
JOURNAL OF SOFTWARE: EVOLUTION AND PROCESS
J. Softw. Evol. and Proc. 0000; 00:1–??
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/smr

An Empirical Study on How
Expert Knowledge Affects Bug Reports

Paige Rodeghero1, Da Huo1, Tao Ding2, Collin McMillan1, and Malcom Gethers2

1Department of Computer Science and Engineering
University of Notre Dame, Notre Dame, IN 46545

Email: {prodeghe, dhuo, cmc}@nd.edu

2Information Systems Department
University of Maryland, Baltimore County, Baltimore, MD 21250

Email: {tding1027, mgethers}@umbc.edu

SUMMARY

Bug reports are crucial software artifacts for both software maintenance researchers and practitioners. A
typical use of bug reports by researchers is to evaluate automated software maintenance tools: a large
repository of reports is used as input for a tool, and metrics are calculated from the tool’s output. But
this process is quite different from practitioners, who distinguish between reports written by experts, such
as programmers, and reports written by non-experts, such as users. Practitioners recognize that the content
of a bug report depends on its author’s expert knowledge. In this paper, we present an empirical study of
the textual difference between bug reports written by experts and non-experts. We find that a significant
difference exists, and that this difference has a significant impact on the results from a state-of-the-art
feature location tool. Through an additional study, we also found no evidence that these encountered
differences were caused by the increased usage of terms from the source code in the expert bug reports.
Our recommendation is that researchers evaluate maintenance tools using different sets of bug reports for
experts and non-experts. Copyright c© 0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: bugs, experts, empirical, recommendation, features, textual

1. INTRODUCTION

A bug report is a description of unwanted software behavior. Bug reports are one of the most
important artifacts in software maintenance. Software engineering practitioners use them to
diagnose, locate, and repair software defects [1], and a recent study at Microsoft found that between
5% and 15% of a typical programmer’s time is spent reproducing unwanted behavior described in
bug reports [2]. Meanwhile, bug reports are used in many corners of software maintenance research,
including developer recommendation [3, 4], change impact analysis [5], feature location [6, 7],
defect localization [8], and traceability [9]. Effective software maintenance procedures almost

Copyright c© 0000 John Wiley & Sons, Ltd.

Prepared using smrauth.cls [Version: 2012/07/12 v2.10]

2 P. RODEGHERO, ET. AL

always rely on effective communication of problems via bug reports [10, 11, 12]; in research, they
are so ubiquitous that their presence is often taken for granted.

But the source of bug reports is often obscure. Bug reports may be written by users of software
who experience failures in that software in order to communicate those failures to maintainers. In
contrast, bug reports may be written by the software’s own programmers, as a way of recording
and monitoring the progress of repairing defects. What distinguishes these reports is that some
reporters, such as the software’s programmers, have a high degree of expert knowledge about the
software, while other reporters have almost none. Different studies have shown that people with this
expert knowledge understand software behavior differently than people without it [13, 14, 15, 16].
But crucially, experts do not necessarily write “better” bug reports than non-experts; reports from
experts and non-experts provide complementary information [17, 18]. Studies in industry have
shown that the source of bug reports is important because programmers seek out this complementary
information [19].

What is not known is the degree of textual difference between reports written by experts versus
non-experts, and the effect that this difference has on software maintenance research [20]. The term
“textual difference” refers to how experts may use keywords, sentence structure, and semantics that
are unlike those that non-experts would use to describe the same problem. This textual difference
is important because a large number of software maintenance research tools rely on text processing
techniques such as information retrieval [4, 7, 3]. These text processing techniques are sensitive to
textual differences [21, 22, 23]; software maintenance research that uses these techniques will also
be sensitive to textual differences.

Textual differences between bug reports from experts versus non-experts are especially important
in software maintenance research. A typical strategy for software maintenance tools is to treat every
bug report in a database equally. For example, a developer recommendation tool will follow the
same methodology when analyzing bug reports from experts, as it will follow for reports from
non-experts [4, 7, 3], even though these reports may describe the same problem in quite different
language. Current software maintenance literature gives little guidance on how — or whether —
these reports should be treated differently. Given that industrial programmers distinguish between
reports from experts versus non-experts [17], it is plausible that this distinction is also relevant for
software maintenance researchers.

In this paper, we present an empirical study contrasting bug reports written by experts to bug
reports written by non-experts. For our study, we define an “expert” as anyone who has contributed
to the source code of a project, all others we consider “non-experts.” In the first part of our study,
we manually review some illustrative examples of textual differences in duplicate bug reports in a
qualitative analysis. Then, we automatically compute the textual difference between numerous bug
reports submitted by experts versus duplicates of those bug reports submitted by non-experts. We
compute the textual difference using short text similarity metrics: STASIS [24] and LSS [25]. We
found that, for the same bugs, non-experts are more likely to write similar reports than experts are.

To follow up on this finding, we separately evaluated the effectiveness of two well-cited software
maintenance tools: a developer recommendation tool [4] and a feature location tool [26]. Over
a large corpus of software projects, we found, although indirectly, that textual differences 1)
did not affect performance of the bug triage technique that is based on text classification for

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

EXPERT KNOWLEDGE AFFECTS BUG REPORTS 3

different developers, but 2) did affect performance of the feature location technique based on textual
similarity analysis.

Additionally, we explored the possibility that the textual differences were caused by increased
usage of keywords from the source code by the experts. To do so, we analyzed the textual similarities
between the bug reports and the source code responsible for the bug mentioned. We separated the
expert comparisons from the non-expert comparisons and contrasted them to determine if there
was a significant difference between the amount of source code mentioned in the two types of bug
reports. We found that although expert and non-expert bug reports are not significantly similar, the
differences are not necessarily caused by an abundance of source code terms used in expert bug
reports.

2. THE PROBLEM

We address the following gap in software maintenance research literature: there is currently little
understanding about the degree of and effect of textual differences in bug reports written by persons
with expert knowledge about the program, and without that particular knowledge. At present,
these textual differences may be causing unknown biases or performance problems in software
maintenance research because, currently, research treats those bug reports identically. Software
engineering practitioners, on the other hand, treat bug reports differently based on the source of
the reports, and find benefits from reading reports from a diverse set of sources [17, 19]. Software
maintenance researchers are, in effect, making a different assumption about bug report data than
software maintenance practitioners. But as Panichella et al. point out in a recent ICSE paper,
“poor parameter calibration or wrong assumptions about the nature of the data could lead to poor
results” [27]. Hence, in our view, we should investigate whether the performance of software
maintenance research tools may be increased if they more closely match the behavior of industrial
practitioners.

The potential impact of the study is quite extensive. Bug reports are used in almost every corner
of software maintenance research. For example, developer recommendation tools use text from
bug reports to locate the correct developer to repair the bug [13, 14, 4, 15]. Feature location
tools match text from bug reports to text in source code [28, 6]. Traceability tools connect bug
reports with a diverse set of software artifacts based on textual data [9, 29]. Impact analysis tools
predict which artifacts will be affected by incoming change requests, which are typically bug
reports [5, 30, 31, 32]. Defect prediction tools use text from bug reports as training data to help
predict what areas of source code may contain future problems or how much time will be required
to repair the bugs [33, 34, 35]. Numerous other software maintenance tools use bug reports, and this
study has the potential to impact the performance of those tools.

3. BACKGROUND

This section will describe background on the short text similarity metrics, developer
recommendation technique, and feature location that we use in this study. These metrics and

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

4 P. RODEGHERO, ET. AL

tools have been proposed and evaluated elsewhere; we discuss them here because they are key
components of our study.

3.1. Short Text Similarity Metrics

We employ two Short Text Similarity Tools in our approach: STASIS [24] and LSS [25]. STASIS,
by Li et al., computes a similarity score between two text documents by blending “word semantic”
similarity, “sentence semantic” similarity, and “word order” similarity. Word semantic similarity is
similarity in meaning of each word in one document to each word in another document. STASIS
uses WordNet [36] to calculate the distance between each pair of words in a knowledge base. A
knowledge base is a hierarchical structure in which words are organized according to their meanings.
STASIS then uses the word semantic similarity to compute the sentence semantic similarity, which
is the similarity between all the words in one sentence to all the words in a different sentence. The
sentence semantic similarity is then computed for all sentences in one document to all sentences in
another document. Finally, the word order similarity is used to determine whether the words in the
sentences appear in roughly similar order, which is important to preserve meaning, in particular, for
adjectives referring to the same nouns, the location of qualifiers such as “not”, and subject-verb-
object placement. STASIS then combines these similarities with a weight of 0.85 given to sentence
semantic similarity (which includes word semantics) and 0.15 to word order.

Croft et al. describe LSS as an alternative. Like STASIS, LSS uses WordNet to determine the
word semantic similarity. But unlike STASIS, LSS does not consider the order of the words in
the documents. Also, LSS calculates word similarity using “synsets” of words, which are sets of
cognitive synonym words. The advantage is that LSS is able to identify highly similar meanings
without respect to details such as verb tense, and without relying on the documents’ authors to
choose identical words. This process is different than in STASIS, which identifies synonyms solely
through the knowledge base distance. The intent is that LSS is better suited to very short documents,
perhaps only one or two sentences long, while STASIS may be better suited to longer documents, up
to several paragraphs. We use both in our study because bug reports are likely to range in size from
one sentence up to perhaps a page or more of text. Note also that we do not use Latent Dirichlet
Allocation (LDA) in our study — the reason here being that even though LDA is widely-used for
software artifacts [27], both STASIS and LSS have been shown to outperform LDA for computing
the similarity between short natural language documents [24, 25], such as bug reports.

