Why
and Q6-How, which deal with how a programmer can use
the method within the system. This increase appears to be
due to the Use Message. Several users noted a lack of any
form of usage message in the state-of-the-art approach. A
selection of these comments follows.

• “Nice and concise, but lacking information on
uses...”

• “The summary is clear. An example is expected.”



0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2465386, IEEE Transactions on Software Engineering

16

• “The summary...does not tell me where the method
is called or how it is used.”

Additionally, in a method summary from our approach
that did not generate a Use Message, a participant noted “I
feel that an example should be provided.” However, one
participant in our study had a largely negative opinion of
the Use Message. This participant repeatedly referred to the
“last sentence” (the Use Message) as “unnecessary”, even
stating “Assume every one of these boxes comments about
removing the last line of the provided comment.”

Participants often felt the state-of-the-art approach
lacked critical information about the function. Comments
indicating a lack of information appeared consistently from
many participants. The following comments (each from a
different participant) support this criticism:

• “A bit sparse and missing a lot of information.”
• “Comment details the inner workings but provides

no big picture summary.”
• “Only provides a detail for one of the possible

branches.”
• “It seems the summary is generated only based on

the last line of the method.”

These comments occur more frequently with the state-
of-the-art compared to our approach. A possible reason
for this is our approach focuses much more on method
interactions (e.g., method calls), and avoids the internal
details of the function. By contrast, the state-of-the-art ap-
proach focuses on a method’s internal execution, selecting
a small subset of statements to use in the summary. Par-
ticipants felt this selection often leaves out error checking
and alternate branches, focusing too narrowly on particular
internal operations while ignoring others. We believe that
these comments point to the contextual information we add
in our summaries as being the key improvement over the
state-of-the-art approach.

Several of our generated summaries and the state-of-
the-art generated summaries had grammar issues that dis-
tracted users. Additionally, the state-of-the-art approach
often selected lines of source code, but did not generate
English summaries for those lines. Several users commented
on these issues, noting that it made the summaries either
impossible or difficult to understand. Our aim is to correct
these issues going forward with refinement of our NLG tool.

Another common theme of participant comments in both
our approach and the state-of-the-art centered on function
input parameters. Many participants felt an explanation
of input parameters was lacking in both approaches, as
well as the combination approach. A selection of these
comments follows. These comments were selected from our
approach, the state-of-the-art, and the combined approach
respectively:

• “The input parameters publicID and systemID are
not defined – what are they exactly?”

• “The summary could mention the input required is
the path for the URL”

• “... It would be better if the summary described the
types of the inputs...”

12 RELATED WORK
The related work closest to our approach is detailed in a
recent thesis by Sridhara [41]. In Section 3, we summarized
certain elements of this work that inspired our approach.
Two aspects we did not discuss are as follows. First, one
approach creates summaries of the “high level actions” in a
method [43]. A high level action is defined as a behavior at
a level of abstraction higher than the method. The approach
works by identifying which statements in a method imple-
ment that behavior, and summarizing only those statements.
A second approach summarizes the role of the parameters
to a method. This approach creates a description of key
statements related to the parameter inside the method. Our
approach is different from both of these approaches in that
we create summaries from the context of the method – that
is, where the method is invoked. We help programmers
understand the role the method plays in the software.

There are a number of other approaches that create nat-
ural language summaries of different software artifacts and
behaviors. Moreno et al. describe a summarization technique
for Java classes that match one of 13 “stereotypes.” The
technique selects statements from the class based on this
stereotype, and then uses the approach by Sridhara [42] to
summarize those statements. Work by Buse et al. focuses on
Java exceptions [3]. Their technique is capable of identifying
the conditions under which an exception will be thrown,
and producing brief descriptions of those conditions. Recent
work by Zhang et al. performs a similar function by explain-
ing failed tests [51]. That approach modifies a failed test
by swapping different expressions into the test to find the
failure conditions. Summary comments of those conditions
are added to the test. Another area of focus has been
software changes. One approach is to improve change log
messages [4]. Alternatively, work by Kim et al. infers change
rules, as opposed to individual changes, that explain the
software’s evolution [21]. The technique can summarize the
high-level differences between two versions of a program.

The key difference between our approach and these
existing approaches is that we summarize the context of the
source code, such as how the code is called or the output is
used. Structural information has been summarized before,
in particular by Murphy [34], in order to help programmers
understand and evolve software. Murphy’s approach, the
software reflexion model, notes the connections between
low-level software artifacts in order to point out connec-
tions between higher-level artifacts. There are techniques
which give programmers some contextual information by
listing the important keywords from code. For example,
Haiduc et al. use a Vector Space Model to rank keywords
from the source code, and present those keywords to pro-
grammers [14]. The approach is based on the idea that
programmers read source code cursorily by reading these
keywords, and use that information to deduce the context
behind the code. Follow-up studies have supported the
conclusions that keyword-list summarization is useful to
programmers [1], and that VSM is an effective strategy for
extracting these keywords [8].

