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ABSTRACT

Different studies show that programmers are more interested in
finding definitions of functions and their uses than variables, state-
ments, or arbitrary code fragments [30, 29, 31]. Therefore, pro-
grammers require support in finding relevant functions and deter-
mining how those functions are used. Unfortunately, existing code
search engines do not provide enough of this support to developers,
thus reducing the effectiveness of code reuse.

We provide this support to programmers in a code search sys-
tem called Portfolio that retrieves and visualizes relevant functions
and their usages. We have built Portfolio using a combination of
models that address surfing behavior of programmer and sharing
related concepts among functions. We conducted an experiment
with 49 professional programmers to compare Portfolio to Google
Code Search and Koders using a standard methodology. The re-
sults show with strong statistical significance that users find more
relevant functions with higher precision with Portfolio than with
Google Code Search and Koders.

Categories and Subject Descriptors

D.2.9 [Software Engineering, Management]: Productivity; D.2.m
[Software Engineering, Miscellaneous]: Reusable software

General Terms

Algorithms, Experimentation

Keywords

Code search, portfolio, pagerank, function call graph, ranking.

1. INTRODUCTION
Different studies show that programmers are more interested in

finding definitions of functions and their uses than variables, state-
ments, or arbitrary fragments of source code [31]. More specif-
ically, programmers use different tools including code search en-
gines to answer three types of questions [30, 29]. First, program-
mers want to find initial focus points such as relevant functions that
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implement high-level requirements. Second, programmers must
understand how a function is used in order to use it themselves.
Third, programmers must see the chain of function invocations in
order to understand how concepts are implemented in these func-
tions. It is important that source code search engines support pro-
grammers in finding answers to these questions.

In general, understanding code and determining how to use it, is
a manual and laborious process that takes anywhere from 50% to
80% of programmers’ time [5, 8]. Short code fragments that are
returned as results to user queries do not give enough background
or context to help programmers determine how to reuse these code
fragments, and programmers typically invest a significant intellec-
tual effort (i.e., they need to overcome a high cognitive distance
[17]) to understand how to reuse these code fragments. On the
other hand, if code fragments are retrieved as functions, it makes it
easier for developers to understand how to reuse these functions.

A majority of code search engines treat code as plain text where
all words have unknown semantics. However, applications con-
tain functional abstractions that provide a basic level of code reuse,
since programmer define functions once and call them from differ-
ent places in source code. The idea of using functional abstractions
to improve code search was proposed and implemented elsewhere
[3, 10, 23, 32]; however, these code search engines do not auto-
matically analyze how functions are used in the context of other
functions, despite the fact that understanding the chains of function
invocations is a key question that programmers ask. Unfortunately,
existing code search engines do little to ensure that they retrieve
code fragments in a broader context of relevant functions that in-
voke one another to accomplish certain tasks.

Our idea is that since programmers frequently ask various ques-
tions about functions, a code search engine should incorporate in-
formation about these functions that is used to answer the program-
mers’ questions. Browsing retrieved functions that are relevant to
queries means that programmers follow function calls and review
declarations, definitions, and uses of these functions to combine
them in a solution to a given task. That is, programmers want to
accomplish the whole task quickly, rather than obtain multiple ex-
amples for different components of the task.

For example, consider the query “mip map dithering

texture image graphics,” which we use as an example
query throughout this paper. Programmers don’t want to just see
examples that implement mip map techniques, and others that ren-
der texture, and others that manipulate graphic images. A program-
mer wants to accomplish the complete task of dithering mip map
images that accompany a texture. However, among relevant re-
sults there are functions that implement mipmapping, functions that
manipulate texture, and there are multiple functions that deal with
graphic images. Typically, programmers investigate these functions



to determine which of them are relevant and determine how to com-
pose these functions to achieve the goal that is expressed with the
query. That is, a programmer wants to see code for the whole task
of how to mip map images that accompany a texture in computer
graphics. A search engine can support programmers efficiently if
it incorporates in its ranking how these functions call one another,
and displays that information to the user.

We created a code search system called Portfolio that supports
programmers in finding relevant functions that implement high-
level requirements reflected in query terms (i.e., finding initial fo-
cus points), determining how these functions are used in a way
that is highly relevant to the query (i.e., building on found focus
points), and visualizing dependencies of the retrieved functions to
show their usages. Portfolio finds highly relevant functions in close
to 270 Millions LOC in projects from FreeBSD Ports1 by combin-
ing various natural language processing (NLP) and indexing tech-
niques with PageRank and spreading activation network (SAN) al-
gorithms. With NLP and indexing techniques, initial focus points
are found that match key words from queries; with PageRank, we
model the surfing behavior of programmers, and with SAN we el-
evate highly relevant chains of function calls to the top of search
results. We have built Portfolio and conducted an experiment with
49 professional C++ programmers to evaluate Portfolio and com-
pare it with the well-known and successful engines Google Code
Search and Koders. The results show with strong statistical sig-
nificance that users find more relevant code with higher precision
with Portfolio than those with Google Code Search and Koders.
To the best of our knowledge, we are not aware of any existing
code search engines that have been evaluated against and shown
to be more accurate than widely used commercial code search en-
gines, with strong statistical significance and over a large codebase
and using a standard information retrieval methodology [22, pages
151-153]. Portfolio is free and available for public use2.