3.2. Developer Recommendation

Open source software is developed by a community of developers that can be distributed across
various geographical locations. Bug tracking systems are particularly important in open-source
software development because they are not only used to track problems, but also to coordinate
work among developers. Bug tracking systems allow people anywhere in the world to report a bug.
As a result, there are a large number of bugs that are submitted each day. The time commitment
required to filter the invalid bugs and decide what to do with new report becomes a burden. Despite
the tedious nature of the task, most bugs are assigned manually to developers, such as in the case of
Mozilla and Eclipse, and have therefore been forced to introduce team members who are dedicated
to bug triaging.

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

EXPERT KNOWLEDGE AFFECTS BUG REPORTS 5

To solve the problem, various approaches have been proposed to semi-automate the bug triage
process. A number of techniques are based on information retrieval. Canfora and Cerulo [37]
presented an approach based on information retrieval, in which they use a probabilistic text similarly
to support change request assignment. The paper presented a case study on Mozilla and KDE
which reported recall levels of around 20% for Mozilla. Some studies combine information retrieval
techniques and processing of source code authorship information to recommend developers [38].

Some studies use various machine learning techniques. Cubranic and Murphy [39] proposed
a Bayesian learning approach for bug triage. The prediction model is learned from labeled bug
reports and makes prediction based on observed rules. It achieved precision levels of around 30%
on Eclipse. Somasundaram [40] combined a supervised learning model based on support vector
machines and an unsupervised generative model based on LDA. Tamrawi proposed Bugzie for
triaging based on fuzzy set-based modeling of the bug-fixing expertise of developers [41]. Jeong et
al. [42] applied a graph model based on Markov chains to reveal developer networks and, combined
with Bayesian learning, help better assign developers. Anvik et al. [4] utilized support vector
machines to classify bugs and improve precision up to 64% by refining data sets, which filtered
out developers who did not make enough contribution in the most recent 3 months.

3.3. Feature Location

The goal of feature location is to identify source code associated with a given feature of the software
system [43]. Over the years, researchers have proposed several semi-automated techniques to assist
with the process of feature location [43]. Three main types of analyses are typically employed:
dynamic, static, and textual analysis [43]. In this paper, we focus primarily on textual analysis-based
techniques.

Several of the feature location techniques proposed by researchers have applied information
retrieval as a means of analyzing textual information in source code artifacts for feature location.
Marcus et al. [44] first proposed an information retrieval approach for feature location based
on Latent Semantic Indexing (LSI). Cleary and Exton [45] presented an approach based on
a complementary information retrieval method which used information flow and co-occurrence
information derived from non-source code artifacts to implement a query expansion-based concept
location technique. Rao and Kak [46] applied SUM for feature location, which was found to be the
best performance model.

Some researchers have focused on supplementing the textual analysis of IR techniques with other
sources of information to enhance the performance of feature location techniques. Gay et al. [47]
proposed to augment information retrieval-based feature location with an explicit relevant feedback
mechanism. Poshyvanyk et al. [48] proposed a feature location method called PROMESIR based
on Latent Semantic Indexing and Scenario-based Probabilistic Ranking (SPR), a dynamic analysis-
based technique. Lukins et. al [49] proposed an approach which used Latent Dirichlet Allocation
(LDA), a more recent technique for information retrieval, to search for bug-related methods and
files. This technique was found to have significant advantages over LSI and pLSI (probabilistic
Latent Semantic Indexing) by using a faster, more stable probabilistic generation of hidden, or
latent, topics in the document. [49] Rao and Kak [46] found the performance of the Vector Space
Model (VSM) technique in bug localization is worse than SUM but better than LDA and LSI.

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

6 P. RODEGHERO, ET. AL

Zhou et al. proposed BugLocator, an information retrieval-based method for locating the relevant
source code files for fixing bugs according to an initial bug report [26]. BugLocator uses revised the
Vector Space Model to rank all files based on text similarity between the initial bug report and the
source code (rV SMScore). BugLocator also takes into consideration information about similar
bugs that have been previously fixed (SimiScore). The final score is a weighted sum of these two
scores.

FinalScore = (1− α) ∗N(rV SMScore) + α ∗N(SimiScore) (1)

, where α is a weighting factor. Zhou et al. compared BugLocator with LDA, SUM, and LSI. The
results clearly showed BugLoctor outperforms all other methods. In our empirical study section, we
use BugLocator to evaluate how textual differences will affect feature location.

4. QUALITATIVE ANALYSIS

In this section, we describe a qualitative analysis of duplicate bug reports written by experts and
non-experts. These reports were taken from the Mozilla public database. We manually compare
the textual difference between two expert reports, two non-expert reports, and one of each. Before
automating the process of comparing duplicate bug reports, we manually inspect pairs of bug reports
between experts and non-experts. This inspection will help reveal how similar we may expect
descriptions in duplicate bug reports to be during the empirical study. Since these examples were all
taken from the same randomly chosen bug with duplicate reports, they serve as good illustrations of
what we might see when exploring the entire bug reports repositories.

First, we will look at a duplicate pair of expert bug reports:

1. 227146: When a destination is unreachable, the Page load error converts the URLbar into
something rather unmemorable (Its a chrome:// thing, if I recall correctly). Instead, the
failed URL should remain in the url bar. I won’t go into the uselessness of the actual XUL
error page in this bug. Pike has whipped up an extension to resolve this issue, but I think it
should be in FB by default.

2. 157004: When error page support is enabled (see bug 28586), the error page url is displayed
in the location bar of the browser. This needs to be suppressed somehow and the page should
not appear in the session history either.

In these reports, both experts are describing the same basic problem. The problem described here
is when a page is not able to be loaded, a long, incomprehensible error URL replaces the URL of
the unavailable page. Both experts believe the unavailable URL should remain in the address bar,
instead. As can be seen from the samples, although both reports are describing the same problem and
solution, neither are worded exactly the same. Both reports use the terms bar, error, page, and URL.
However, many of the other words are dissimilar. For example, both reports mention the address bar,
but one calls it the URL bar, while the other refers to it as the location bar. Other textual differences
are seen by the fact that the reports sometimes mention specifics that are not mentioned in the other
report. For example, the first report mentions that the error URL begins with chrome://, that
someone else may have already solved this problem, and a personal statement about the usefulness

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

EXPERT KNOWLEDGE AFFECTS BUG REPORTS 7

of the error page itself. In contrast, the second report includes a reference to an old bug number and
mentions that the session history should not record the opening of the error page. From this sample,
one can see that even though two expert bug reports explain the same problem, they may only be
slightly textually similar.

Second, we will look at a duplicate pair of non-expert bug reports:

1. 160626: When the new friendly html error messages are displayed the current url
is replaced, preventing corrections to the url or use of the back arrow to get to the
previous page. open browser, type asdf in location box, hit enter. This is returned: The
connection was refused when attempting to contact www.asdf.com. connectionFailure
long description goes here. Try again Search for this address The url line is
changed to: chrome://global/content/netError.xhtml ?e=connect

ionFailure&u=http%3A//www.as df.com/&d=The%20connect

ion%20was%20ref used%20when%20attempting%20to%20contac

t%20www.asdf.com. The url line should not be changed. The end user may want
to correct a type-o. Also the back arrow goes back two pages instead of to the previous one.

2. 274917: If a url is opened in a new window or tab and that url ultimately doesn’t load or times
out, the url is not kept in the address bar and you cannot attempt to reload it. This problem can
be annoying if you have a flaky internet connection, as I do. The problem is most prominent
when I open several tabs off of one page, then close the original page. Then if any of the
tabs do not load, I’ve lost the URL that I was trying to view and ahve to navigate back to the
original page and figure out which link didn’t load, since there is no indication.

These reports are also duplicates of the two expert reports we inspected above, so they are
explaining the same basic problem: the ‘page unavailable’ error causes the address bar to be filled
with an unneeded error URL. Textually, these two reports use many of the same terms, such as
URL, connection, and attempt. However, as we’ve seen, there are many textual differences. Using
the same example as with the expert samples, both of these reports mention the address bar, but call
them different names. The first report calls it the location box, while the second calls it the address
bar. As before, many textual differences come from the fact that the two reports have additional
comments unique to its description. The first report is more thorough than the second one. The first
report gives a full procedure on how to repeat the bug. This report also gives the full error URL that
normally appears, gives a personal reason for why this is a problem, and mentions that hitting the
back button should return to the unreachable URL. In contrast, the second report mentions personal
internet problems that led to the creation of this bug report. Another issue that can cause textual
differences that was not seen with the expert reports are misspelled words. The second non-expert
report in this sample has a couple of misspelled words. Just as with the experts, one can see that
although these reports are duplicates, they do not explain the problem in exactly the same way.

Last, we will look at a duplicate bug report between an expert and a non-expert:

1. 157004 (expert): When error page support is enabled (see bug 28586), the error page url is
displayed in the location bar of the browser. This needs to be suppressed somehow and the
page should not appear in the session history either.

2. 160626 (non-expert): When the new friendly html error messages are displayed the
current url is replaced, preventing corrections to the url or use of the back arrow

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

8 P. RODEGHERO, ET. AL

to get to the previous page. open browser, type asdf in location box, hit enter. This
is returned: The connection was refused when attempting to contact www.asdf.com.
connectionFailure long description goes here. Try again Search for this address The url line
is changed to: chrome://global/content/netError.xhtml ?e=connect

ionFailure&u=http%3A//www.as df.com/&d=The%20connect

ion%20was%20ref used%20when%20attempting%20to%20contac

t%20www.asdf.com. The url line should not be changed. The end user may want
to correct a type-o. Also the back arrow goes back two pages instead of to the previous one.

These two bug reports are two of the same reports from the previous expert and non-expert
comparisons shown above. Therefore, they describe the same bug we have been describing during
the rest of this analysis. As we have seen before, these two reports are textually similar because
they are trying to explain the same problem, and therefore, use similar words. Also, these reports
are textually different for the same reason as before: both reports include descriptions unique to
the reporter’s situation. However, unlike the previous pairs, both of these reports include that the
error URL should not be included in the history. Even with this similarity, though, since the reports
describe internet history differently, they are still mostly textually different.

