
Exemplar: A Source Code Search Engine
for Finding Highly Relevant Applications

Collin McMillan, Member, IEEE, Mark Grechanik, Member, IEEE, Denys Poshyvanyk, Member, IEEE,

Chen Fu, Member, IEEE, and Qing Xie, Member, IEEE

Abstract—A fundamental problem of finding software applications that are highly relevant to development tasks is the mismatch

between the high-level intent reflected in the descriptions of these tasks and low-level implementation details of applications. To reduce

this mismatch we created an approach called EXEcutable exaMPLes ARchive (Exemplar) for finding highly relevant software projects

from large archives of applications. After a programmer enters a natural-language query that contains high-level concepts (e.g., MIME,

datasets), Exemplar retrieves applications that implement these concepts. Exemplar ranks applications in three ways. First, we

consider the descriptions of applications. Second, we examine the Application Programming Interface (API) calls used by applications.

Third, we analyze the dataflow among those API calls. We performed two case studies (with professional and student developers) to

evaluate how these three rankings contribute to the quality of the search results from Exemplar. The results of our studies show that

the combined ranking of application descriptions and API documents yields the most-relevant search results. We released Exemplar

and our case study data to the public.

Index Terms—Source code search engines, information retrieval, concept location, open source software, mining software

repositories, software reuse

Ç

1 INTRODUCTION

PROGRAMMERS face many challenges when attempting to
locate source code to reuse [42]. One key problem of

finding relevant code is the mismatch between the high-
level intent reflected in the descriptions of software and
low-level implementation details. This problem is known as
the concept assignment problem [6]. Search engines have been
developed to address this problem by matching keywords
in queries to words in the descriptions of applications,
comments in their source code, and the names of program
variables and types. These applications come from reposi-
tories which may contain thousands of software projects.
Unfortunately, many repositories are polluted with poorly
functioning projects [21]; a match between a keyword from
the query with a word in the description or in the source
code of an application does not guarantee that this
application is relevant to the query.

Many source code search engines return snippets of code
that are relevant to user queries. Programmers typically
need to overcome a high cognitive distance [25] to under-
stand how to use these code snippets. Moreover, many of
these code fragments are likely to appear very similar [12].
If code fragments are retrieved in the contexts of executable
applications, it makes it easier for programmers to under-
stand how to reuse these code fragments.

Existing code search engines (e.g., Google Code Search,
SourceForge (SF)) often treat code as plain text where all
words have unknown semantics. However, applications
contain functional abstractions in a form of API calls whose
semantics are well defined. The idea of using API calls to
improve code search was proposed and implemented
elsewhere [14], [8]; however, it was not evaluated over a
large codebase using a standard information retrieval
methodology [30, pages 151-153].

We created an application search system called EXEcu-
table exaMPLes ARchive (Exemplar) as part of our Searching,
Selecting, and Synthesizing (S3) architecture [35]. Exemplar
helps users find highly relevant executable applications for
reuse. Exemplar combines three different sources of in-
formation about applications in order to locate relevant
software: the textual descriptions of applications, the API
calls used inside each application, and the dataflow among
those API calls. We evaluated the contributions by these
different types of information in two separate case studies.
First, in Section 6, we compared Exemplar (in two config-
urations) to SourceForge. We analyzed the results of that
study in Section 7 and created a new version of Exemplar. We
evaluated our updates to Exemplar in Section 8. Our key
finding is that our search engine’s results improved when
considering the API calls in applications instead of only the
applications’ descriptions. We have made Exemplar and the
results of our case studies available to the public.1

2 EXEMPLAR APPROACH

2.1 The Problem

A direct approach for finding highly relevant applications is
to search through the descriptions and source code of
applications to match keywords from queries to the names

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 5, SEPTEMBER/OCTOBER 2012 1069

. C. McMillan and D. Poshyvanyk are with the Department of Computer
Science, College of William & Mary, Williamsburg, VA 23185.
E-mail: {cmc, denys}@cs.wm.edu.

. M. Grechanik, C. Fu, and Q. Xie are with Accenture Technology Labs,
Chicago, IL 60601.
E-mail: {mark.grechanik, chen.fu, qing.xie}@accenture.com.

