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ABSTRACT

Program comprehension is one of the most important chal-
lenges that new software developers face. Educators have
sought to prepare students for this challenge through hands-
on software development projects. These projects teach stu-
dents effective software engineering principles. But, students
often struggle to see the value of these principles in class
projects, and therefore struggle to recognize them outside
the classroom. The inevitable result is that these students
have difficulty comprehending large programs after gradua-
tion. In this paper, we argue that a remedy to this problem
is to teach the history of how software development prin-
ciples were created. In this collaborative work with the
Notre Dame Department of History, we present a course that
blends a discussion of this history with a hands-on software
project. We present a summary of the history covered in
our course, and reflect on our teaching experience.
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1. INTRODUCTION

A key problem software engineering practitioners face is
program comprehension: the task of understanding the be-
havior of large software projects [23, 21, 35]. Novices strug-
gle much more than experts with program comprehension.
Two independent studies at Microsoft have found that this
process is one of the most important challenges that new
college graduates face [9, 5.

One solution to this problem is to give students “hands-
on” experience with large programs in a classroom setting [2,
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4]. This experience may come in different forms, for ex-
ample as a multi-semester project with different students
each semester [32], or as contributions to open-source soft-
ware [27]. These large-scale assignments help students to
understand real world problems and avoid some of the diffi-
culties they would otherwise encounter after graduation.

What is missing from these hands-on projects is guidance
to students on how to understand large programs. Tech-
niques for program comprehension are very difficult to im-
part, even with hands-on projects and close mentoring [22,
32, 8]. Begel et al’s Microsoft study [5] found that new
software developers often do not know “when they do not
know” how a program works: fledgling programmers strug-
gled to understand large programs, even when an experi-
enced developer demonstrated an appropriate program com-
prehension technique. Some new programmers even voiced
concerns that their “mental model [about the program] was
wrong”, but did not know how to develop a correct mental
model. The result is that, even in a classroom setting, novice
programmers learn through trial and error, which leaves
novices’ understanding “fragmented and piecemeal” [5].

At the core of this problem is that novices do not under-
stand the rationale behind the source code that they read,
even if they understand what the source code does. Novices
struggle to connect the low-level implementation details they
read to the high-level software engineering principles they
learn in school. Different studies of programmers in cogni-
tive psychology refer to this struggle as a problem with the
“assimilation process” [37]: novice programmers have diffi-
culty understanding how the principles they learn affect the
source code they read and write.

In this paper, we argue that a remedy to this problem is
to teach students the history of how software development
principles were created. The crux of our argument is that
historical techniques for understanding problems “are con-
sidered integral parts of scientific literacy” [17] in disciplines
ranging from mathematics [36] to chemistry [38]. But, this
history is often overlooked in software engineering [3]. Our
view is that students would learn to read and comprehend
programs more quickly if they first learn the historical con-
text behind the implementation of those programs.

In this collaborative work with the University of Notre
Dame’s Department of History, we propose a software en-
gineering course that encourages students to enter the his-
torical debates behind prominent software engineering prin-
ciples, while illustrating those principles in hands-on class
projects. We provide a brief history of the principles cov-
ered in our course, and reflect on our teaching experience.



2. BACKGROUND / RELATED WORK

The most common approach to helping students under-
stand large programs is through hands-on software engineer-
ing projects. Rajlich proposes teaching incremental changes
to a pre-existing program [32]. The idea is that students will
make changes while understanding a small piece of the pro-
gram at a time. Marmorstein has proposed a similar course
in which students contribute to open source software [27].
This course takes advantage of open source software that is
designed so novice programmers may make useful contribu-
tions through bug fixes and feature enhancements. The ad-
vantage of these hands-on projects is that students practice
program comprehension alongside other software engineer-
ing tasks (e.g., code reviews and version control) [4, 19].