Although only taken from one bug instance, we see these examples as indicative of the other
bug reports because of the random sampling. From these examples, we believe that many of the
similarities naturally come from the reports being duplicates. We also believe that many of the
textual differences come from the extra notes (beyond the description of the bug itself) that are not
very common between bug pairings. These reasons for similarities and differences are important to
notice before we begin the large automated portion of the study because it will help with determining
why we see the levels of textual difference during our analysis. With these textual differences in
mind, we now move onto the empirical study.

5. EMPIRICAL STUDY DESIGN

This sections explains the design of our empirical study including our research objective, research
questions, methodology, and study conditions.

5.1. Research Questions

The research objective of our empirical study is two-fold: 1) to determine the degree of the textual
difference between bug reports written by experts and non-experts, and 2) to determine the degree
to which that similarity may affect the performance of software maintenance tools. Towards the first
part of this objective, we pose the following Research Questions (RQ):

RQ1 Are there textual similarities between bug reports written by experts and duplicates of those
bug reports written by non-experts?

RQ2 Are there textual similarities between duplicate bug reports written by experts?

RQ3 Are there textual similarities between duplicate bug reports written by non-experts?

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

EXPERT KNOWLEDGE AFFECTS BUG REPORTS 9

The rationale behind RQ1 is that both experts and non-experts write bug reports, and that some
percentage of these reports will be duplicates. Because those duplicates refer to the same underlying
problem, the textual similarity of those duplicates will indicate the difference between reports
written by experts and non-experts for the same bug. Likewise, the rationale behind RQ2 and RQ3

is to obtain a baseline for comparing the textual similarities relative to each other (see Analysis
Questions).

Towards the second part of our research objective, we ask these research questions:

RQ4 What is the performance of a software maintenance tool when the inputs to that tool are bug
reports written solely by experts?

RQ5 What is the performance of a software maintenance tool when the inputs to that tool are bug
reports written solely by non-experts?

RQ6 What is the performance of a software maintenance tool when the inputs to that tool are bug
reports written by both experts and non-experts?

The rationale behind RQ4, RQ5, and RQ6 is that it is plausible that software maintenance
tools will have different performance when provided bug reports from different sources. Here,
performance is the correctness of the developer recommendation or feature location. This rationale
is based on the idea that human programmers treat expert and non-expert bug reports differently,
and that software maintenance tools might benefit from this distinction, as well (see Section 2).

5.2. Analysis Questions

To analyze and draw conclusions from the data collected by answering the research questions, we
pose the following two Analysis Questions (AQ):

AQ1 Is there a statistically-significant difference between the textual similarity values calculated
for RQ1, RQ2, and RQ3?

AQ2 Is there a statistically-significant difference between the performance values calculated for
RQ4, RQ5, and RQ6?

The rationale behind AQ1 is that if the textual similarity among bug reports written by experts
versus non-experts is higher than the textual similarity among reports written solely by experts or
solely by non-experts, then it is evidence that experts and non-experts tend to write bug reports using
different vocabulary to describe similar situations.

Likewise, the rationale for AQ2 is that if the performance of the software maintenance tool is
higher using one data set versus another, then it is evidence that software maintenance tools benefit
more from the information in that data set.

5.3. Research Subjects

We used two bug repositories for our data for the first two studies. We obtained the bug reports
via public databases for Eclipse∗ and Mozilla†. These repositories are extensive and include several

∗https://bugs.eclipse.org/bugs/
†https://bugzilla.mozilla.org/

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

10 P. RODEGHERO, ET. AL

years of data over several versions of different software products, including contributions by many
programmers and users. Table I presents details about the repositories. In total we extracted over
410,000 bug reports, of which 268,000 were duplicates suitable for our empirical study.

In the third study, a subset of the data in Table II is downloaded from the project site of
BugLocator‡. We used the sample data set of SWT (98 bugs) and Eclipse (3070 bugs), which was
experimental data used in paper [4]. Note that some of the sample data is also a subset of Table I.

5.4. Methodology Overview

The methodology we follow to answer our research questions is to perform three empirical studies.
The first involves AQ1, and the other two involve AQ2.

5.4.1. Textual Comparison with Metrics The first empirical study is a textual comparison of bug
reports. In this study we divided a repository of bug reports into two groups: bugs written by experts,
and bugs written by non-experts (an expert is defined as a contributor to source code, all others we
consider non-experts”). Then we extracted any bug reports labeled as duplicates. This extraction
produced three groups of pairs of duplicates: 1) pairs where both reports were written by experts, 2)
pairs where both reports were written by non-experts, and 3) pairs where one report was written by
an expert and one was written by a non-expert. For each of these three groups, we used two different
Short Text Similarity algorithms (see Section 3.1) to compute a similarity value for each pair of
duplicates. The result was a list of similarity values for each of the three groups of duplicate bugs.
These lists were our basis for answering RQ1, RQ2, and RQ3. Finally, we performed a statistical
hypothesis test to determine the significance of any difference among the mean values of these
groups, which allowed us to answer AQ1.

5.4.2. Developer Recommendation The second empirical study is to evaluate how textual
differences impact textual analysis-based automated approaches to bug triaging. Table I shows the
number of bug reports, and the number of developers involved. We extracted those bugs which were
fixed and tagged as ASSIGNED, RESOLVED, FIXED, VERIFIED, and CLOSED. We labeled
each of the bugs with a developer id based on who was assigned to fix the bug. We divided the
bug reports into two groups, as was done in the first study: expert and non-expert. The description
of bugs includes two parts in each report: the title, which briefly summarized the issue, and the
long description, which provided details about the bug. In this study, we determine the impact
of textual differences, considering the case where only the summary is used, as well as the case
where the summary and short description is used. Two subgroups are produced for each group: bug
descriptions containing title only (E, NE) and bug descriptions containing title and long description
together (EL, NEL).

There are two phases: training and prediction. First, the classifier model will be built using labeled
bug reports, where the label is the developer who actually fixed the bug. When selecting training
reports, we used the same strategy mentioned by Anvik et al. [4]. We refined the set of training
reports based on profiles of each developer, filtering out those bug reports where the developer fixed

‡http://code.google.com/p/bugcenter/wiki/BugLocator

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

EXPERT KNOWLEDGE AFFECTS BUG REPORTS 11

less than 9 bugs in the most recent 1000 bugs. After filtering, we consider 24 developers for Mozilla
and 21 developers for Eclipse, as shown in Table I. For each group, we set 10000 as the sample size
and use 90% as training data with the remaining 10% being used as testing data.

Second, when a new report arrives, the classifier will suggest a ranked list of suitable developers
to fix the bug. The higher the ranking score is, the more suitable the developer will be. To evaluate
our approach, we use the same methodology as Anvik et al. [4]. We use this methodology because
it is well-cited, appeared in a top venue, and is simple enough to be applied widely. We search the
top 3 recommended developers based on probability; if one is the correct developer, we consider the
bug as being assigned correctly. In this study, we evaluate the impact of textual differences on the
accuracy of the developer recommendation technique in order to answer RQ4, RQ5, and RQ6.

5.4.3. Feature Location In this empirical study, we evaluated how the textual differences impact a
textual analysis-based feature location technique, namely BugLocator [26]. BugLocator will provide
a ranked list of code files for each bug based on a similarity score, which captures the relationship
between a new bug report and the source code. BugLocator actually combines textual analysis with
an analysis of existing bug reports in order to identify relevant source code files. The weighting
factor α is used to control how much weight is given to the historical information. In the prior
study conducted by Zhou et al. [26], they were able to achieve the highest accuracy by configuring
BugLocator with α = 0.2 for SWT and α = 0.3 for Eclipse. Thus, we use the same α values in
our experiments. We also examine different levels of α to see how focusing primarily on textual
information impacts the results. Here we use the same groups that were used in the developer
recommendation study and shown in Table II.

5.5. Measurement Metrics

We use accuracy to evaluate the performance of the developer recommendation tool for our second
empirical study. The accuracy of prediction is a fraction between the number of bugs assigned to
correct developers and the total number of bug assignments.

Accuracy =
correct predicted bug

predicted bug
(2)

To measure the effectiveness of the feature location method, we use the following metrics in the
third empirical study:

• Top N rank, which is the number of bugs whose associated files are ranked in top N files.
Given a bug report, if the top N query result contains at least one file at which the bug should
be fixed, we consider the bug located.

• MHR (Mean Highest Rank), which is the mean of highest ranks for all known relevant files
when testing n bug reports, which was used to complement BugLocator’s “FinalScore”.

MHR =

∑
HighestRank

n
(3)

5.6. Statistical Tests

We use a Mann-Whitney U-test [50] to determine the statistical significance of the difference of
means among the groups of short text similarities. The Mann-Whitney test is appropriate for this

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

12 P. RODEGHERO, ET. AL

analysis because it is unpaired, it is tolerant of unequal sample sizes, and it is non-parametric. Our
data are unpaired in the sense that we are comparing similarities of different pairs of bug reports.
Our data are of unequal size because of the varied numbers of duplicate bugs in the repositories.
Finally, we cannot guarantee that the data are normally-distributed, so we conservatively choose a
non-parametric test.