Manuscript received 21 Oct. 2010; revised 2 July 2011; accepted 14 July 2011;
published online 10 Aug. 2011.
Recommended for acceptance by K. Inoue.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2010-10-0313.
Digital Object Identifier no. 10.1109/TSE.2011.84. 1. http://www.xemplar.org (verified 03/28/2011).

0098-5589/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

of program variables and types. This approach assumes that
programmers choose meaningful names when creating
source code, which is often not the case [2].

This problem is partially addressed by programmers
who create meaningful descriptions of the applications in
software repositories. However, state-of-the-art search
engines use exact matches between the keywords from
queries, the words in the descriptions, and the source code
of applications. Unfortunately, it is difficult for users to
guess exact keywords because “no single word can be
chosen to describe a programming concept in the best way”
[11]. The vocabulary chosen by a programmer is also related
to the concept assignment problem because the terms in the
high-level descriptions of applications may not match terms
from the low-level implementation (e.g., identifier names
and comments).

2.2 Key Ideas

Suppose that a programmer needs to encrypt and compress
data. A programmer will naturally turn to a search engine
such as SourceForge2 and enter keywords such as encrypt
and compress. The programmer then looks at the source
code of the programs returned by these search engines to
check to see if some API calls are used to encrypt and
compress data. The presence of these API calls is a good
starting point for deciding whether to check these applica-
tions further.

What we seek is to augment standard code search to
include help documentations of widely used libraries, such
as the standard Java Development Kit (JDK).3 Existing
engines allow users to search for specific API calls, but
knowing in advance what calls to search for is hard. Our
idea is to match keywords from queries to words in help
documentation for API calls. These help documents are
descriptions of the functionality of API calls as well as the
usage of those calls. In Exemplar, we extract the help
documents that come in the form of JavaDocs. Programmers
trust these documents because the documents come from
known and respected vendors, were written by different
people, were reviewed multiple times, and have been used
by other programmers who report their experience at
different forums [10].

We also observe that relations between concepts entered
in queries are often reflected as dataflow links between API
calls that implement these concepts in the program code.
This observation is closely related to the concept of the
software reflexion models formulated by Murphy, Notkin, and
Sullivan. In these models, relations between elements of
high-level models (e.g., processing elements of software

architectures) are preserved in their implementations in
source code [33], [32]. For example, if the user enters
keywords secure and send and the corresponding API
calls encrypt and email are connected via some dataflow,
then an application with these connected API calls is more
relevant to the query than applications where these calls are
not connected.

Consider two API calls string encrypt() and void

email(string). After the call encrypt is invoked, it
returns a string that is stored in some variable. At some later
point a call to the function email is made and the variable
is passed as the input parameter. In this case these functions
are connected using a dataflow link which reflects the
implicit logical connection between keywords in queries.
Specifically, the data should be encrypted and then sent to
some destination.

2.3 Motivating Example

Exemplar returns applications that implement the tasks
described by the keywords in user queries. Consider the
following task: Find an application for sharing, viewing,
and exploring large datasets that are encoded using MIME,
and the data can be stored using key value pairs. Using the
following keywords, MIME, type, data, an unlikely
candidate application called BIOLAP is retrieved using
Exemplar with a high ranking score. The description of this
application matches only the keyword data, and yet this
application made it to the top 10 of the list.

BIOLAP uses the class MimeType, specifically its
method getParameterMap, because it deals with MIME-
encoded data. The descriptions of this class and this method
contain the desired keywords, and these implementation
details are highly relevant to the given task. BIOLAP does
not show on the top 300 list of retrieved applications when
the search is performed with the SourceForge search engine.

2.4 Fundamentals of Exemplar

Consider the process for standard search engines (e.g.,
Sourceforge, Google code search,4 Krugle5) shown in Fig. 1a.
A keyword from the query is matched against words in the
descriptions of the applications in some repository (Source-
forge) or words in the entire corpus of source code (Google
Code Search, Krugle). When a match is found, applications
app1 to appn are returned.