Research in different disciplines has recommended teach-
ing students the rationale behind the principles of those dis-
ciplines. The National Council of Teachers of Mathematics
calls this a “problem solving” focus to teaching [29]. In sci-
ence education generally, the creation of physical models has
long been taught to improve understanding of the rationale
behind scientific principles [7, 17]. Mathieu et al. suggest
that shared understanding of this rationale, in the form of
mental models, is related to effective team processes [28].
Rouse et al. point out that the construction of correct
mental models is a teaching goal in numerous domains [34],
a finding supported in software engineering literature [24].
Nevertheless, despite being proposed in computer science [3],
software engineering education often overlooks the rationale
and history of software engineering principles.

3. OUR SOLUTION

In this section, we discuss our design for a software engi-
neering course, CSE40232 in the Department of Computer
Science and Engineering at the University of Notre Dame.

3.1 Key Idea

Our key idea is to teach principles of software development
within the framework of historical thought behind those
principles. Many principles of software development are not
grounded in physical laws; they are the result of decades of
debate, opinion, and empirical evaluation. Crucially, these
principles reflect the findings of research into how program-
mers understand software. A principle may be considered
“useful” if there is evidence that it helps programmers form a
correct mental model of the software. For example, different
researchers have found that programmers tend to read only
the code relevant to a given task [33], which is why the prin-
ciple of concern separation is “useful” to programmers. It
is also why concern separation is a motivation behind met-
rics such as coupling and cohesion. Our view is that students
should learn this history of, and philosophy behind, software
development principles so that the students will understand
1) the reasons to use those principles, and 2) how to com-
prehend programs written using those principles.

3.2 Details of Educational Plan

Our course design has four components: 1) in-class de-
bates about software development principles, 2) a group
project where software is developed from scratch, 3) an indi-
vidual case study project where each students adds a feature
to a complex open source project, and 4) instructor inter-
views of students about software development. Next, we de-
scribe the purpose behind and details of these components.

3.2.1 Debates

We host a series of debates about different software de-
velopment principles. These debates place one student on
each side of a controversial topic. Before each debate, the
instructor presents the topic in two lectures. The first of
these lectures covers the history of the principle (we provide
an outline of this history in Section 4). The next explains
the principle in detail, emphasizing examples of programs
where the topic is implemented. Two students are then
assigned to debate the merits of the principle. Each stu-
dent must research the prominent opinions and empirical
evidence for or against it, including the relevant academic
literature. The students are also asked to write a report
summarizing their evidence. Two weeks after the instructor
lectures on the topic, the students present their arguments in
an in-class debate. The students cross-examine each other,
must answer questions from the classroom, and respond to
counter-arguments.

These debates encourage students to think critically about
each of the principles. The goal is for the students to form
opinions about these principles, and to understand the opin-
ions of others. At the same time, the students must support
their opinions through academic literature. Our aim is that,
by forming opinions about these topics, the students will
learn to recognize the topics in software that the students
read. If the students recognize how the principles are imple-
mented in software, then the students will be prepared to
comprehend that software. The students will learn to build
a mental model of the software based on the principles of
software development.

3.2.2 Large Group Project

One component of the class is a large group project in-
volving every member of the class (13 students). The in-
structor takes the position as team leader, and demonstrates
how the principles learned through the debate process can
be applied to a software development project. Accepted
practices for version control, requirements elicitation, soft-
ware design, documentation, and maintenance are covered
through demonstration and practice. The instructor dedi-
cates one lecture period per week as an “all hands” meet-
ing, where tasks for the following week are prioritized and
assigned. The students collaborate via an issue control sys-
tem. Throughout development, students are asked to reflect
on the effectiveness of different software development top-
ics, such as design patterns and software metrics, so that
the students learn to recognize these topics in practice.

3.2.3 Case Study Project

In a case study project, we ask each student to implement
a change to an open-source software program. This project
is intended to give each student experience in reading and
comprehending a large (>100 KLOC) program. Collabora-
tion is possible only at a high-level: students may communi-
cate with each other about how the program works, but may
not read source code written by other students. This style
of collaboration is intended to help students learn to explain
source code; through explanation, the students will clarify
their own mental models of the code. Through the lecture
and debate series, our intent is for the students to connect
concepts from this case study project to concepts discussed
in class. The idea is that the students will learn how the
software development principles help to form correct mental
models about the case study project’s behaviors.