Tools such as Jadeite [47], Apatite [9], and Mica [46] are
related to our approach in that they add API usage informa-
tion to documentation of those APIs. These tools visualize
the usage information as part of the interface for exploring



0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2465386, IEEE Transactions on Software Engineering

17

or locating the documentation. We take a different strategy
by summarizing the information as natural language text.
What is similar is that this work demonstrates a need for
documentation to include the usage data, as confirmed by
studies of programmers during software maintenance [20],
[26], [49].

13 CONCLUSION

We have presented a novel approach for automatically
generating summaries of Java methods. Our approach dif-
fers from previous approaches in that we summarize the
context surrounding a method, rather than details from
the internals of the method. We use PageRank to locate
the most important methods in that context, and SWUM
to gather relevant keywords describing the behavior of
those methods. Then, we designed a custom NLG system
to create natural language text about this context. The
output is a set of English sentences describing why the
method exists in the program, and how to use the method.
We performed two cross-validation studies to evaluate the
quality of summaries generated by our approach. In the
first cross-validation study, we compared the summaries
generated from our approach to summaries written by
human experts. We found our approach provided better
contextual information than manually written summaries.
However, the human written summaries were significantly
more accurate and concise. In the second cross-validation
study, we compared the summaries from our approach to
summaries written by a state-of-the-art solution. We found
that our summaries were superior in quality and that our
generated summaries fill a key niche by providing contex-
tual information. That context is missing from the state-
of-the-art summaries. Moreover, we found that by combin-
ing our summaries with the state-of-the-art summaries, we
can improve existing software documentation. Finally, the
source code for our tool’s implementation and evaluation
data are publicly available for future researchers.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Emily Hill for providing
key assistance with the SWUM tool. We also thank and
acknowledge the Software Analysis and Compilation Lab
at the University of Delaware for important help with the
state-of-the-art summarization tool. Finally, we thank the
25 participants who spent time and effort completing our
first evaluation. Additionally, we would like to thank Dr.
James Delaney, who provided assistance in improving the
statistical model we use to evaluate our approach.

REFERENCES

[1] J. Aponte and A. Marcus. Improving traceability link recovery
methods through software artifact summarization. In Proceedings
of the 6th International Workshop on Traceability in Emerging Forms of
Software Engineering, TEFSE ’11, pages 46–49, New York, NY, USA,
2011. ACM.

[2] H. Burden and R. Heldal. Natural language generation from class
diagrams. In Proceedings of the 8th International Workshop on Model-
Driven Engineering, Verification and Validation, MoDeVVa, pages
8:1–8:8, New York, NY, USA, 2011. ACM.

[3] R. P. Buse and W. R. Weimer. Automatic documentation inference
for exceptions. In Proceedings of the 2008 international symposium on
Software testing and analysis, ISSTA ’08, pages 273–282, New York,
NY, USA, 2008. ACM.

[4] R. P. Buse and W. R. Weimer. Automatically documenting program
changes. In Proceedings of the IEEE/ACM international conference on
Automated software engineering, ASE ’10, pages 33–42, New York,
NY, USA, 2010. ACM.

[5] W.-K. Chan, H. Cheng, and D. Lo. Searching connected api
subgraph via text phrases. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
FSE ’12, pages 10:1–10:11, New York, NY, USA, 2012. ACM.

[6] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira. A
study of the documentation essential to software maintenance.
In Proceedings of the 23rd annual international conference on Design
of communication: documenting & designing for pervasive information,
SIGDOC ’05, pages 68–75, New York, NY, USA, 2005. ACM.

[7] E. Duala-Ekoko and M. P. Robillard. Asking and answering ques-
tions about unfamiliar apis: an exploratory study. In Proceedings of
the 2012 International Conference on Software Engineering, ICSE 2012,
pages 266–276, Piscataway, NJ, USA, 2012. IEEE Press.

[8] B. Eddy, J. Robinson, N. Kraft, and J. Carver. Evaluating source
code summarization techniques: Replication and expansion. In
Proceedings of the 21st International Conference on Program Compre-
hension, ICPC ’13, 2013.

[9] D. S. Eisenberg, J. Stylos, and B. A. Myers. Apatite: a new interface
for exploring apis. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’10, pages 1331–1334,
New York, NY, USA, 2010. ACM.

[10] B. Fluri, M. Wursch, and H. C. Gall. Do code and comments
co-evolve? on the relation between source code and comment
changes. In Proceedings of the 14th Working Conference on Reverse
Engineering, WCRE ’07, pages 70–79, Washington, DC, USA, 2007.
IEEE Computer Society.