2. THE MODEL
The search model of Portfolio uses a key abstraction in which

the search space is represented as a directed graph with nodes as
functions and directed edges between nodes that specify usages of
these functions (i.e., a call graph). For example, if the function g is
invoked in the function f, then a directed edge exists from the node
that represents the function f to the node that represents the func-
tion g. Since the main goal of Portfolio is to enable programmers
to find relevant functions and their usages, we need models that ef-
fectively represent the behavior of programmers when navigating a
large graph of functional dependencies. These are navigation and
association models that address surfing behavior of programmers
and associations of terms in functions in the search graph.

2.1 Navigation Model
When using text search engines, users navigate among pages by

following links contained in those pages. Similarly, in Portfolio,
programmers can navigate between functions by following edges
in the directed graph of functional dependencies using Portfolio’s
visual interface. To model the navigation behavior of programmers,
we adopt the model of the random surfer that is used in popular
search engines such as Google. Following functional dependencies
helps programmers to understand how to use found functions. The
surfer model is called random because the surfer can “jump” to a
new URL, or in case of source code, to a new function. These
random jumps are called teleportations, and this navigation model
is the basis for the popular ranking algorithm PageRank [2, 19].

1http://www.freebsd.org/ports
2http://www.searchportfolio.net

Figure 1: Example of associations between different functions.

In the random surfer model, the content of functions and queries
does not matter, navigations are guided only by edges in the graph
that specifies functional dependencies. Accordingly, PageRank re-
flects only the surfing behavior of users, and this rank is based on
the popularity of a function that is determined by how many func-
tions call it. However, the surfing model is query independent since
it ignores terms that are used in search queries. Taking into con-
sideration query terms may improve the precision of code search-
ing. That is, if different functions share concepts that are related to

query terms and these functions are connected using functional de-

pendencies, then these functions should be ranked higher. We need
a search model that should automatically make embedded concepts
explicit by using associations between functions that share related
concepts, and then we combine this model with the surfing model
in Portfolio.

2.2 Association Model
The main idea of an association model is to establish relevance

among facts whose content does not contain terms that match user
queries directly. Consider the query “mipmap dithering

texture image graphics.” Among relevant results there
are functions that implement mip map techniques, and others that
render texture, and there are multiple functions that manipulate
graphic images. This situation is schematically shown in Figure 1,
where the function F contains the term mip map, the function G

contains the term dithering, the function P contains the terms
graphics and image, and the term texture is contained in
the function Q. Function F calls the function G, which in turn calls
the function H, which is also called from the function Q, which is in
turn called from the function P. The functions F, P, and Q will be
returned by a search engine that is based on matching query terms
to those that are contained in documents. Meanwhile, the func-
tion H may be highly relevant to the query but it is not retrieved
since it has no words that match the search terms. In addition, the
function G can be called from many other functions since its dither-
ing functionality is generic; however, its usage is most valuable for
programmers in the context of the function that is related to query
terms. A problem is how to ensure that the functions H and G end
up on the list of highly relevant functions.

To remedy this situation we use an association model that is
based on a Spreading Activation Network (SAN) [4, 6]. In SANs,
nodes represent documents, while edges specify properties that
connect these documents. The edges’ direction and weight reflect
the meaning and strength of associations among documents. For
example, an article about clean energy and a different article about
the melting polar ice cap are connected with an edge that is labeled
with the common property “climate change.” Once applied to SAN,
spreading activation computes new weights for nodes (i.e., ranks)
that reflect implicit associations in the networks of these nodes.

In Portfolio, we view function call graphs as SANs where nodes
represent functions, edges represent functional dependencies, and
weights represent a strength of associations, which includes the
number of shared terms. After the user enters a query, a list of
functions is retrieved and sorted based on the score that reflects the



Figure 2: Portfolio architecture.

match between query terms and terms in functions. Once Portfolio
identifies top matching functions, it computes SAN to propagate
concepts from these functions to others. The result is that every
function will have a new score that reflects the associations between
concepts in these functions and user queries.

2.3 The Combined Model
The ranking vectors for PageRank ‖π‖PR and spreading activa-

tion ‖π‖SAN are computed separately and later are linearly com-
bined in a single ranking vector ‖π‖C = f (‖π‖PR,‖π‖SAN). PageR-
ank is query independent and is precomputed automatically for a
function call graph, while ‖π‖SAN is computed automatically in re-
sponse to user queries. Assigning different weights in the linear
combination of these rankings enables fine-tuning of Portfolio by
specifying how each model contributes to the resulting score.

3. OUR APPROACH
In this section we describe the architecture of Portfolio and show

how to use Portfolio.

3.1 Portfolio Architecture
The architecture for Portfolio is shown in Figure 2. The main

elements of the Portfolio architecture are the database holding soft-
ware applications (i.e., the Projects Archive), the Metadata Builder,
the Function Graph Builder, the SAN and PageRank algorithms,
the Visualizer and the key word search engine. Applications meta-
data describes functions that are declared, defined and invoked in
the applications and words that are contained in the source code
of these functions and comments. Portfolio is built on an internal,
extensible database of 18,203 C/C++ projects that contain close to
2.3Mil files with close to 8.6Mil functions that contain 2,496,172
indexed words. Portfolio indexes and searches close to 270Mil
LOC in these C/C++ projects that are extracted from FreeBSD’s
source code repository called ports3. It is easy to extend Portfolio
by adding new projects to the Projects Archive. The user input to
Portfolio is shown in Figure 2 with the arrow labeled (7). The
output is shown with the arrow labeled (18).