3.2.4 Individual Interviews

In lieu of a final exam, the instructor will conduct a one-
hour individual interview with each student. The instructor
asks questions related to the group and case study projects,
and elicits opinions about the concepts discussed during the
debate series. For example, “did our implementation of de-
sign patterns help solve the problem we had formatting the
display for our group project?” The instructor evaluates the
student’s understanding of both the concept and the project
through these questions. The primary goal is for the student
to practice communicating ideas about program design, but
a secondary benefit is job interview practice.

4. BRIEF HISTORY OF S.E. PRINCIPLES

This section highlights the movements behind the growth
of software engineering principles that we debate in our
course. Most of the history of software engineering remains
to be written [10, 11, 26], and our history is not intended to
be comprehensive. Rather, our goal is to equip students to
understand software by understanding why earlier program-
mers adopted certain principles to create that software.

A software engineering principle is any principle that pro-
grammers follow to write software (e.g., separation of con-
cerns, modularity, abstraction). Programmers found two
features especially important in developing these principles.
First, accepted principles should lead to correct behavior in
programs. Second, the principles should lead to programs in
which the behavior can be easily understood. These two fac-
tors were famously explained by Edsger Dijkstra in his 1968
letter “Go To Statement Considered Harmful” [15]. While
focusing on a specific programming language feature, Dijk-
stra made the broader point that programs should be written
to mirror the way in which human programmers understand
software. In this view, software engineering principles should
lead to software that can be intuitively read and understood.

Software engineering principles are often controversial be-
cause of debate over how programmers read and understand
software. Early computer scientists turned to different cog-
nitive models to explain how programs are understood [37],
notably with different evidence on whether program com-
prehension is primarily an inductive or deductive thought
process. The Logo programming language, released in the
1960s, was partially inspired by Jean Piaget’s studies of in-
ductive learning processes in children [30]. The argument
was that, according to Piaget, humans learn by connect-
ing their actions to concrete, real-world outcomes; there-
fore, programs should operate by executing simple actions
on well-defined program units. Logo illustrated this idea
for children’s learning: an onscreen “turtle” moved based on
easy-to-understand actions such as “forward.” Studies have
shown limits to this inductive learning technique [22], and
the ideas behind the technique remain controversial.

The debate on programmer understanding persisted in
the debate on object-oriented programming in part because,
from the 1970s on, programmers were less and less con-
strained by hardware. Smalltalk, release in 1972 [25], epit-
omized the idea of connecting well-defined actions and pro-
gram units. All values in Smalltalk are “objects.” Program-
mers define these objects and the actions they perform. The
structure of the program is modeled as the interaction be-
tween these different objects. Historically speaking, what
is significant about this object-oriented design is that it
has become a methodology for creating programs distinct

from procedural techniques, with separate theories to de-
scribe object-oriented program behavior [1]. In other words,
object-oriented designs represent a different strategy for un-
derstanding software, requiring different mental models [14].
Indeed, the arguments for object-oriented designs center on
the benefits of objects in design recovery [6], while argu-
ments against these designs claim that objects obscure the
procedural control flow of the program [31].

Software engineering principles became more established,
and by the 1990s researchers had invented metrics to mea-
sure how well a program adhered to these principles. These
metrics came to be known as “software quality” metrics [20].
Software quality metrics such as cohesion, coupling, and cy-
clomatic complexity reward code that is modular or func-
tions that are short and simple [20]. In general, the assump-
tion behind these metrics is that programs that score well
on these metrics are easier to understand, and therefore will
contain fewer bugs. But this assumption is controversial,
partially because since the early 1990s metrics are often as-
sociated exclusively with object-oriented designs [12], and
partially because empirical evidence does not strongly sup-
port or refute metrics [18]. At the same time, design patterns
in object-oriented software were proposed as strategies for
understanding and reusing solutions to common program-
ming problems [16]. Design patterns rely on software engi-
neering principles being widely-accepted, and are therefore
controversial for the same reasons as quality metrics.