Consider the process for Exemplar shown in Fig. 1b.
Keywords from the query are matched against the descrip-
tions of different documents that describe API calls of
widely used software packages. When a match is found, the
names of the API calls call1 to callk are returned. These
names are matched against the names of the functions

1070 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 5, SEPTEMBER/OCTOBER 2012

Fig. 1. Illustrations of the processes for standard and Exemplar search engines.

2. http://sourceforge.net/ (verified 03/28/2011).
3. http://www.oracle.com/technetwork/java/javase/downloads/

index.html (verified 03/28/2011).
4. http://www.google.com/codesearch (verified 03/28/2011).
5. http://opensearch.krugle.org (verified 03/28/2011).

invoked in these applications. When a match is found,
applications app1 to appn are returned.

In contrast to the keyword matching functionality of
standard search engines, Exemplar matches keywords with
the descriptions of the various API calls in help documents.
Since a typical application invokes many API calls, the help
documents associated with these API calls are usually
written by different people who use different vocabularies.
The richness of these vocabularies makes it more likely to
find matches, and produce API calls APIcall1 to APIcallk.
If some help document does not contain a desired match,
some other document may yield a match. This is how we
address the vocabulary problem [11].

As it is shown in Fig. 1b, API calls APIcall1, APIcall2,
and APIcall3 are invoked in the app1. It is less probable that
the search engine fails to find matches in help documents
for all three API calls, and therefore the application app1

will be retrieved from the repository.
Searching help documents produces additional benefits.

API calls from help documents (that match query key-
words) are linked to locations in the project source code
where these API calls are used, thereby allowing program-
mers to navigate directly to these locations and see how
high-level concepts from queries are implemented in the
source code. Doing so solves an instance of the concept
location problem [34].

3 RANKING SCHEMES

3.1 Components of Ranking

There are three components that compute different scores in
the Exemplar ranking mechanism: a component that
computes a score based on word occurrences in project
descriptions (WOS), a component that computes a score
based on the relevant API calls (RAS), and a component that
computes a score based on dataflow connections between
these calls (DCS). The total ranking score is the weighted
sum of these three ranking scores.

We designed each ranking component to produce results
from different perspectives (e.g., application descriptions,
API calls, and dataflows among the API calls). The following
three sections describe the components. Section 4 discusses
the implementation of the components and includes
important technical limitations that we considered when
building Exemplar. We examine how WOS, RAS, and DCS
each contribute to the results given by Exemplar in
Section 7. Section 7 also covers the implications of our
technical considerations.

3.2 WOS Ranking Scheme

The WOS component uses the Vector Space Model (VSM),
which is a ranking function used by search engines to rank
matching documents according to their relevance to a given
search query. VSM is a bag-of-words retrieval technique
that ranks a set of documents based on the terms appearing
in each document as well as the query. Each document is
modeled as a vector of the terms it contains. The weights of
those terms in each document are calculated in accordance
to the Term Frequency/Inverse Document Frequency (TF/IDF).
Using TF/IDF, the weight for a term is calculated as
tf ¼ nP

k
nk

, where n is the number of occurrences of the

term in the document, and
P

k nk is the sum of the number
of occurrences of the term in all documents. Then, the
similarities among the documents are calculated using the
cosine distance between each pair of documents
cosð�Þ ¼ d1�d2

d1k k d2k k , where d1 and d2 are document vectors.

3.3 RAS Ranking Scheme

The documents in our approach are the different docu-
ments that describe each API call (e.g., each JavaDoc). The
collection of API documents is defined as DAPI ¼ ðD1

API;
D2
API; . . . ; Dk

APIÞ. A corpus is created from DAPI and
represented as the term-by-document m� k matrix M,
where m is the number of terms and k is the number of API
documents in the collection. A generic entry a½i; j� in this
matrix denotes a measure of the weight of the ith term in
the jth API document [40].

API calls that are relevant to the user query are obtained
by ranking documents, DAPI , that describe these calls as
relevant to the query Q. This relevance is computed as a
conceptual similarity, C, (i.e., the length-normalized inner
product) between the user query, Q, and each API docu-
ment,DAPI . As a result the set of triples hA;C; ni is returned,
whereA is the API call, n is the number of occurrences of this
API call in the application with the conceptual similarity, C,
of the API call documentation to query terms.