Portfolio works as follows. The input to the system is the set of
applications from the Projects Archive that contain various func-
tions (1). The Function Graph Builder analyzes the source code
of these applications statically and it outputs (2) the function call

graph (FCG) that contains functional dependencies. This opera-
tion is imprecise since resolving dynamic dispatch calls and func-
tion pointers statically is an undecidable problem [18]. Since this

3http://www.freebsd.org/ports - last checked August 17,2010.

is done offline, precise program analysis can be accommodated in
this framework to achieve better results in obtaining correct func-
tional dependencies. We conduct the sensitivity analysis of Portfo-
lio and its constituent algorithms in Section 5.7.1. Next, the algo-
rithm PageRank is run (3) on the FCG, and it computes (4) the
rank vector, ‖π‖PR, in which every element is a ranking score for
each function in the FCG.

The Metadata Builder reads in (5) the source code of applica-
tions, applies NLP techniques such as stemming and identifier split-
ting, and indexes the source code as text resulting (6) in Projects
Metadata. When the user enters a query (7), it is passed to the
key word search component along with the Projects Metadata (8).
The key word search engine searches the metadata using the words
in the query as keys and outputs (9) the set of Relevant Functions
whose source code and comments contain words that match the
words from the query. These relevant functions (10) along with
the FCG (11) serve as an input to the algorithm SAN. The algo-
rithm SAN computes (12) spreading activation vector of scores
‖π‖SAN for functions that are associated with the relevant func-
tions (10). Ranking vectors ‖π‖PR (14) and ‖π‖SAN (13) are
combined into the resulting vector ‖π‖ (15) that contains ranking
scores for all relevant functions. The Visualizer takes (16) the list
of relevant functions that are sorted in descending order using their
ranking scores and (17) the metadata, in order to present (18)
the resulting visual map to the user as it is shown in Figure 3.

3.2 Portfolio Visual Interface
After the user submits a search query, the Portfolio search en-

gine presents functions relevant to the query in a browser window
as it is shown in Figure 3. The left side contains the ranked list of
retrieved functions and project names, while the right side contains
a static call graph that contains these and other functions. Edges
of this graph indicate the directions of function invocations. Hov-
ering a cursor over a function on the list shows a label over the
corresponding function on the call graph. Font sizes reflect the
combined ranking; the higher the ranking of the function, the big-
ger the font size used to show it on the graph. Clicking on the label
of a function loads its source code in a separate browser window.

4. RANKING
In this section we discuss our ranking algorithm.

4.1 Components of Ranking
There are three components that compute different scores in the

Portfolio ranking mechanism: a component that computes a score
based on word occurrences (WOS), a component that computes a
score based on the random surfer navigation model (PageRank)
described in Section 2.1, and a component that computes a score
based on SAN connections between these calls based on the asso-
ciation model described in Section 2.2. WOS ranking is used to
bootstrap SAN by providing rankings to functions based on query
terms. The total ranking score is the weighted sum of the PageR-
ank and SAN ranking scores. Each component produces results
from different perspectives (i.e., word matches, navigation, associ-
ations). Our goal is to produce a unified ranking by putting these
orthogonal, yet complementary rankings together in a single score.

4.2 WOS Ranking
The purpose of WOS is to enable Portfolio to retrieve functions

based on matches between words in queries and words in the source
code of applications. This is a bootstraping ranking procedure that
serves as the input to the SAN algorithm.



Figure 3: A visual interface of Portfolio. The left side contains a list of ranked retrieved functions for the motivating example query and the

right side contains a call graph that contains these functions; edges of this graph indicate the directions of function invocations. Hovering a cursor

over a function on the list shows a label over the corresponding function on the call graph. Font sizes reflect the score; the higher the score of the

function, the bigger the font size used to show it on the graph. Clicking on the label of a function loads its source code in a separate browser window.

The WOS component uses the Vector Space Model (VSM), which
is a ranking function typically used by search engines to rank match-
ing documents according to their relevance to a given search query.
This function is implemented in the Lucene Java Framework which
is used in Portfolio. VSM is a standard bag-of-words retrieval func-
tion that ranks a set of documents based on the relative proximity
of query terms (e.g., without dependencies) appearing in each doc-
ument. Each document is modeled as a vector of terms contained
in that document. The weights of those terms in each document are
calculated using the Term Frequency/Inverse Document Frequency

(TF/IDF) formula. Using TF/IDF, the weight for a term is calcu-
lated as t f = n

∑k nk
where n is the number of occurrences of the term

in the document, and ∑k nk is the sum of the number of occurences
of the term in all documents. Then the similarities among the docu-
ments are calculated using the cosine distance between each pair of

documents cos(θ) = d1·d2

‖d1‖‖d2‖
where d1 and d2 are document vec-

tors.

4.3 PageRank
PageRank is widely described in literature, so here we give its

concise mathematical explanation as it is related to Portfolio [2,
19]. The original formula for PageRank of a function Fi, denoted
r(Fi), is the sum of the PageRanks of all functions that invoke Fi:

r(Fi) = ∑Fj∈BFi

r(Fj)
|Fj |

, where BFi
is the set of functions that invoke

Fi and |Fj| is the number of functions that the function Fj invokes.
This formula is applied iteratively starting with r0(Fi) = 1/n, where
n is the number of functions. The process is repeated until PageR-
ank converges to some stable values or it is terminated after some
number of steps. Functions that are called from many other func-
tions have a significantly higher score than those that are used in-
frequently or not at all.