5.7. Threats to Validity

As with any study, our work carries threats to validity. One threat is our bug report repository. The
results from our study are dependent on these repositories, and the results may not be applicable to
bug reports for all programs. We have attempted to mitigate this threat by using large repositories
with hundreds of thousands of bug reports from different programs, however we still cannot
guarantee that our results are consistent for every repository. Another threat is our definitions of
experts and non-experts. It is possible that one of our ”experts” could have committed a single
time throughout the entire project while one of our ”non-experts” could have been interacting with
this project throughout its entire life-cycle and knows it very well. We believe, however, that our
data set is large enough, and this occurrence is rare enough, that any inconsistencies cause by this
are minimized. Additionally, we used a filtering process to eliminate users with less than a certain
number of bug reports. Another threat to validity is our selection of text similarity algorithms. We
use these algorithms as metrics for determining relative similarity of text. Different text similarity
algorithms might return different results. Plus, we are exposed to the risk that these algorithms
may have inaccuracies. We attempt to mitigate this risk by using two different algorithms which
have been independently verified in related literature. A similar risk also exists from the developer
recommendation tool we chose, however this risk is reduced by the design of our study: we are
studying the effect of different data sets on the tool, and can draw a conclusion related to these
data sets for the tool regardless of inaccuracies in the tool. A potential threat to validity exists in
that different developer recommendation tools may be affected differently, though we attempt to
mitigate this risk by using a prominent and frequently-cited tool.

5.8. Reproducibility

For the purposes of reproducibility and independent study, we have made all raw data, scripts,
tools, processed data, and statistical results available via an online appendix: http:

//www.cse.nd.edu/˜cmc/projects/bugsim/

6. TEXTUAL SIMILARITY RESULTS

This section describes the results of our empirical study for RQ1, RQ2, and RQ3. These are the
questions from our study focusing on the textual similarity of bug reports. We first provide an
overview of our results, then provide raw details related to our research questions, and finally present
our data interpretation that led to our results.

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

EXPERT KNOWLEDGE AFFECTS BUG REPORTS 13

6.1. Results Overview

A brief overview of our results is that we found evidence that 1) experts use different language than
non-experts to describe the same bugs, and 2) experts are more consistent in their use of language
in bug reports than non-experts.

6.2. RQ1 - Textual Similarities: Expert vs. Non-Expert

The degree of textual similarity between bug reports written by experts and duplicates of those
reports written by non-experts is, on average, 0.609 according to STASIS and 0.983 according to
LSS. Descriptive statistics are in Table VIII and Figure 1. Though it is not appropriate to draw
conclusions from these numbers in isolation, we observe that while the range of values is quite large,
approximately half of the values for STASIS lie between 0.55 and 0.65. This is a broader range than
for LSS, where the values fall in a relatively narrow band. While we do not draw conclusions from
these ranges, we note that they are likely due to differences in the operation of STASIS and LSS, in
that STASIS is intended mostly for larger blocks of text, while LSS is intended for shorter blocks,
in general (see Section 3.1). This is an important distinction because the repositories contain bug
reports of varying lengths.

6.3. RQ2 - Textual Similarities: Expert vs. Expert

The degree of textual similarity among duplicate bug reports written by experts is 0.609 according
to STASIS and 0.979 according to LSS. We observe a similar pattern for these similarity values as
for RQ1: a somewhat narrow band for LSS as compared to STASIS. Full descriptive statistics are
in Table VIII and Figure 1.

6.4. RQ3 - Textual Similarities: Non-Expert vs. Non-Expert

The degree of textual similarity among duplicates written by non-experts is 0.619 for STASIS and
0.978 for LSS. The patterns we observe are consistent with our observations for RQ1 and RQ2. As
before, statistics are in Table VIII and Figure 1.

7. EVALUATION OF IMPACTS ON SOFTWARE MAINTENANCE

This section describes the results of our two empirical studies: developer recommendation and
feature location for answering RQ4, RQ5, and RQ6.

7.1. RQ4 - Tool Performance: Experts Only

In the developer recommendation study, when we used bug descriptions without long descriptions
and only expert bugs are considered: for Eclipse (in Table III), accuracy for development
recommendation is 0.81, for Mozilla (in Table III), accuracy is 0.64. When long descriptions are
added in the bug descriptions, both accuracies are decreased to 0.75 and 0.58, respectively.

In the feature location study, for SWT when α equals 0.2, the accuracy is 35% at the top 1
when we used bug descriptions without long descriptions(E), which is higher than the accuracy of

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

14 P. RODEGHERO, ET. AL

32% when long descriptions are considered(EL). With increasing ranking range, the EL’s accuracy
is higher than E’s. E’s MHR is higher than EL’s when history is only one factor(α = 1), which
means longer descriptions are helpful when only considering similarity with bugs that had been
fixed before.

7.2. RQ5 - Tool Performance: Non-Experts Only

In the developer recommendation study, when we used bug descriptions without long descriptions
and only non-expert bugs are considered: for Eclipse (in Table III), accuracy for development
recommendation in Eclipse is 0.74, for Mozilla (in Table III, accuracy is 0.64. When long
descriptions are added in the bug descriptions, both accuracies are decreased to 0.75 and 0.58,
respectively.

In studies of the feature location, from Tables IV and V, we can see that the non-expert bug reports
with long description (NEL) will achieve the highest ranks among all bug report types. Comparing
all bugs with and without long descriptions (All and AllLong), for most α values, we can say that
the long descriptions help to achieve higher ranks. We can also get the same result from comparing
the non-expert bug reports with and without long descriptions (NE and NEL). However, for the bug
reports written by experts, the longer description will lower the ranks.

7.3. RQ6 - Tool Performance: Experts and Non-Experts

From Tables VI and VII, all the bug report types with long descriptions (AllLong, EL and NEL)
have relatively equal ranking performance, which is much better than the types without long
descriptions (AllLong, E and NE). Also, the NE type (non-expert bug descriptions) has the worst
MHR performance among all types.

8. COMPARISON ANALYSIS

In this section, we describe our results for AQ1 and AQ2.

8.1. AQ1 - Textual Similarity

We found statistically significant evidence for the difference of the means for both STASIS and LSS
reported for RQ1, RQ2, and RQ3. We compared the STASIS values from RQ1, RQ2, and RQ3.
Likewise, we compared the LSS values for those RQs. Note that we do not compare STASIS values
to LSS values in our statistical analysis, as the two metrics operate differently.

The procedure we used to obtain the evidence is as follows. Consider the statistical data in
Table VIII. We organized this table by similarity value for expert-written reports to duplicates
written by other experts (“Expert-Expert”) compared to similarity values for non-expert-written
reports to duplicates written by other non-experts (“NonEx.-NonEx.”). We also compared these
similarity values to similarities for expert-written reports to non-expert-written duplicates (“Expert-
NonEx.”). These similarity values are further separated by the metric which produced those values
(STASIS or LSS). We then posed six hypotheses:

H1 There is no difference between STASIS similarities for Experts-Experts and NonEx.-NonEx.

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

EXPERT KNOWLEDGE AFFECTS BUG REPORTS 15

H2 There is no difference between STASIS similarities for Experts-Experts and Experts-NonEx.

H3 There is no difference between STASIS similarities for NonEx.-NonEx. and Experts-NonEx.

H4 There is no difference between LSS similarities for Experts-Experts and NonEx.-NonEx.

H5 There is no difference between LSS similarities for Experts-Experts and Experts-NonEx.

H6 There is no difference between LSS similarities for NonEx.-NonEx. and Experts-NonEx.

We performed a Mann-Whitney test for each of these hypotheses (see Section 5.6). We rejected
a hypothesis only if the value for Z exceeded Zcrit and p falls below 0.05. Based on these criteria,
we found evidence to reject all hypotheses.

8.2. AQ2 - Effects on Tools

We compare the mean for the ranking score for correct developers from different groups (All, E,
NE). Each group contains 1000 bugs in our study. To find statistically significant evidence for RQ3,
RQ4, and RQ5 in developer recommendations, we produced this hypothesis:

H7 There is no difference between accuracy in developer recommendation from Experts reports
and NonEx. reports.

We perform a U-test for H7 in two projects: Eclipse and Mozilla. We rejected the hypothesis
when p falls below 0.05. Table IX presents the hypothesis in Eclipse when long descriptions are
considered in bug reports.

We also compare the mean for final similarity (see “FinalScore” Section 3) between bug reports
and relevant source code files from each group. To find statistically significant evidence for RQ3,
RQ4, and RQ5 in feature locations, we produced this hypothesis:

H8 There is no difference between final similarities in feature location study for Experts reports
and NonEx. reports.

We performed a U-tests for H8 to compare Expert and NonEx (see Section 5.6). At 0.05

confidence level, we reject hypothesis H8.

(a) (b)

Figure 1. Boxplots comparing (a) STASIS similarity (b) LSS similarity for Expert-Expert, Expert-
NonExpert, and NonExpert-NonExpert. The red line indicates the mean and the yellow line separating the

gray and black areas indicates the median

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

16 P. RODEGHERO, ET. AL

9. INTERPRETATION

One key finding we discovered is that, for the same bugs, non-experts are more likely to write
similar reports than experts are (we rejected both H1 and H4). In other words, the variation
in information described by experts is higher than the variation among non-experts. A possible
explanation from related work is that experts focus on knowledge about parts of the source code
which cause the bug, while non-experts describe a range of faulty behaviors they experience [17, 18].
However, this empirical study alone does not include evidence for this explanation — it only
confirms the existence of a difference in how experts and non-experts write bug reports, and that
the variation among experts is lower than among non-experts. The qualitative study provides a few
examples as evidence of a few possible reasons, but that is not enough to fully prove any of those
reasons.

We did not find evidence that experts write more or less varied reports compared to other experts,
versus compared to non-experts. While we rejected both H2 and H5, the direction of the difference
in means was different for STASIS and LSS, showing that the similarity metrics did not fully agree.
This finding, combined with the lack of strong variations in the qualitative samples, leaves us unable
to draw a strong conclusion about the textual similarities.