Debate over program understanding also affects software
development processes. The Agile development process was
proposed in 2001 as a process that more-closely matched
programmer comprehension of software than previous plan-
driven processes [13]. In the view of Agile developers, pro-
grammers understand software largely by communicating
with other programmers [33], and therefore the development
process should reflect this communication. As a result, Agile
methods remain a subject of intense debate.

S. CLASSROOM EXPERIENCES

In this section, we reflect on our classroom experiences
and present recommendations for implementing our course
design. At the time of writing, the course has completed
eight of 14 weeks. The students have largely responded
well to the historical perspectives discussed via the debates.
However, we have also found that the students were unac-
customed to debating concepts “in a science class”, as one
student mentioned, and hesitated to present opinions. Our
strategy for encouraging the students has been to present ar-
guments from academic literature supporting and refuting
different topics. We have also found that the students re-
spond much more strongly when the instructor assigns each
student a side to debate for a topic, rather than allowing stu-
dents to choose. The students were not required to defend
a personal opinion, but instead the opinion of established
researchers or practitioners.

Grading was another area of confusion for some students.
As the large group project is semester-long and involves all
students, the instructor assigns a project grade at the end
of the class based on each student’s individual performance.
There is a risk that this grade will seem arbitrary or un-
expected. Our approach to limiting this risk has been to
provide biweekly status reports to each student. These re-
ports describe areas of strength for each student and spe-
cific feedback on how to improve. Each report also includes



a non-binding letter grade representing what grade the stu-
dent would receive, if the semester were complete now.

We have had to accept a flexible schedule in the course.
For the large project, the class is implementing a multiplayer
3D game. The students must coordinate different program-
ming challenges, such as networking and GL graphics, while
practicing concepts discussed in class. For example, the stu-
dents would practice writing design patterns to solve a prob-
lem in the project. Meanwhile some students may slow the
entire group if he or she does not complete an expected
section. As a result, the project schedule is not entirely pre-
dictable. We may debate design patterns on schedule, but
practice implementing much later. We have found that the
biweekly reports are an invaluable tool for communicating
the instructor’s expectations to the students, and to reduce
anxiety of scheduling conflicts.

Our perception has been that the students have become
more able to recognize the value of the software engineering
concepts taught in our course. One observation has been
that the students have asked increasingly insightful ques-
tions during job interviews. Seven of the 13 students have,
on their own initiative, met with the instructor to discuss
upcoming and past interviews. The students reported asking
key questions such as why the company chose an Agile devel-
opment process, or how the company evaluates source code
quality. The students report feeling comfortable conversing
with interviewers about advanced software engineering top-
ics. Some students directly credited the historical context we
provided with this increased confidence and understanding.

Our view is that the historical context will ultimately ben-
efit the students in understanding large programs. We have
three strategies to evaluate our view. In the short term, we
will conduct individual interviews with students and grade
each student based on their ability to answer questions about
how a hypothetical large program should be designed (see
Section 3.2.4). Also, we will grade case study projects in
which students must understand and alter a large program.
If our view is correct, in the case study projects we would
expect to see the students achieve higher grades with less
reported effort compared to classes where our historical per-
spective is not explained. In the long term, we will conduct
workplace surveys after our students enter industry, to com-
pare the difficulties they report to existing studies of new
programmers (e.g., [9, 5]).

6. CONCLUSION

We have argued that software engineering curricula should
include the history of software engineering principles in or-
der to promote student understanding of large software pro-
grams. We have pointed to a need in industry for im-
proved education of program comprehension, and have pre-
sented the design of a class that targets this need by helping
students understand the rationale behind software design
through historical context. We presented an overview of
this history to guide other educators, and reflected on our
classroom experiences with our course.
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