4.4 Spreading Activation
Spreading activation computes weights for nodes in two steps:

pulses and termination checks. Initially, a set of starting nodes is
selected using a number of top ranked functions using the WOS
ranking. During pulses, new weights for different nodes are tran-
sitively computed from the starting nodes using the formula N j =
Σi f (Niwi j), where the weight of the node N j is equal to the sum
of all nodes Ni that are incident to the node N j with edges whose
weights are wi j. This edge weight serves to give a reduced value
to nodes further away from the initial nodes. Therefore, the weight
is a value between 0 and 1. The function f is typically called the
threshold function that returns nonzero value only if the value of
the argument is greater than some chosen threshold, which acts as
a termination check preventing “flooding” of the SAN.

4.5 Example of SAN Computation
Consider an example of SAN computation that is shown in Fig-

ure 4. This example is closely related to the motivating example
query “mip map dithering texture image graphics.”
The first ranking component, WOS, assigned the weights 0.65 and
0.52 to the two functions TiledTexture and ImageTexture
correspondingly. We label these functions with 1©. All weights
are to the right (rounded off to the second digit). Their subscripts
indicate the order in which weights are computed from the first
function weights. For example, the weight is computed for the
function CreateTextureFromImageby multiplying the WOS
weight for the function TiledTexture by the SAN edge weight
0.8. Several functions (e.g., load, initRendered) get different
weights by following different propagation paths from the initial
function nodes. In these cases, we use the highest value for each
node; the final value assigned to initRenderer is 0.27.

4.6 Combined Ranking
The combined rank is S = λPR‖π‖PR +λSAN‖π‖SAN , where λ is

the interpolation weight for each type of the score. These weights



Figure 4: Example of SAN weight computation, wi j = 0.8.

are determined independently of queries unlike the scores WOS
and SAN, which are query-dependent. Adjusting these weights en-
ables experimentation with how underlying structural and textual
information in application affects resulting ranking scores. Exper-
imentation with PageRank involves changing the teleportation pa-
rameter that we briefly discussed in Section 2.1.

5. EXPERIMENTAL DESIGN
Typically, search engines are evaluated using manual relevance

judgments by experts [22, pages 151-153]. To determine how ef-
fective Portfolio is, we conducted an experiment with 49 partici-
pants who are C/C++ programmers. Our goal was to evaluate how
well these participants could find code fragments or functions that
matched given tasks using three different search engines: Google
Code Search (or simply, Google)4, Koders5 and Portfolio6. We
chose to compare Portfolio with Google and Koders because they
are popular search engines with the large open source code reposi-
tories, and these engines are used by tens of thousands of program-
mers every day.

5.1 Methodology
We used a cross validation experimental design in a cohort of 49

participants who were randomly divided into three groups. The ex-
periment was sectioned in three experiments in which each group
was given a different search engine (i.e., Google, Koders, or Port-
folio) to find code fragments or functions for given tasks. Each
group used a different task in each experiment. The same task was
performed by different participants on different engines in each ex-
periment. Before the experiment we gave a one-hour tutorial on
using these search engines.

In the course of each experiment, participants translated tasks
into a sequence of keywords that described key concepts they needed
to find. Once participants obtained lists of code fragments or func-
tions that were ranked in descending order, they examined these
functions to determine if they matched the tasks. Each participant
accomplished this step individually, assigning a confidence level,

4http://www.google.com/codesearch
5http://www.koders.com
6http://www.searchportfolio.net

C, to the examined code fragments or functions using a four-level
Likert scale. We asked participants to examine only the top ten
code fragments that resulted from their searches since the time for
each experiment was limited to two hours.

The guidelines for assigning confidence levels are the following.

1. Completely irrelevant - there is absolutely nothing that the
participant can use from this retrieved code fragments, noth-
ing in it is related to keywords that the participant chose
based on the descriptions of the tasks.

2. Mostly irrelevant - a retrieved code fragment is only remotely
relevant to a given task; it is unclear how to reuse it.

3. Mostly relevant - a retrieved code fragment is relevant to a
given task and participant can understand with some modest
effort how to reuse it to solve a given task.

4. Highly relevant - the participant is highly confident that code
fragment can be reused and s/he clearly see how to use it.

Forty four participants are Accenture employees who work on
consulting engagements as professional programmers for differ-
ent client companies. Five participants are graduate students from
the University of Illinois at Chicago who have at least six months
of C/C++ experience. Accenture participants have different back-
grounds, experience, and belong to different groups of the total Ac-
centure workforce of approximately 211,000 employees. Out of 49
participants, 16 had programming experience with C/C++ ranging
from six months to two years, and 18 participants reported more
than three years of experience writing programs in C++. Ten par-
ticipants reported prior experience with Google Code Search and
three participants with Koders (which are used in this experiment
thus introducing a bias toward these code search engines), nine par-
ticipants reported frequent use of code search engines, and 16 said
that they never used code search engines. All participants have
bachelor degrees and 28 have master degrees in different technical
disciplines.