A further finding, although not clearly evident in the qualitative study, is that the textual similarity
of bug reports written by non-experts is higher as compared to other non-experts, versus when
compared to experts. We rejected both H3 and H6, and both similarity metrics agreed on the
direction of the difference. What this means is that the most consistent group of bug reports was
the non-experts to other non-experts. Therefore, non-experts write reports that are more similar
to each other, than to reports written by experts.

In analyzing the effects of these differences, we came to two conclusions. First, that the developer
recommendation tool was not affected by the differences between expert and non-expert bug reports
by a statistically-significant margin (only one of four statistical tests rejected). But on the other hand,
the feature location tool was affected (all four tests rejected). Therefore, we find that different tools
are affected to different degrees by the expert and non-expert bug reports. Our recommendation is
that software maintenance tools be tested for this effect to maximize the performance of the tools.

10. SOURCE CODE COMPARISON STUDY DESIGN

This sections explains the design of our source code comparison study including our research
objective, research questions, methodology, and study conditions.

10.1. Research Questions

The research objective of our source code comparison study is to determine the degree of the textual
difference between bug reports written by experts and non-experts and the source code that the bug
report derives from. Towards this objective, we pose the following Research Question (RQ):

RQ7 Are the bug reports written by experts more textually similar to source code than the bug
reports written by non-experts?

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

EXPERT KNOWLEDGE AFFECTS BUG REPORTS 17

The rationale behind RQ7 is that although we have shown how similar, and different, expert and
non-expert bug reports are to each other, we have not found evidence to explain these differences
entirely. One plausible explanation is that since experts know the source code better, they may use
keywords directly from the source code to describe the problem. However, since non-experts may
have seen the source code very little, or not at all, they may not use any of the same keywords as the
experts.

10.2. Methodology Overview

The methodology we follow to answer our research question is a textual comparison between bug
reports and source code. In this study we used the same sample data set of Eclipse bug reports from
BugLocator§ as was utilized during the feature location empirical study (see Section 5.4.3). We then
divided this repository of bug reports into two groups: bugs written by experts, and bugs written by
non-experts, as was done during the textual comparison empirical study. For both of these groups,
we used two different Short Text Similarity algorithms (see Section 3.1) to compute a similarity
value between the bug report and the source code referenced in the bug report. The result was a
list of similarity values for both the expert-source and non-expert-source pairings. These lists were
our basis for answering RQ7 and determining any statistically significant difference between the
similarity values of these two groups.

10.3. Research Subjects

The Eclipse bug report data in Table II was downloaded from the project site of BugLocator, which
was experimental data used by Anvik et al. [4]. This sample data is also a subset of the data located
in Table I. The Eclipse source code used for comparison was gathered from the Eclipse Project
Archive ¶.

10.4. Statistical Tests

We use the Mann-Whitney non-parametric statistical test [50] to determine the significance of
the difference of means among the groups of short text similarities. The Mann-Whitney test is
appropriate for this analysis because it is unpaired and is tolerant of unequal sample sizes [50]. Our
data are unpaired in the sense that we are comparing similarities of different types of bug reports
together with different source code files. Our data are of unequal size because of the varied numbers
of expert vs. non-expert bug reports in the repository. Finally, we cannot guarantee that the data are
normally-distributed, so we conservatively choose a non-parametric test.

10.5. Threats to Validity

Many of the threats to validity in this source code comparison study are similar to the threats
associated with the empirical study. One threat is the sample bug report repository we used. The
results from our study are dependent on BugLocator’s Eclipse repository, and the results may not
be applicable to all bug reports for all programs. Another threat to validity is the size of this bug

§http://code.google.com/p/bugcenter/wiki/BugLocator
¶http://archive.eclipse.org/eclipse/downloads/

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

18 P. RODEGHERO, ET. AL

report sampling. The amount of bug reports is not insignificant, but is also not large enough to
guarantee that are results are fully generalizable. Another threat to validity is our selection of short
text similarity algorithms. Different short text similarity algorithms could have resulted in different
outcomes. Also, these algorithms may not be fully accurate when determining similarity values
between two pieces of text. In order to decrease this risk, we used multiple algorithms that have
been externally verified by short text comparison experts. Lastly, there is a threat to validity in the
creation of scripts for extracting source code files associated with each bug report. There may be
unknown internal issues with select bug reports or select source code files that cause inconsistencies
for some text comparisons. We believe that this would occur a minimal amount of time, however,
since both the bug reports and source code files come from well-known, prominent sources.

11. SOURCE CODE COMPARISON STUDY RESULTS

In this section, we present our results to our research question. We also present a discussion of these
results.

11.1. RQ7 - Similarity to Source Code

We found no statistical evidence that experts use any more source code keywords in their bug reports
than non-experts. In fact, the mean similarity scores for expert-source pairs and non-expert-source
pairs were roughly the same. Descriptive statistics are in Table XI. To determine significance, we
computed the similarity scores between bug report and source code pairs using both STASIS and
LSS short text similarity metrics. On average, the experts had a STASIS similarity to the source code
of 0.3968, while the non-experts had a similarity score of 0.4074. Likewise, the experts averaged
a LSS similarity score of 0.7931, while the non-experts averaged a score of 0.7880. We used these
scores to compare the similarity between expert pairs and non-expert pairs. We then posed H9 and
H10:

H9 The difference between STASIS similarities for Experts-Source and NonEx.-Code is not
statistically significant.

H10 The difference between LSS similarities for Experts-Source and NonEx.-Code is not
statistically significant.

Using the Wilcoxon signed-rank test, we could not reject the null hypothesis for either hypothesis
posed. These results indicate that experts do not necessarily use more source code keywords than
non-experts when writing bug reports.

11.2. Discussion

We derive one main interpretation from these source code comparison results. The reason for the
differences between expert and non-expert bug reports is not because the experts are using more
keywords from source code. This does not necessarily mean that both experts and non-experts are
using source code throughout their bug reports. It could easily be the case that both experts and

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

EXPERT KNOWLEDGE AFFECTS BUG REPORTS 19

non-experts use little to no source code when describing bugs to fix. Either way, these results mean
that there must be other reasons for why expert and non-expert bug reports are not very similar.

One other possibility for the differences is that although experts are not necessarily using source
code keywords specifically, they could still be using more technical terms that non-experts do not
know. An example of this type of difference was seen during the qualitative analysis (see Section 4).
Another possibility is that the experts tend to describe more about how the bug is being caused and
how to fix it, while the non-experts tend to describe more about what the bug is actually doing and
why it is a problem. The qualitative samples have an example of this possibility, as well. We believe
that other possible reasons for differences such as these should be explored in future work.

12. RELATED WORK

Dit et al. present a technique for comparing the semantic similarity of bug reports, though this
study did not explore the differences of expert and non-expert knowledge [20]. Also, Kochhar et al.
present an analyses on the effect of different kinds of bugs on bug localization [51]. Considerable
effort has been devoted to analyzing software bug reports for software maintenance tasks,
motivated by studies of the high volume of bug reports constantly being submitted. For example,
a Mozilla developer claimed that, “everyday, almost 300 bugs appear that need triaging. This is
far too much for only the Mozilla programmers to handle” [52]. Researchers’ answers to this
problem have analyzed past changes to the system to identify which developers possess relevant
expertise [53, 54, 55, 56, 57, 58, 59]. Other approaches which take into account textual information
from bug reports, commit logs, and source code have also been proposed [60, 52, 61, 62, 63, 64, 65].

Another issue resulting from the openness of bug repositories and the high volume of reports
submitted is the presence of duplicate reports. Several techniques have been proposed to identify
duplicates, and they typically leverage information retrieval techniques to compare the descriptions
of bug reports and identify those that are textually similar [66, 67, 68, 69, 70, 71]. Note that in certain
cases, other information sources, such as execution traces, are also used to identify duplicate bug
reports [68]. Researchers have also conducted several empirical studies to investigate the impact of
authorship on code quality [72, 73], developer contributions, and working habits [74, 75, 76, 77, 78],
as well as other properties related to quality: time to fix issues, severity, and classification [79, 1, 80,
81, 82, 83, 84, 34, 85, 86].

13. CONCLUSION

We have presented a study of the textual difference between bug reports written by experts and
non-experts, with experts being defined as persons who have contributed to the source code. We
found that experts and non-experts wrote bug reports differently, as measured by textual similarity
metrics. Our results support the thesis that expert knowledge affects the way in which people write
bug reports. We also found that this difference is relevant for software maintenance researchers
because it affects the performance of software maintenance research tools. Additionally, we found

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

20 P. RODEGHERO, ET. AL

no evidence that the cause of these differences can be attributed to the increased usage of terms from
the source code in expert bug reports.

ACKNOWLEDGEMENTS

The authors would like to thank the Eclipse Foundation and Mozilla Foundation for providing the
repositories of data used in this paper.

REFERENCES

1. Bettenburg N, Just S, Schröter A, Weiss C, Premraj R, Zimmermann T. What makes a good bug report? Proceedings
of the 16th ACM SIGSOFT International Symposium on Foundations of software engineering, SIGSOFT ’08/FSE-
16, 2008; 308–318, doi:10.1145/1453101.1453146.

2. Bugde S, Nagappan N, Rajamani S, Ramalingam G. Global software servicing: Observational experiences at
microsoft. 2013 IEEE 8th International Conference on Global Software Engineering 2008; 0:182–191, doi:
http://doi.ieeecomputersociety.org/10.1109/ICGSE.2008.18.

3. Kagdi H, Poshyvanyk D. Who can help me with this change request? Program Comprehension, 2009. ICPC ’09.
IEEE 17th International Conference on, 2009; 273–277, doi:10.1109/ICPC.2009.5090056.

4. Anvik J, Hiew L, Murphy GC. Who should fix this bug? Proceedings of the 28th international conference on
Software engineering, ICSE ’06, 2006; 361–370, doi:10.1145/1134285.1134336.