[11] A. Forward and T. C. Lethbridge. The relevance of software
documentation, tools and technologies: a survey. In Proceedings
of the 2002 ACM symposium on Document engineering, DocEng ’02,
pages 26–33, New York, NY, USA, 2002. ACM.

[12] A. Gatt and E. Reiter. Simplenlg: a realisation engine for practical
applications. In Proceedings of the 12th European Workshop on Natural
Language Generation, ENLG ’09, pages 90–93, Stroudsburg, PA,
USA, 2009. Association for Computational Linguistics.

[13] E. Goldberg, N. Driedger, and R. Kittredge. Using natural-
language processing to produce weather forecasts. IEEE Expert,
9(2):45–53, April 1994.

[14] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus. On the use of
automated text summarization techniques for summarizing source
code. In Proceedings of the 2010 17th Working Conference on Reverse
Engineering, WCRE ’10, pages 35–44, Washington, DC, USA, 2010.
IEEE Computer Society.

[15] E. Hill, L. Pollock, and K. Vijay-Shanker. Automatically capturing
source code context of nl-queries for software maintenance and
reuse. In Proceedings of the 31st International Conference on Software
Engineering, ICSE ’09, pages 232–242, Washington, DC, USA, 2009.
IEEE Computer Society.

[16] R. Holmes and G. C. Murphy. Using structural context to recom-
mend source code examples. In Proceedings of the 27th international
conference on Software engineering, ICSE ’05, pages 117–125, New
York, NY, USA, 2005. ACM.

[17] W. M. Ibrahim, N. Bettenburg, B. Adams, and A. E. Hassan.
Controversy corner: On the relationship between comment update
practices and software bugs. J. Syst. Softw., 85(10):2293–2304, Oct.
2012.

[18] K. Inoue, R. Yokomori, H. Fujiwara, T. Yamamoto, M. Matsushita,
and S. Kusumoto. Component rank: relative significance rank for
software component search. In Proceedings of the 25th International
Conference on Software Engineering, ICSE ’03, pages 14–24, Wash-
ington, DC, USA, 2003. IEEE Computer Society.

[19] M. Kajko-Mattsson. A survey of documentation practice within
corrective maintenance. Empirical Softw. Engg., 10(1):31–55, Jan.
2005.

[20] T. Karrer, J.-P. Krämer, J. Diehl, B. Hartmann, and J. Borchers.
Stacksplorer: call graph navigation helps increasing code mainte-
nance efficiency. In Proceedings of the 24th annual ACM symposium
on User interface software and technology, UIST ’11, pages 217–224,
New York, NY, USA, 2011. ACM.

[21] M. Kim, D. Notkin, D. Grossman, and G. Wilson. Identifying and
summarizing systematic code changes via rule inference. IEEE
Transactions on Software Engineering, 39(1):45 –62, Jan. 2013.

[22] A. J. Ko, B. A. Myers, and H. H. Aung. Six learning barriers
in end-user programming systems. In Proceedings of the 2004



0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2465386, IEEE Transactions on Software Engineering

18

IEEE Symposium on Visual Languages - Human Centric Computing,
VLHCC ’04, pages 199–206, Washington, DC, USA, 2004. IEEE
Computer Society.

[23] D. Kramer. Api documentation from source code comments: a
case study of javadoc. In Proceedings of the 17th annual international
conference on Computer documentation, SIGDOC ’99, pages 147–153,
New York, NY, USA, 1999. ACM.

[24] J. Krinke. Effects of context on program slicing. J. Syst. Softw.,
79(9):1249–1260, Sept. 2006.

[25] A. N. Langville and C. D. Meyer. Google’s PageRank and Beyond:
The Science of Search Engine Rankings. Princeton University Press,
Princeton, NJ, USA, 2006.

[26] T. D. LaToza and B. A. Myers. Developers ask reachability ques-
tions. In Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering - Volume 1, ICSE ’10, pages 185–194, New
York, NY, USA, 2010. ACM.

[27] D. Lawrie, C. Morrell, H. Feild, and D. Binkley. What’s in a name?
a study of identifiers. In In 14th International Conference on Program
Comprehension, pages 3–12. IEEE Computer Society, 2006.

[28] T. C. Lethbridge, J. Singer, and A. Forward. How software
engineers use documentation: The state of the practice. IEEE
Softw., 20(6):35–39, Nov. 2003.

[29] S. Mani, R. Catherine, V. S. Sinha, and A. Dubey. Ausum: approach
for unsupervised bug report summarization. In Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foundations of
Software Engineering, FSE ’12, pages 11:1–11:11, New York, NY,
USA, 2012. ACM.

[30] C. D. Manning, P. Raghavan, and H. Schtze. Introduction to
Information Retrieval. Cambridge University Press, New York, NY,
USA, 2008.