5.2 Precision
Two main measures for evaluating the effectiveness of retrieval

are precision and recall [36, page 188-191]. The precision is cal-
culated as Pr = # of retrieved functions that are relevant

total # of retrieved functions
,

i.e., the precision of a ranking method is the fraction of the top r

ranked documents that are relevant to the query, where r = 10 in
this experiment. Relevant code fragments or functions are counted
only if they are ranked with the confidence levels 4 or 3. The pre-
cision metrics reflects the accuracy of the search. Since we limit
the investigation of the retrieved code fragments or functions to top
ten, the recall is not measured in this experiment.

We created the variable precision, P as a categorization of the re-
sponse variable confidence, C. We did it for two reasons: improve
discrimination of subjects in the resulting data and additionally val-
idate statistical evaluation of results. Precision, P imposes a stricter
boundary on what is considered reusable code. For example, con-
sider a situation where one participant assigns the level two to all
returned functions, and another participant assigns level three to
half of these functions and level one to the other half. Even though
the average of C = 2 in both cases, the second participant reports
much higher precision, P = 0.5 while the precision that is reported
by the first participant is zero. Achieving statistical significance
with a stricter discriminative response variable will give assurance
that the result is not accidental.



(a) Confidence level, C. (b) Precision, P.

Figure 5: Statistical summary of the results of the experiment for C and P.The central box represents the values from the lower to upper

quartile (25 to 75 percentile). The middle line represents the median. The thicker vertical line extends from the minimum to the maximum value.

The filled-out box represents the values from the minimum to the mean, and the thinner vertical line extends from the quarter below the mean to

the quarter above the mean. An outside value is defined as a value that is smaller than the lower quartile minus 1.5 times the interquartile range, or

larger than the upper quartile plus 1.5 times the interquartile range (inner fences). A far out value is defined as a value that is smaller than the lower

quartile minus three times the interquartile range, or larger than the upper quartile plus three times the interquartile range (outer fences).

5.3 Variables
The main independent variable is the search engine (Portfolio,

Google Code Search, and Koders) that participants use to find rel-
evant C/C++ code fragments and functions. The other independent
variable is participants’ C++ experience. Dependent variables are
the values of confidence level, C, and precision, P. We report these
variables in this section. The effects of other variables (task de-
scription length, prior knowledge) are minimized by the design of
this experiment.

5.4 Hypotheses
We introduce the following null and alternative hypotheses to

evaluate how close the means are for the Cs and Ps for control and
treatment groups. Unless we specify otherwise, participants of the
treatment group use Portfolio, and participants of the control group
use either Google or Koders. We seek to evaluate the following
hypotheses at a 0.05 level of significance.

H0 The primary null hypothesis is that there is no difference in
the values of confidence level and precision per task between
participants who use Portfolio, Google, and Koders.

H1 An alternative hypothesis to H0 is that there is statistically sig-
nificant difference in the values of confidence and precision
between participants who use Portfolio, Google, and Koders.

Once we test the null hypothesis H0, we are interested in the
directionality of means, µ, of the results of control and treatment
groups. We are interested to compare the effectiveness of Portfolio
versus Google Code Search and Koders with respect to the values
of confidence level, C, and precision, P.

H1 (C of Portfolio versus Google) The effective null hypothesis
is that µPort

C = µG
C , while the true null hypothesis is that µPort

C ≤

µP
C . Conversely, the alternative hypothesis is µPort

C > µG
C .

H2(P of Portfolio versus Google) The effective null hypothesis is
that µPort

P = µG
P , while the true null hypothesis is that µPort

P ≤

µG
P . Conversely, the alternative hypothesis is µPort

P > µG
P .

H3 (C of Portfolio versus Koders) The effective null hypothesis
is that µPort

C = µK
C , while the true null hypothesis is that µPort

C ≤

µK
C . Conversely, the alternative is µPort

C > µK
C .

H4(P of Portfolio versus Koders) The effective null hypothesis is
that µPort

P = µK
P , while the true null hypothesis is that µPort

P ≥

µK
P . Conversely, the alternative is µPort

P < µK
P .

The rationale behind the alternative hypotheses to H1–H4 is that
Portfolio allows users to quickly understand how queries are related
to retrieved functions. These alternative hypotheses are motivated
by our belief that if users see visualization of functional depen-
dencies in addition to functions whose ranks are computed higher
using our ranking algorithm, they can make better decisions about
how closely retrieved functions match given tasks.

5.5 Task Design
We designed 15 tasks for participants to work on during experi-

ments in a way that these tasks belong to domains that are easy to
understand, and they have similar complexity. The authors of this
paper visited various programming forums and internet groups to
extract descriptions of tasks from the questions that programmers
asked. In addition, we interviewed several programmers at Accen-
ture who explained what tasks they worked on in the past year.
Additional criteria for these tasks is that they should represent real-
world programming tasks and should not be biased towards any of
the search engines that are used in this experiment. These tasks and
the results of the experiment are available for download7 .

7http://www.searchportfolio.net, follow the Experiment link.