5. Gethers M, Kagdi H, Dit B, Poshyvanyk D. An adaptive approach to impact analysis from change requests to source
code. Proceedings of the 2011 26th IEEE/ACM International Conference on Automated Software Engineering, ASE
’11, 2011; 540–543, doi:10.1109/ASE.2011.6100120.

6. Liu D, Marcus A, Poshyvanyk D, Rajlich V. Feature location via information retrieval based filtering of a single
scenario execution trace. Proceedings of the twenty-second IEEE/ACM international conference on Automated
software engineering, 2007; 234–243, doi:10.1145/1321631.1321667.

7. Poshyvanyk D, Gethers M, Marcus A. Concept location using formal concept analysis and information retrieval.
ACM Trans. Softw. Eng. Methodol. Feb 2013; 21(4):23:1–23:34, doi:10.1145/2377656.2377660.

8. Lukins SK, Kraft NA, Etzkorn LH. Bug localization using latent dirichlet allocation. Inf. Softw. Technol. Sep 2010;
52(9):972–990, doi:10.1016/j.infsof.2010.04.002.

9. Antoniol G, Canfora G, Casazza G, De Lucia A, Merlo E. Recovering traceability links between code and
documentation. IEEE Trans. Softw. Eng. Oct 2002; 28(10):970–983, doi:10.1109/TSE.2002.1041053.

10. Mockus A, Fielding RT, Herbsleb JD. Two case studies of open source software development: Apache and mozilla.
ACM Trans. Softw. Eng. Methodol. Jul 2002; 11(3):309–346, doi:10.1145/567793.567795.

11. Jarzabek S. Effective Software Maintenance and Evolution: A Reuse-Based Approach. 2007.
12. Nosek JT, Palvia P. Software maintenance management: Changes in the last decade. Journal of Software

Maintenance: Research and Practice 1990; 2(3):157–174, doi:10.1002/smr.4360020303.
13. Letovsky S. Cognitive processes in program comprehension. Journal of Systems and Software 1987; 7(4):325 –

339, doi:http://dx.doi.org/10.1016/0164-1212(87)90032-X.
14. Levesque LL, Wilson JM, Wholey DR. Cognitive divergence and shared mental models in software development

project teams. Journal of Organizational Behavior 2001; 22(2):135–144, doi:10.1002/job.87.
15. Begel A, Simon B. Struggles of new college graduates in their first software development job. 39th SIGCSE

technical symposium on Computer science education, 2008; 226–230, doi:10.1145/1352135.1352218.
16. Bacchelli A, Bird C. Expectations, outcomes, and challenges of modern code review. Proceedings of the 2013

International Conference on Software Engineering, IEEE Press, 2013; 712–721.
17. Hofman R. Behavioral economics in software quality engineering. Empirical Softw. Engg. Apr 2011; 16(2):278–

293, doi:10.1007/s10664-010-9140-x.
18. Ko A. Mining whining in support forums with frictionary. CHI ’12 Extended Abstracts on Human Factors in

Computing Systems, CHI EA ’12, 2012; 191–200, doi:10.1145/2212776.2212797.
19. Bettenburg N, Premraj R, Zimmermann T, Kim S. Duplicate bug reports considered harmful... really? Software

Maintenance, 2008. ICSM 2008. IEEE International Conference on, 2008; 337–345, doi:10.1109/ICSM.2008.
4658082.

20. Dit B, Poshyvanyk D, Marcus A. Measuring the semantic similarity of comments in bug reports. Proc. of 1st STSM
2008; 8.

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

EXPERT KNOWLEDGE AFFECTS BUG REPORTS 21

21. Voorhees EM. Using wordnet to disambiguate word senses for text retrieval. Proceedings of the 16th annual
international ACM SIGIR conference on Research and development in information retrieval, SIGIR ’93, 1993;
171–180, doi:10.1145/160688.160715.

22. Krovetz R, Croft WB. Lexical ambiguity and information retrieval. ACM Trans. Inf. Syst. Apr 1992; 10(2):115–141,
doi:10.1145/146802.146810.

23. Sanderson M, Van Rijsbergen CJ. The impact on retrieval effectiveness of skewed frequency distributions. ACM
Trans. Inf. Syst. Oct 1999; 17(4):440–465, doi:10.1145/326440.326447.

24. Li Y, Bandar ZA, McLean D. An approach for measuring semantic similarity between words using multiple
information sources. IEEE Trans. on Knowl. and Data Eng. Jul 2003; 15(4):871–882, doi:10.1109/TKDE.2003.
1209005.

25. Croft D, Coupland S, Shell J, Brown S. A fast and efficient semantic short text similarity metric. Computational
Intelligence (UKCI), 2013 13th UK Workshop on, 2013; 221–227, doi:10.1109/UKCI.2013.6651309.

26. Zhou J, Zhang H, Lo D. Where should the bugs be fixed? more accurate information retrieval-based bug localization
based on bug reports. Software Engineering (ICSE), 2012 34th International Conference on, 2012; 14–24, doi:
10.1109/ICSE.2012.6227210.

27. Panichella A, Dit B, Oliveto R, Di Penta M, Poshyvanyk D, De Lucia A. How to effectively use topic models
for software engineering tasks? an approach based on genetic algorithms. Proceedings of the 2013 International
Conference on Software Engineering, ICSE ’13, 2013; 522–531.

28. Revelle M, Poshyvanyk D. An exploratory study on assessing feature location techniques. Program Comprehension,
2009. ICPC ’09. IEEE 17th International Conference on, 2009; 218–222, doi:10.1109/ICPC.2009.5090045.

29. Wu R, Zhang H, Kim S, Cheung SC. Relink: Recovering links between bugs and changes. Proceedings of the
19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering,
ESEC/FSE ’11, 2011; 15–25, doi:10.1145/2025113.2025120.

30. Orso A, Apiwattanapong T, Law J, Rothermel G, Harrold MJ. An empirical comparison of dynamic impact analysis
algorithms. Proceedings of the 26th International Conference on Software Engineering, ICSE ’04, 2004; 491–500.

31. Ren X, Ryder BG, Stoerzer M, Tip F. Chianti: A change impact analysis tool for java programs. Proceedings of the
27th International Conference on Software Engineering, ICSE ’05, 2005; 664–665, doi:10.1145/1062455.1062598.

32. Torchiano M, Ricca F. Impact analysis by means of unstructured knowledge in the context of bug repositories.
Proceedings of the 2010 ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement, ESEM ’10, 2010; 47:1–47:4, doi:10.1145/1852786.1852847.

33. Zimmermann T, Premraj R, Zeller A. Predicting defects for eclipse. Predictor Models in Software Engineering,
2007. PROMISE’07: ICSE Workshops 2007. International Workshop on, 2007; 9–9, doi:10.1109/PROMISE.2007.
10.

34. Weiss C, Premraj R, Zimmermann T, Zeller A. How long will it take to fix this bug? Proceedings of the Fourth
International Workshop on Mining Software Repositories, MSR ’07, 2007; 1–, doi:10.1109/MSR.2007.13.

35. Kim S, Zhang H, Wu R, Gong L. Dealing with noise in defect prediction. Proceedings of the 33rd International
Conference on Software Engineering, ICSE ’11, 2011; 481–490, doi:10.1145/1985793.1985859.

36. Miller GA. Wordnet: A lexical database for english. Commun. ACM Nov 1995; 38(11):39–41, doi:10.1145/219717.
219748.

37. Canfora G, Cerulo L. How software repositories can help in resolving a new change request. In Workshop on
Empirical Studies in Reverse Engineering, 2005.

38. Linares-Vasquez M, Hossen K, Dang H, Kagdi H, Gethers M, Poshyvanyk D. Triaging incoming change requests:
Bug or commit history, or code authorship? Software Maintenance (ICSM), 2012 28th IEEE International
Conference on, 2012; 451–460, doi:10.1109/ICSM.2012.6405306.

39. ubrani D. Automatic bug triage using text categorization. In SEKE 2004: Proceedings of the Sixteenth International
Conference on Software Engineering Knowledge Engineering, 2004; 92–97.

40. Somasundaram K, Murphy GC. Automatic categorization of bug reports using latent dirichlet allocation.
Proceedings of the 5th India Software Engineering Conference, ISEC ’12, 2012; 125–130, doi:10.1145/2134254.
2134276.

41. Tamrawi A, Nguyen TT, Al-Kofahi J, Nguyen TN. Fuzzy set-based automatic bug triaging (nier track). Proceedings
of the 33rd International Conference on Software Engineering, 2011; 884–887, doi:10.1145/1985793.1985934.

42. Jeong G, Kim S, Zimmermann T. Improving bug triage with bug tossing graphs. Proceedings of the the 7th Joint
Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on The Foundations
of Software Engineering, ESEC/FSE ’09, 2009; 111–120, doi:10.1145/1595696.1595715.

43. Dit B, Revelle M, Gethers M, Poshyvanyk D. Feature location in source code: a taxonomy and survey. Journal of
Software: Evolution and Process 2013; 25(1):53–95, doi:10.1002/smr.567.

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

22 P. RODEGHERO, ET. AL

44. Marcus A, Sergeyev A, Rajlich V, Maletic J. An information retrieval approach to concept location in source code.
Reverse Engineering, 2004. Proceedings. 11th Working Conference on, 2004; 214–223, doi:10.1109/WCRE.2004.
10.

45. Cleary B, Exton C, Buckley J, English M. An empirical analysis of information retrieval based concept
location techniques in software comprehension. Empirical Softw. Engg. Feb 2009; 14(1):93–130, doi:10.1007/
s10664-008-9095-3.

46. Rao S, Kak A. Retrieval from software libraries for bug localization: A comparative study of generic and composite
text models. Proceedings of the 8th Working Conference on Mining Software Repositories, MSR ’11, 2011; 43–52,
doi:10.1145/1985441.1985451.