The API call-based ranking score for the application, j, is
computed as

Sjras ¼
Pp

i¼1 n
j
i � C

j
i

jAjj
;

where jAjj is the total number of API calls in the application j
and p is the number of API calls retrieved for the query.

3.4 DCS Ranking Scheme

To improve the precision of ranking we derive the
structure of connections between API calls and use this
structure as an important component in computing
rankings. The standard syntax for invoking an API call is
t var ¼ o:callnameðp1; . . . ; pnÞ. The structural relations
between API calls reflect compositional properties between
these calls. Specifically, it means that API calls access and
manipulate data at the same memory locations.

There are four types of dependencies between API
calls: input, output, true, and antidependence [31, page
268]. True dependence occurs when the API call f write a
memory location that the API call g later reads (e.g.,
var ¼ fð. . .Þ; . . . ; gðvar; . . .Þ; Þ. Antidependence occurs when
the API call f reads a memory location that the API call g
later writes (e.g., fðvar; . . .Þ; . . . ; var ¼ gð. . .Þ; Þ. Output
dependence occurs when the API calls f and g write the
same memory location. Finally, input dependence occurs
when the API calls f and g read the same memory location.

Consider an all-connected graph (i.e., a clique) where
nodes are API calls and the edges represent dependencies
among these calls for one application. The absence of an
edge means that there is no dependency between two API
calls. Let the total number of connections among n retrieved
API calls be less than or equal to nðn� 1Þ. Let a connection
between two distinct API calls in the application be defined
as Link; we assign some weight w to this Link based on the

MCMILLAN ET AL.: EXEMPLAR: A SOURCE CODE SEARCH ENGINE FOR FINDING HIGHLY RELEVANT APPLICATIONS 1071

strength of the dataflow or control flow dependency type.
The ranking is normalized to be between 0 and 1.

The API call connectivity-based ranking score for the
application, j, is computed as

Sjdcs ¼
Pnðn�1Þ

i¼1 wji
nðn� 1Þ ;

where wi is the weight to each type of flow dependency for
the given link Link such that 1 > wtruei > wantii > woutputi >
winputi > 0. The intuition behind using this order is that these
dependencies contribute differently to ranking heuristics.
Specifically, using the values of the same variable in two
API calls introduces a weaker link as compared to the true
dependency where one API call produces a value that is
used in some other API call.

3.5 Integrated Scheme

The final ranking score is computed as S ¼ �wosSwos þ
�rasSras þ �dcsSdcs, where � is the interpolation weight for
each type of the score. These weights are determined
independently of queries, unlike the scores, which are
query dependent. Adjusting these weights enables experi-
mentation with how underlying structural and textual
information in application affects resulting ranking scores.
The formula for S remains the same throughout this paper,
and all three weights were equal during the case study in
Section 5. We explore alterations to Exemplar, including �,
based on the case study results in Section 7.

4 IMPLEMENTATION DETAILS

Fig. 2 shows the architecture of Exemplar. In this section,
we step through Fig. 2 and describe some technical details
behind Exemplar.

Two crawlers, Application Extractor and API Call Extractor,
populate Exemplar with data from SourceForge. We
currently have run the crawlers on SourceForge and
obtained more than 8,000 Java projects containing 414,357
files.6 The Application Extractor downloads the applica-
tions and extracts the descriptions and source code of those

applications (the Application Metadata (1)). The API Call
Extractor crawls the source code from the applications for
the API calls that they use, the descriptions of the API calls,
and the dataflow among those calls (the API Call Metadata
(2)). The API Call Extractor ran with 65 threads for over
50 hours on 30 computers: Three machines have two dual-
core 3.8 Ghz EM64T Xeon processors with 8 Gb RAM, two
have four 3.0 Ghz EM64T Xeon CPUs with 32 Gb RAM, and
the rest have one 2.83 Ghz quad-core CPU and 2 Gb RAM.
The API Call Extractor found nearly 12 million API
invocations from the JDK 1.5 in the applications. It also
processes the API calls for their descriptions, which in our
case are the JavaDocs for those API calls.