H Var Approach Samples Min Max Median µ StdDev σ2 DF PCC p T Tcrit

H1 C
Portfolio 1276 1 4 3 2.86 1.07 1.15

1372 0.04 4.2 ·10−108 24 1.96
Google 1373 1 4 2 1.97 1.11 1.23

H2 P
Portfolio 184 0 1 0.7 0.65 0.28 0.08

197 0.12 3 ·10−22 10.9 1.97
Google 198 0 1 0.25 0.35 0.33 0.11

H3 C
Portfolio 1276 1 4 3 2.86 1.07 1.15

1485 0.06 1.1 ·10−26 10.9 1.96
Koders 1486 1 4 2 2.45 1.12 1.25

H4 P
Portfolio 184 0 1 0.7 0.65 0.28 0.8

207 0.041 3 ·10−8 5.76 1.97
Koders 208 0 1 0.5 0.49 0.3 0.09

Table 1: Results of t-tests of hypotheses, H, for paired two sample for means for two-tail distribution, for dependent variable specified in the

column Var (either C or P) whose measurements are reported in the following columns. Extremal values, Median, Means, µ, standard deviation,

StdDev, variance, σ2, degrees of freedom, DF, and the pearson correlation coefficient, PCC, are reported along with the results of the evaluation of

the hypotheses, i.e., statistical significance, p, and the T statistics.

5.6 Tasks
The following three tasks are examples from the set of 15 tasks

we used in our experiment.

• Implement a module for reading and playing midi files8.

• Implement a module that adjusts different parameters of a
picture, including brightness, contrast and white balance9.

• Build a program for managing USB devices. The program
should implement routines such as opening, closing, writing
and reading from an USB device10.

5.7 Threats to Validity
In this section, we discuss threats to the validity of this experi-

ment and how we address these threats.

5.7.1 Internal Validity

Internal validity refers to the degree of validity of statements
about cause-effect inferences. In the context of our experiment,
threats to internal validity come from confounding the effects of
differences among participants, tasks, and time pressure.

Participants. Since evaluating hypotheses is based on the data
collected from participants, we identify two threats to internal va-
lidity: C++ proficiency and motivation of participants.

Even though we selected participants who have working knowl-
edge of C++ as it was documented by human resources, we did not
conduct an independent assessment of how proficient these partici-
pants are in C++. This threat is mitigated by the fact that out of 44
participants from Accenture, 31 have worked on successful com-
mercial projects as C++ programmers for more than two years.

The other threat to validity is that not all participants could be
motivated sufficiently to evaluate retrieved code fragments or func-
tions. We addressed this threat by asking participants to explain in
a couple of sentences why they chose to assign certain confidence
level to retrieved, and we discarded 27 results for all search engines
that were not properly explained.

Time pressure. Each experiment lasted for two hours. For some
participants, this was not enough time to explore all 50 retrieved
code fragments for five tasks (ten results for each of five tasks).
Therefore, one threat to validity is that some participants could try
to accomplish more tasks by shallowly evaluating retrieved code

8http://www.codeproject.com/Messages/1427393/How-Can-I-
Read-Midi-File.aspx
9http://www.codeguru.com/forum/showthread.php?t=432339

10http://www.cplusplus.com/forum/general/25172/

fragments and functions. To counter this threat we notified par-
ticipants that their results would be discarded if we did not see
sufficient reported evidence of why they evaluated retrieved code
fragments and functions with certain confidence levels.

Sensitivity of Portfolio. Recovering functional dependencies
automatically introduces imprecision, since it is an undecidable
problem to recover precise functional dependencies in the presence
of dynamic dispatch and functional pointers [18]. Since the preci-
sion of Portfolio depends on the quality of recovered functional de-
pendencies, we conducted an evaluation of these recovered depen-
dencies with twelve graduate computer science students at DePaul
university. We randomly selected a representative sample of 25 dif-
ferent projects in Portfolio and we asked these students to manually
inspect source code of these projects to determine the precision of
FCG computed in Portfolio.

The results of this evaluation show that the precision of recov-
ered functional dependencies is approximately 76%. While the pre-
cision appears to be somewhat lower than desired, it is known that
Pagerank is resilient to incorrect links. Link farms, for example,
are web spam where people create fake web sites that link to one
another in an attempt to skew the PageRank vector. It is estimated
that close to 20% of all links on the Internet are spam [11, 28, 1].
However, it is shown that the PageRank vector is not affected sig-
nificantly by these spam links since its sensitivity is controlled by
different factors, one of which is teleportation parameter [9]. To
evaluate the effect of incorrect links on Pagerank vector we con-
ducted experiments where we randomly modified 25% and 50% of
links between functions. Our results show that the metric length
of the Pagerank vector (computed as the square root of the sum of
squares of its components) changes only by approximately 7% for
50% of perturbed functional dependencies. A brief explanation is
that by adding or removing a couple of links to functions that are
either well-connected or not connected at all, their Pagerank score
is not strongly affected. Investigating the sensitivity of Portfolio as
well as improving recovery of functional dependencies is the sub-
ject of future work.

5.7.2 External Validity

To make the results of this experiment generalizable, we must
address threats to external validity, which refer to the generaliz-
ability of a casual relationship beyond the circumstances of our ex-
periment. The fact that supports the validity of this experimental
design is that the participants are highly representative of profes-
sional C/C++ programmers. However, a threat to external validity
concerns the usage of search tools in the industrial settings, where
requirements are updated on a regular basis. Programmers use



C/C++ Cs - Level 1 Cs - Level 2 Cs - Level 3 Cs - Level 4
Total

Experts Google Koders Portf Google Koders Portf Google Koders Portf Google Koders Portf

Yes 450 269 130 178 252 185 189 272 229 139 247 339 2,879
No 222 131 56 79 101 92 65 108 106 49 98 135 1,242

Total 672 400 186 257 353 277 254 380 335 188 345 474 4,121

Table 2: The numbers of the different levels of confidence, C for participants with and without expert C/C++ experience.

these updated requirements to refine their queries and locate rele-
vant code fragments or functions using multiple iterations of work-
ing with search engines. We addressed this threat only partially, by
allowing programmers to refine their queries multiple times.