47. Gay G, Haiduc S, Marcus A, Menzies T. On the use of relevance feedback in ir-based concept location. Software
Maintenance, 2009. IEEE International Conference on, 2009; 351–360, doi:10.1109/ICSM.2009.5306315.

48. Poshyvanyk D, Gueheneuc YG, Marcus A, Antoniol G, Rajlich V. Feature location using probabilistic ranking of
methods based on execution scenarios and information retrieval. IEEE Trans. Softw. Eng. Jun 2007; 33(6):420–432,
doi:10.1109/TSE.2007.1016.

49. Lukins SK, Kraft NA, Etzkorn LH. Bug localization using latent dirichlet allocation. Information and Software
Technology 2010; 52(9):972 – 990, doi:http://dx.doi.org/10.1016/j.infsof.2010.04.002.

50. Smucker MD, Allan J, Carterette B. A comparison of statistical significance tests for information retrieval
evaluation. CIKM, 2007; 623–632.

51. Kochhar PS, Tian Y, Lo D. Potential biases in bug localization: Do they matter? Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering, ASE ’14, ACM: New York, NY, USA, 2014; 803–
814, doi:10.1145/2642937.2642997. URL http://doi.acm.org/10.1145/2642937.2642997.

52. Anvik J, Hiew L, Murphy GC. Who should fix this bug? Proceedings of the 28th international conference on
Software engineering, ICSE ’06, 2006; 361–370, doi:10.1145/1134285.1134336.

53. McDonald DW, Ackerman MS. Expertise recommender: a flexible recommendation system and architecture.
Proceedings of the 2000 ACM conference on Computer supported cooperative work, CSCW ’00, 2000; 231–240,
doi:10.1145/358916.358994.

54. Minto S, Murphy GC. Recommending emergent teams. Proceedings of the Fourth International Workshop on
Mining Software Repositories, MSR ’07, 2007; 5–.

55. Mockus A, Herbsleb JD. Expertise browser: a quantitative approach to identifying expertise. Proceedings of the
24th International Conference on Software Engineering, ICSE ’02, 2002; 503–512.

56. Anvik J, Murphy GC. Determining implementation expertise from bug reports. Proceedings of the Fourth
International Workshop on Mining Software Repositories, MSR ’07, 2007; 2–, doi:10.1109/MSR.2007.7.

57. Ma D, Schuler D, Zimmermann T, Sillito J. Expert recommendation with usage expertise. 2009; 535–538, doi:
http://doi.ieeecomputersociety.org/10.1109/ICSM.2009.5306386.

58. Canfora G, Cerulo L. Supporting change request assignment in open source development. Proceedings of the 2006
ACM symposium on Applied computing, SAC ’06, 2006; 1767–1772, doi:10.1145/1141277.1141693.

59. Anvik J, Murphy G. Reducing the effort of bug report triage: Recommenders for development-oriented decisions.
ACM Transactions on Software Engineering and Methodology 2011; 20(3):10.

60. Tamrawi A, Nguyen TT, Al-Kofahi JM, Nguyen TN. Fuzzy set and cache-based approach for bug triaging.
Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations of software
engineering, 2011; 365–375, doi:10.1145/2025113.2025163.

61. Song X, Tseng B, Lin CY, Sun MT. Expertisenet: Relational and evolutionary expert modeling. User Modeling
2005, Lecture Notes in Computer Science, vol. 3538, Ardissono L, Brna P, Mitrovic A (eds.). 2005; 99–108, doi:
10.1007/11527886 14.

62. Matter D, Kuhn A, Nierstrasz O. Assigning bug reports using a vocabulary-based expertise model of developers.
Proceedings of the 2009 6th IEEE International Working Conference on Mining Software Repositories, MSR ’09,
2009; 131–140, doi:10.1109/MSR.2009.5069491.

63. Kagdi H, Gethers M, Poshyvanyk D, Hammad M. Assigning change requests to software developers. Journal of
Software Maintenance and Evolution: Research and Practice (JSME) 2011; .

64. Linares-Vasquez M, Dang H, Hossen K, Kagdi H, Gethers M, Poshyvanyk D. Triaging incoming change requests:
Bug or commit history, or code authorship? 28th IEEE International Conference on Software Maintenance
(ICSM’12), Riva del Garda, Italy, 2012.

65. Čubranić D, Murphy G. Automatic bug triage using text categorization. In SEKE 2004: Proceedings of the Sixteenth
International Conference on Software Engineering & Knowledge Engineering, 2004.

66. Runeson P, Alexandersson M, Nyholm O. Detection of duplicate defect reports using natural language processing.
Proceedings of the 29th international conference on Software Engineering, ICSE ’07, 2007; 499–510, doi:
10.1109/ICSE.2007.32.

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

EXPERT KNOWLEDGE AFFECTS BUG REPORTS 23

67. Hiew L. Assisted detection of duplicate bug reports. PhD Thesis, The University Of British Columbia 2006.
68. Wang X, Zhang L, Xie T, Anvik J, Sun J. An approach to detecting duplicate bug reports using natural language

and execution information. Proceedings of the 30th international conference on Software engineering, ICSE ’08,
2008; 461–470, doi:10.1145/1368088.1368151.

69. Jalbert N, Weimer W. Automated duplicate detection for bug tracking systems. Dependable Systems and Networks
With FTCS and DCC, 2008. IEEE International Conference on, 2008; 52–61.

70. Sun C, Lo D, Wang X, Jiang J, Khoo SC. A discriminative model approach for accurate duplicate bug report
retrieval. Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - Volume 1, ICSE
’10, 2010; 45–54, doi:10.1145/1806799.1806811.

71. Sun C, Lo D, Khoo SC, Jiang J. Towards more accurate retrieval of duplicate bug reports. Proceedings of the
2011 26th IEEE/ACM International Conference on Automated Software Engineering, ASE ’11, 2011; 253–262,
doi:10.1109/ASE.2011.6100061.

72. Rahman F, Devanbu P. Ownership, experience and defects: a fine-grained study of authorship. Proceedings of the
33rd International Conference on Software Engineering, ICSE ’11, 2011; 491–500, doi:10.1145/1985793.1985860.

73. Bird C, Nagappan N, Murphy B, Gall H, Devanbu P. Don’t touch my code!: examining the effects of ownership
on software quality. Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering, ESEC/FSE ’11, 2011; 4–14, doi:10.1145/2025113.2025119.

74. German DM. A study of the contributors of postgresql. Proceedings of the 2006 international workshop on Mining
software repositories, MSR ’06, 2006; 163–164, doi:10.1145/1137983.1138022.

75. Tsunoda M, Monden A, Kakimoto T, Kamei Y, Matsumoto Ki. Analyzing oss developers’ working time using
mailing lists archives. Proceedings of the 2006 international workshop on Mining software repositories, MSR ’06,
2006; 181–182, doi:10.1145/1137983.1138031.

76. Weissgerber P, Pohl M, Burch M. Visual data mining in software archives to detect how developers work together.
Proceedings of the Fourth International Workshop on Mining Software Repositories, MSR ’07, 2007; 9–, doi:
10.1109/MSR.2007.34.

77. German DM. An empirical study of fine-grained software modifications. Empirical Softw. Engg. Sep 2006;
11(3):369–393, doi:10.1007/s10664-006-9004-6.

78. Fischer M, Pinzger M, Gall H. Populating a release history database from version control and bug tracking systems.
International Conference on Software Maintenance (ICSM’03), 2003; 23–.

79. Hooimeijer P, Weimer W. Modeling bug report quality. Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering, ASE ’07, 2007; 34–43, doi:10.1145/1321631.1321639.

80. Podgurski A, Leon D, Francis P, Masri W, Minch M, Sun J, Wang B. Automated support for classifying software
failure reports. Proceedings of the 25th International Conference on Software Engineering, ICSE ’03, 2003; 465–
475.

81. Menzies T, Marcus A. Automated severity assessment of software defect reports. Software Maintenance, 2008.
ICSM 2008. IEEE International Conference on, 2008; 346 –355, doi:10.1109/ICSM.2008.4658083.

82. Bettenburg N, Just S, Schröter A, WeißC, Premraj R, Zimmermann T. Quality of bug reports in eclipse. 2007
OOPSLA workshop on eclipse technology eXchange, 2007; 21–25, doi:10.1145/1328279.1328284.

83. Bettenburg N, Premraj R, Zimmermann T, Kim S. Duplicate bug reports considered harmful ... really? Software
Maintenance, 2008. IEEE International Conference on, 2008; 337 –345, doi:10.1109/ICSM.2008.4658082.

84. Bettenburg N, Just S, Schröter A, Weiss C, Premraj R, Zimmermann T. What makes a good bug report? Proceedings
of the 16th ACM SIGSOFT International Symposium on Foundations of software engineering, SIGSOFT ’08/FSE-
16, 2008; 308–318, doi:10.1145/1453101.1453146.

85. Kim S, Whitehead EJ Jr. How long did it take to fix bugs? Proceedings of the 2006 international workshop on
Mining software repositories, MSR ’06, 2006; 173–174, doi:10.1145/1137983.1138027.

86. Marks L, Zou Y, Hassan AE. Studying the fix-time for bugs in large open source projects. 7th International
Conference on Predictive Models in Software Engineering, 2011; 11:1–11:8, doi:10.1145/2020390.2020401.

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

24 P. RODEGHERO, ET. AL

AUTHORS’ BIOGRAPHIES

Paige Rodeghero is a Computer Science Ph.D. student at the University of
Notre Dame working under Dr. Collin McMillan. She completed her Bachelor’s
Degree at Ball State University with a major in Computer Science and a minor in
Dance Performance. Her research focuses primarily on program comprehension
and source code summarization.