Our approach relies on the tool PMD7 for computing
approximate dataflow links, which are based on the patterns
described in Section 3.4. PMD extracts data from individual
Java source files, so we are only able to locate dataflow links
among the API calls as they are used in any one file. We
follow the variables visible in each scope (e.g., global
variables plus those declared in methods). We then look at
each API call in the scope of those variables. We collect the
input parameters and output of those API calls. We then
analyze this input and output for dataflow. For example, if
the output of one API call is stored in a variable which is then
used as input to another API call, then there is dataflow
between those API calls. Note that our technique is an
approximation and can produce both false positive and false
negatives. Determining the effects of this approximation on
the quality of Exemplar’s results is an area of future work.

The Retrieval Engine locates applications in two ways
(3). First, the input to the Retrieval Engine is the user
query, and the engine matches keywords in this query (5)

to keywords in the descriptions of applications. Second, the
Retrieval Engine finds descriptions of API calls which
match keywords.8 The Retrieval Engine then locates
applications which use those API calls. The engine outputs
a list of Retrieved Applications (6).

The Ranking Engine uses the three ranking schemes from
Section 3 (WOS, RAS, and DCS) to sort the list of retrieved
applications (7). The Ranking Engine depends on three
sources of information: descriptions of applications, the API
calls used by each application, and the dataflow among
those API calls (4). The Ranking Engine uses Lucene,9

which is based on VSM, to implement WOS. The combina-
tion of the ranking schemes (see Section 3.5) determines the
relevancy of the applications. The Relevant Applications are
then presented to the user (8).

5 CASE STUDY DESIGN

Typically, search engines are evaluated using manual
relevance judgments by experts [30, pages 151-153]. To
determine how effective Exemplar is, we conducted a case
study with 39 participants who are professional program-
mers. We gave a list of tasks described in English. Our goal is
to evaluate how well these participants can find applications

1072 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 5, SEPTEMBER/OCTOBER 2012

Fig. 2. Exemplar architecture.

6. We ran the crawlers in August 2009.

7. http://pmd.sourceforge.net/ (verified 03/28/2011).
8. Exemplar limits the number of relevant API calls it retrieves for each

query to 200. This limit was necessary due to performance constraints. See
Section 7.4.

9. http://lucene.apache.org (verified 03/28/2011).

that match given tasks using three different search engines:

Sourceforge (SF) and Exemplar with (EWD) and without

(END) dataflow links as part of the ranking mechanism. We

chose to compare Exemplar with Sourceforge because the

latter has a popular search engine with the largest open

source Java project repository, and Exemplar is populated

with Java projects from this repository.

5.1 Methodology

We used a cross-validation study design in a cohort of

39 participants who were randomly divided into three

groups. We performed three separate experiments during

the study. In each experiment, each group was given a

different search engine (i.e., SF, EWD, or END), as shown in

Table 1. Then, in the experiments each group would be

asked to use a different search engine than that group had

used before. The participants would use the assigned engine

to find applications for given tasks. Each group used a

different set of tasks in each experiment. Thus, each

participant used each search engine on different tasks in

this case study. Before the study we gave a one-hour tutorial

on using these search engines to find applications for tasks.
Each experiment consisted of three steps. First, partici-

pants translated tasks into a sequence of keywords that

described key concepts of applications that they needed to

find. Then, participants entered these keywords as queries

into the search engines (the order of these keywords does

not matter) and obtained lists of applications that were

ranked in descending order.
The next step was to examine the returned applications

and to determine if they matched the tasks. Each participant

accomplished this step by him or herself, assigning a

confidence level, C, to the examined applications using a

four-level Likert scale. We asked participants to examine

only the top 10 applications that resulted from their

searches. We evaluated only the top 10 results because

users of search engines rarely look beyond the 10th result

[13] and because other source code search engines have

been evaluated using the same number of results [19].
The guidelines for assigning confidence levels are the

following:

1. Completely irrelevant—there is absolutely nothing
that the participant can use from this retrieved
project, nothing in it is related to your keywords.