[31] P. W. McBurney and C. McMillan. Automatic documentation
generation via source code summarization of method context. In
Proceedings of the 22Nd International Conference on Program Com-
prehension, ICPC 2014, pages 279–290, New York, NY, USA, 2014.
ACM.

[32] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu.
Portfolio: finding relevant functions and their usage. In Proceedings
of the 33rd International Conference on Software Engineering, ICSE ’11,
pages 111–120, New York, NY, USA, 2011. ACM.

[33] L. Moreno, J. Aponte, S. Giriprasad, A. Marcus, L. Pollock, and
K. Vijay-Shanker. Automatic generation of natural language
summaries for java classes. In Proceedings of the 21st International
Conference on Program Comprehension, ICPC ’13, 2013.

[34] G. C. Murphy. Lightweight structural summarization as an aid to
software evolution. PhD thesis, University of Washington, July 1996.

[35] D. Puppin and F. Silvestri. The social network of java classes. In
Proceedings of the 2006 ACM symposium on Applied computing, SAC
’06, pages 1409–1413, New York, NY, USA, 2006. ACM.

[36] E. Reiter and R. Dale. Building natural language generation systems.
Cambridge University Press, New York, NY, USA, 2000.

[37] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej. How do profes-
sional developers comprehend software? In Proceedings of the 2012
International Conference on Software Engineering, ICSE 2012, pages
255–265, Piscataway, NJ, USA, 2012. IEEE Press.

[38] L. Shi, H. Zhong, T. Xie, and M. Li. An empirical study on
evolution of api documentation. In Proceedings of the 14th inter-
national conference on Fundamental approaches to software engineering:
part of the joint European conferences on theory and practice of soft-
ware, FASE’11/ETAPS’11, pages 416–431, Berlin, Heidelberg, 2011.
Springer-Verlag.

[39] J. Sillito, G. C. Murphy, and K. De Volder. Asking and answering
questions during a programming change task. IEEE Trans. Softw.
Eng., 34(4):434–451, July 2008.

[40] S. E. Sim, C. L. A. Clarke, and R. C. Holt. Archetypal source
code searches: A survey of software developers and maintainers.
In Proceedings of the 6th International Workshop on Program Compre-
hension, IWPC ’98, pages 180–, Washington, DC, USA, 1998. IEEE
Computer Society.

[41] G. Sridhara. Automatic Generation of Descriptive Summary Comments
for Methods in Object-oriented Programs. PhD thesis, University of
Delaware, Jan. 2012.

[42] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-
Shanker. Towards automatically generating summary comments
for java methods. In Proceedings of the IEEE/ACM international
conference on Automated software engineering, ASE ’10, pages 43–52,
New York, NY, USA, 2010. ACM.

[43] G. Sridhara, L. Pollock, and K. Vijay-Shanker. Automatically
detecting and describing high level actions within methods. In
Proceedings of the 33rd International Conference on Software Engineer-
ing, ICSE ’11, pages 101–110, New York, NY, USA, 2011. ACM.

[44] G. Sridhara, L. Pollock, and K. Vijay-Shanker. Generating pa-
rameter comments and integrating with method summaries. In
Proceedings of the 2011 IEEE 19th International Conference on Program
Comprehension, ICPC ’11, pages 71–80, Washington, DC, USA,
2011. IEEE Computer Society.

[45] D. Steidl, B. Hummel, and E. Juergens. Quality analysis of source
code comments. In Proceedings of the 21st International Conference
on Program Comprehension, ICPC ’13, 2013.

[46] J. Stylos and B. A. Myers. Mica: A web-search tool for finding
api components and examples. In Proceedings of the Visual Lan-
guages and Human-Centric Computing, VLHCC ’06, pages 195–202,
Washington, DC, USA, 2006. IEEE Computer Society.

[47] J. Stylos, B. A. Myers, and Z. Yang. Jadeite: improving api
documentation using usage information. In CHI ’09 Extended
Abstracts on Human Factors in Computing Systems, CHI EA ’09,
pages 4429–4434, New York, NY, USA, 2009. ACM.

[48] A. A. Takang, P. A. Grubb, and R. D. Macredie. The Effects of Com-
ments and Identifier Names on Program Comprehensibility: An
Experimental Study. Journal of Programming Languages, 4(3):143–
167, 1996.

[49] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim. How do software
engineers understand code changes?: an exploratory study in
industry. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, FSE ’12, pages
51:1–51:11, New York, NY, USA, 2012. ACM.

[50] D. van Heesch. Doxygen website, 2013.
[51] S. Zhang, C. Zhang, and M. D. Ernst. Automated documentation

inference to explain failed tests. In Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE ’11, pages 63–72, Washington, DC, USA, 2011. IEEE
Computer Society.