Da Huo is a graduate student at the University of Notre Dame. He received his
bachelors degree in 2013 at DePauw University, with a double major in Computer
Science and Mathematics. He worked with Dr. Collin McMillan during his first
year with the study of the effects of expert knowledge on bug reports. Now, he
is focusing on research projects about data preservation, ontology, and cognitive
computing.

Tao Ding received a bachelors degree in Software Engineering from China,
and a masters degree in Computer and Information Science from Gannon
University, Pennsylvania, US. She is currently a Ph.D. student in the Department
of Information Systems at the University of Maryland, Baltimore County. Her
research interests are software engineering, natural language processing, and
applied machine learning.

Dr. Collin McMillan is an Assistant Professor at the University of Notre
Dame. He completed his Ph.D. in 2012 at the College of William and Mary,
focusing on source code search and traceability technologies for program reuse
and comprehension. Since joining Notre Dame, his work has focused on source
code summarization and efficient reuse of executable code. Dr. McMillan’s work
has been recognized with the National Science Foundation’s CAREER award.

Dr. Malcom Gethers was an Assistant Professor in the Information Systems
Department at the University of Maryland, Baltimore County until 2014. He
completed his Ph.D. in 2012 at William and Mary where he was a member of the
SEMERU research group. His research interests include software engineering,
software maintenance and evolution, mining of software repositories, feature
location, software measurement, and traceability link recovery and management.

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

EXPERT KNOWLEDGE AFFECTS BUG REPORTS 25

Table I. Information on the bug repositories used for the textual similarities and developer recommendation
studies.

Repository Eclipse Mozilla Total
Number of Projects 50 30 80
Number of Developers 1517 1562 3079
Number of Filtered Developers 21 24 45
Number of Bug Reports 214k 196k 410k
Number of Duplicates 37k 231k 268k

Expert vs. Expert 16k 26k 42k
Expert vs. Non-Expert 5k 53k 58k
Non-Expert vs. Non-Expert 16k 152k 168k

Table II. Amount of reports from the two projects from BugLocator used for the feature location study
(Historical Weighting Factor α = 0.2)

Project Type Amount # of source files

SWT
All 98 265

Expert 65 201
NonExpert 38 64

Eclipse
All 3070 10040

Expert 2497 8447
NonExpert 573 1593

Table III. Developer Recommendations for Eclipse and Mozilla. Training sample size was 9000. Testing
sample size was 1000.

Sample Size(Training/Testing) Eclipse Accuracy Mozilla Accuracy
All 0.8 0.68

AllLong 0.75 0.70
E 0.81 0.64

EL 0.74 0.58
NE 0.81 0.64

NEL 0.75 0.58

Table IV. Feature Location of SWT (Historical Weighting Factor α = 0.2)

MHR Top 1 Top 5 Top 10 Top 20 Top 50

All 12.4 35/98 64/98 72/98 84/98 94/98
(36%) (65%) (73%) (86%) (96%)

AllLong 8.46 36/98 69/98 80/98 89/98 96/98
(37%) (70%) (82%) (91%) (98%)

E 8.49 23/65 41/65 46/65 56/65 64/65
(35%) (63%) (71%) (86%) (98%)

EL 10.63 21/65 44/65 50/65 59/65 63/65
(32%) (68%) (77%) (91%) (97%)

NE 21.68 11/33 20/33 24/33 29/33 29/33
(33%) (61%) (73%) (88%) (88%)

NEL 5.27 15/33 22/33 29/33 30/33 33/33
(45%) (67%) (88%) (91%) (100%)

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

26 P. RODEGHERO, ET. AL

Table V. Feature Location of Eclipse (Historical Weighting Factor α = 0.3)

MHR Top 1 Top 5 Top 10 Top 20 Top 50

All 380.6 668/3070 1231/3070 1479/3070 1709/3070 2039/3070
(22%) (40%) (48%) (56%) (66%)

AllLong 135.46 987/3070 1726/3070 2030/3070 2265/3070 2518/3070
(32%) (56%) (66%) (74%) (82%)

E 393.77 558/2497 1726/2497 2030/2497 2265/2497 2518/2497
(22%) (41%) (49%) (56%) (67%)

EL 129.28 795/2497 1427/2497 1669/2497 1859/2497 2048/2497
(32%) (57%) (67%) (74%) (81%)

NE 426.58 107/573 180/573 227/573 276/573 344/573
(19%) (31%) (40%) (48%) (60%)

NEL 211 165/573 275/573 337/573 393/573 443/573
(29%) (48%) (59%) (69%) (77%)

Table VI. Mean Highest Rank of SWT with α as the Historical Weighting Factor. Means do not include
α = 1.

α All AllLong E EL NE NEL
0 13.92 9.38 6.56 11.15 22.51 5.88

0.1 13.07 8.82 9.01 10.72 22.06 5.39
0.2 12.44 8.46 8.49 10.63 21.58 5.27
0.3 11.88 8.47 8.45 10.75 21.33 5.3
0.4 11.71 8.8 8.28 11.09 21.18 5.3
0.5 11.83 9.26 8.29 11.86 21.27 6.03
0.6 12.01 9.84 8.49 12.65 21.33 6.42
0.7 12.17 10.71 8.63 13.33 21.39 7.36
0.8 12.45 11.72 9.01 14.36 21.36 8.24
0.9 13.08 13.59 9.71 15.23 21.36 9.45
1 140.52 88.91 156.32 90.32 200.06 160.58

Mean(0-0.9) 12.46 9.91 8.49 12.18 21.54 6.46

Table VII. Mean Highest Rank of Eclipse with α as the Historical Weighting Factor. Means do not include
α = 1.

α All AllLong E EL NE NEL
0 420.96 149.21 417.5 149.26 477.25 152.93

0.3 393.05 144.44 384.02 129.71 508.9 134.14
0.5 380.43 129.27 417.94 141.53 550.61 147.06
1 2857.71 2293.75 2885.21 2230.18 3894.08 3436.27

Mean(0,0.3,0.5) 398.15 140.97 406.49 140.17 512.25 144.71

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

EXPERT KNOWLEDGE AFFECTS BUG REPORTS 27

Table VIII. Statistical summary of the results for AQ1. Mann-Whitney test values are U , Uexpt, and Uvari.
Decision criteria is p. A “Sample” is a similarity value for one pair of duplicate bug reports.

H Metric Method Area Samples x̃ µ Vari. U Uexpt Uvari p Decision

H1 STASIS Expert-Expert 44717 0.607 0.607 0.020 3.450×109 -5.096×108 1.350×1014 <0.0001 RejectNonEx.-NonEx. 169305 0.619 0.619 0.011

H2 STASIS Expert-Expert 44717 0.607 0.607 0.020 1.346×109 -8.166×108 2.315×1013 <0.0001 RejectExpert-NonEx. 59565 0.597 0.597 0.008

H3 STASIS NonEx.-NonEx. 169305 0.619 0.619 0.011 5.620×109 7.474×108 1.923×1014 <0.0001 RejectExpert-NonEx. 59565 0.597 0.597 0.008

H4 LSS Expert-Expert 44644 0.979 0.968 0.002 2.963×109 -5.167×108 1.347×1014 <0.0001 RejectNonEx.-NonEx. 169264 0.985 0.978 0.001

H5 LSS Expert-Expert 44644 0.979 0.968 0.002 1.167×109 -8.187×108 2.307×1013 <0.0001 RejectExpert-NonEx. 59526 0.983 0.975 0.001

H6 LSS NonEx.-NonEx. 169264 0.985 0.978 0.001 5.583×109 7.428×108 1.921×1014 <0.0001 RejectExpert-NonEx. 59526 0.983 0.975 0.001

Table IX. Mann-Whitney Test Result of Ranking Score in Developer Recommendation Test. Critical Z value
is 1.949964.

Project H Comparison Sample x̃ µ Vari. U Z p(two-tail) Decision

Mozilla H7

E. 1000 3.262 3.262 24.013 497995 -0.155 0.877 Fail to rejectNE. 1000 3.248 3.248 24.111
EL. 1000 3.985 3.985 30.764 499633 -0.028 0.978 Fail to rejectNEL. 1000 3.99 3.99 30.654

Eclipse H7

E. 1000 1.716 1.665 11.08386 499927.5 -0.006 0.996 Fail to rejectNE. 1000 1.72 1.716 11.795
EL. 1000 2.223 2.198 15.198 459685.5 0.001 0.02 RejectNEL. 1000 2.215 15.162 2.223

Table X. Mann-Whitney Test Results of Similarity Score in Feature Location Test. Critical Z value is
1.949964.

Project H Comparison Sample x̃ µ Vari. U p(two-tail) Decision

SWT H8

E. 201 0.269 0.269 0.098 4555.5 -3.514 <0.001 RejectNE. 64 0.387 0.387 0.096
EL. 201 0.383 0.383 0.087 4864 -2.936 0.003 RejectNEL. 64 0.506 0.506 0.074

Eclipse H8

E. 8447 0.260 0.26 0.065 6489003.5 -2.253 0.024 RejectNE. 1593 0.278 0.278 0.056
EL. 8447 0.335 0.335 0.067 6311668 -3.924 <0.001 RejectNEL. 1593 0.352 0.352 0.054

Table XI. Statistical summary of the results for RQ7. Mann-Whitney test value is U , and decision criteria is
p. A “Sample” is a similarity value for one bug report paired with its relevant source code. Critical Z value

is 1.96.

H Metric Method Area Samples x̃ µ Vari. U Z p(two− tailed) Decision

H9 STASIS Expert-Code 2497 0.3968 0.4023 0.008159 753536 1.91054 0.0550236 Fail to RejectNonEx.-Code 573 0.4074 0.4073 0.008041

H10 LSS Expert-Code 2497 0.7931 0.8205 0.0134 741614 1.28853 0.1974036 Fail to RejectNonEx.-Code 573 0.7880 0.8134 0.01367

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