In addition, participants performed multiple searches using dif-
ferent combinations of keywords, and they select certain retrieved
code fragments or functions from each of the search results. We
believe that the results produced by asking participants to decide
on keywords and then perform a single search and rank code frag-
ments and functions do not deviate significantly from the situation
where searches using multiple (refined) queries are performed.

Another threat to external validity comes from different sizes of
software repositories. Koders.com claims to search more than 3
Billion LOC, which is also close to the number of LOC reported
by Google Code Search. Even though we populated Portfolio’s
repository with close to 270 Mil LOC, it still remains a threat to
external validity.

6. RESULTS
In this section, we report the results of the experiment and evalu-

ate the hypotheses. We use one-way ANOVA, t-tests for paired two
sample for means, and χ2 to evaluate the hypotheses that we stated
in Section 5.4.

6.1 Testing the Null Hypothesis
We used ANOVA to evaluate the null hypothesis H0 that the

variation in an experiment is no greater than that due to normal
variation of individuals’ characteristics and error in their measure-
ment. The results of ANOVA confirm that there are large differ-
ences between the groups for C with F = 261.3 > Fcrit = 3 with
p ≈ 5 · 10−108 which is strongly statistically significant. The mean
C for the Google Code Search is 1.97 with the variance 1.14, which
is smaller than the mean C for Koders, 2.45 with the variance 1.26,
and it is smaller than the mean C for Portfolio, 2.86 with the vari-
ance 0.99. Also, the results of ANOVA confirm that there are large
differences between the groups for P with F = 52.5 > Fcrit = 3.01
with p ≈ 8.6 · 10−22 which is strongly statistically significant. The
mean P for the Google Code Search is 0.35 with the variance 0.1,
which is smaller than the mean P for Koders, 0.49 with the variance
0.09, and it is smaller than the mean P for Portfolio, 0.65 with the
variance 0.07. Based on these results we reject the null hypothesis
and we accept the alternative hypothesis H1.

A statistical summary of the results of the experiment for C and
T (median, quartiles, range and extreme values) is shown as box-
and-whisker plots in Figure 5(a) and Figure 5(b) correspondingly
with 95% confidence interval for the mean. Even though the num-
bers of sample sizes are slightly different since some users missed
one experiment, we replaced missing values with their averages.
Even though replacing missing data introduces an error, given ex-
tremely low values of p, this error is highly unlikely to affect our
results.

6.2 Comparing Portfolio with Google
To test the null hypothesis H1 and H2 we applied two t-tests for

two paired sample means, in this case C and P for participants who
used Google Code Search and Portfolio. The results of this test for
C and for P are shown in Table 1. The column Samples shows
different values that indicate that not all 49 participants participated
in all experiments (three different participants missed two different
experiments). Based on these results we reject the null hypotheses
H1 and H2 and we accept the alternative hypotheses that states that
participants who use Portfolio report higher relevance and pre-

cision on finding relevant functions than those who use Google

Code Search.

6.3 Comparing Portfolio with Koders
To test the null hypotheses H3 and H4, we applied two t-tests for

two paired sample means, in this case C and P for participants who
used Portfolio and Koders. The results of this test for C and for
P are shown in Table 1. Based on these results we reject the null
hypotheses H3 and H4 that say that participants who use Port-

folio report higher relevance and precision on finding relevant

functions than those who use Koders.

6.4 Experience Relationships
We construct contingency tables to establish a relationship be-

tween C for participants with (2+ years) and without (less than 2
years) expert C++ experience who use different search engines.
These tables are retrieved from the table that is shown in Table 2
that shows the numbers of the different levels of confidence, C for
participants with and without expert C/C++ experience. To test the
null hypotheses that the categorical variable C is independent from
the categorical variable Java experience, we apply three χ2-tests,
χ2

G, χ2
K , and χ2

P for the search engines Google, Koders, and Port-

folio respectively. We obtain χ2
G ≈ 6.7 for p < 0.09, χ2

K ≈ 2.6 for

p < 0.47, and χ2
P = 2.09 for p < 0.56. The insignificant values of

χ2 and large values of p > 0.05 allow us to accept these null hy-
potheses suggesting that there is no statistically strong relation-

ship between expert C++ programming experiences of partici-

pants and the values of reported Cs for the code search engines

Google Code Search, Koders, and Portfolio.

6.5 Usefulness of Visualization
Thirty three participants reported that the visualization of func-

tional dependencies in Portfolio is useful and helped them to evalu-
ate potential reuse of retrieved functions, while 12 respondents did
not find this visualization useful. Out these 33 participants who
found it useful, 27 had more than one year of C++ experience,
while out of these 12 participants who did not find this visualization
useful, only two had more than one year of C++ experience.

7. RELATED WORK
Different code mining techniques and tools have been proposed

to find relevant software components as it is shown in Table 3.



CodeFinder iteratively refines code repositories in order to improve
the precision of returned software components [12]. Unlike Portfo-
lio, CodeFinder heavily depends on the descriptions (often incom-
plete) of software components to use word matching, while Port-
folio uses Pagerank and SANs to help programmers navigate and
understand usages of retrieved functions.

Codebroker system uses source code and comments written by
programmers to query code repositories to find relevant artifacts
[37]. Unlike Portfolio, Codebroker is dependent upon the descrip-
tions of documents and meaningful names of program variables
and types, and this dependency often leads to lower precision of
returned projects.

Even though it returns code snippets rather than functions, Mica
is similar to Portfolio since it uses API calls from Java Develop-
ment Kit to guide code search [32]. However, Mica uses help doc-
umentation to refine the results of the search, while Portfolio auto-
matically retrieves functions from arbitrary code repositories and it
uses more sophisticated models to help programmers evaluate the
potential of code reuse faster and a with higher precision.

Exemplar, SNIFF, and Mica use documentation for API calls for
query expansion [10, 32, 3]. SNIFF then performs the intersec-
tion of types in these code chunks to retain the most relevant and
common part of the code chunks. SNIFF also ranks these pruned
chunks using the frequency of their occurrence in the indexed code
base. In contrast to SNIFF, Portfolio uses navigation and associa-
tion models that reflect behavior of programmers and improve the
precision of the search engine. In addition, Portfolio offers a visu-
alization of usages of functions that it retrieves automatically from
existing source code, thus avoiding the need for third-party docu-
mentation for API calls.

Web-mining techniques have been applied to graphs derived from
program artifacts before. Notably, Inoue et al. proposed Compo-
nent Rank[16] as a method to highlight the most-frequently used
classes by applying a variant of PageRank to a graph composed of
Java classes and an assortment of relations among them. Quality
of match (QOM) ranking measures the overall goodness of match
between two given components [33], which is different from Port-
folio in many respects, one of which is to retrieve functions based
on surfing behavior of programmers and associations between con-
cepts in these functions.

Gridle[24] also applies PageRank to a graph of Java classes. In
Portfolio, we apply PageRank to a graph with nodes as functions
and edges as call relationships among the functions. In addition,
we use spreading activation on the call graph to retrieve chains of
relevant function invocations, rather than single fragments of code.

Programming task-oriented tools like Prospector, Hipikat, Strath-
cona, and xSnippet assist programmers in writing complicated code
[21, 7, 14, 27]. However, their utilities are not applicable when
searching for relevant functions given a query containing high-level
concepts with no source code.

Robillard proposed an algorithm for calculating program ele-
ments of likely interest to a developer [26]. Portfolio is similar
to this algorithm in that it uses relations between functions in the
retrieved projects to compute the level of interest (ranking) of the
project, however, Robillard does not use models that reflect the
surfing behavior of programmers and association models that im-
prove the precision of search. We think there is a potential in ex-
ploring connections between Robillard’s approach and Portfolio.

S6 is a code search engine that uses a set of user-guided program
transformations to map high-level queries into a subset of relevant
code fragments [25], not necessarily functions. Like Portfolio, S6

uses query expansion, however, it requires additional low-level de-
tails from the user, such as data types of test cases.

Approach Granularity Search Result
Unit Usage Method

AMC [13] U N W T

CodeBroker [37] P,U Y W,Q T

CodeFinder [12] F,U Y W,Q T

CodeGenie [20] P N W T

Exemplar [10] A Y W,Q T

Google Code Search U N W T

Gridle [24] U N W T

Hipikat [7] P Y W,Q T

Koders U N W T

Krugle U N W T

MAPO [38] F N W,Q T

Mica [32] U,F Y W,Q T

ParseWeb [34] U,F N W,Q T

Portfolio F,P Y P,S,W G

Prospector [21] F N T T

S6 [25] F,P,U Y W,Q T

SNIFF [3] F,U Y T,W T

Sourceforge A N W T

Sourcerer [23] F,P,U Y P,W T

SPARS-J [15][16] F Y P T

SpotWeb [35] U N W T

Strathcona [14] F Y W T

xSnippet [27] F Y T,W T

Table 3: Comparison of Portfolio with other related ap-

proaches. Column Granularity specifies how search results are

returned by each approach (Projects, Functions, or Unstructured text),

and if the usage of these resulting code units is shown (Yes or No). The

column Search Method specifies the search algorithms or techniques

that are used in the code search engine, i.e., Pagerank, Spreading ac-

tivation, simple Word matching, parameter Type matching, or Query

expansion techniques. Finally, the last column tells if the search engine

shows a list of code fragments as Text or it uses a Graphical represen-

tation of search results to illustrate code usage for programmers.

8. CONCLUSION
We created an approach called Portfolio for finding highly rele-

vant functions and projects from a large archive of C/C++ source
code. In Portfolio, we combined various natural language process-

ing (NLP) and indexing techniques with a variation of PageRank

and spreading activation network (SAN) algorithms to address the
need of programmers to reuse retrieved code as functional abstrac-
tions. We evaluated Portfolio with 49 professional C/C++ program-
mers and found with strong statistical significance that it performed
better than Google Code Search and Koders in terms of reporting
higher confidence levels and precisions for retrieved C/C++ code
fragments and functions. In addition, participants expressed strong
satisfaction with using Portfolio’s visualization technique since it
enabled them to assess how retrieved functions are used in contexts
of other functions.
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