2. Mostly irrelevant—only a few remotely relevant
code snippets or API calls are located in the project.

3. Mostly relevant—a somewhat large number of
relevant code snippets or API calls in the project.

4. Highly relevant—the participant is confident that
code snippets or API calls in the project can be
reused.

Twenty-six participants were Accenture employees who
work on consulting engagements as professional Java
programmers for different client companies. The remaining
13 participants were graduate students from the University of
Illinois at Chicago who have at least six months of Java
experience. The Accenture participants had different back-
grounds, experience, and belonged to different groups of the
total Accenture workforce of approximately 180,000 employ-
ees. Out of 39 participants, 17 had programming experience
with Java ranging from one to three years, and 22 participants
reported more than three years of experience writing
programs in Java. Eleven participants reported prior experi-
ence with Sourceforge (which is used in this case study),
18 participants reported prior experience with other search
engines, and 11 said that they never used code search engines.
Twenty-six participants had bachelor degrees and 13 had
master’s degrees in different technical disciplines.

5.2 Precision

The two main measures for evaluating the effectiveness of
retrieval are precision and recall [49, page 188-191]. The
precision is calculated as Pr ¼ relevant

retrieved , where relevant is
the number of retrieved applications that are relevant and
retrieved is the total number of applications retrieved.
The precision of a ranking method is the fraction of the top r
ranked documents that are relevant to the query, where
r ¼ 10 in this case study. Relevant applications are counted
only if they are ranked with the confidence levels 4 or 3.
The precision metrics reflects the accuracy of the search.
Since we limit the investigation of the retrieved applications
to top 10, the recall is not measured in this study.

5.3 Discounted Cumulative Gain (DCG)

Discounted Cumulative Gain is a metric for analyzing the
effectiveness of search engine results [1]. The intuition
behind DCG is that search engines should not only return
relevant results, but should rank those results by relevancy.
Therefore, DCG rewards search engines for ranking relevant
results above irrelevant ones. We calculate the DCG for the
top 10 results from each engine because we collect confidence
values for these results. We compute DCG according to this
formula: G ¼ C1 þ

P10
i¼2

Ci
log2 i

, where C1 is the confidence
value of the result in the first position andCi is the confidence
value of the result in the ith position. We normalize the DCG
using the following formula: NG ¼ G

iG , where iG is the ideal
DCG in the case when the confidence value for the first
10 results is always 4 (indicating that all 10 results are highly
relevant). We refer to normalized DCG as NG in the
remainder of this paper.

5.4 Hypotheses

We introduce the following null and alternative hypotheses
to evaluate how close the means are for the confidence
levels (Cs) and precisions (Ps) for control and treatment
groups. Unless we specify otherwise, participants of the
treatment group use either END or EWD, and participants

MCMILLAN ET AL.: EXEMPLAR: A SOURCE CODE SEARCH ENGINE FOR FINDING HIGHLY RELEVANT APPLICATIONS 1073

TABLE 1
Plan for the Case Study of Exemplar and Sourceforge

of the control group use SF. We seek to evaluate the
following hypotheses at a 0.05 level of significance:

. H0-null: The primary null hypothesis is that there is
no difference in the values of confidence level and
precision per task between participants who use SF,
EWD, and END.

. H0-alt: An alternative hypothesis to H0�null is that
there is a statistically significant difference in the
values of confidence level and precision between
participants who use SF, EWD, and END.

Once we test the null hypothesis H0�null, we are
interested in the directionality of means, �, of the results
of control and treatment groups. We are interested to
compare the effectiveness of EWD versus the END and SF
with respect to the values of C, P , and NG.

. H1 (C of EWD versus SF): The effective null hypothesis
is that �EWD

C ¼ �SFC , while the true null hypothesis is
that �EWD

C � �SFC . Conversely, the alternative hypoth-
esis is �EWD

C > �SFC .
. H2 (P of EWD versus SF): The effective null hypothesis

is that �EWD
P ¼ �SFP , while the true null hypothesis is

that �EWD
P � �SFP . Conversely, the alternative hypoth-

esis is �EWD
P > �SFP .

. H3 (NG of EWD versus SF): The effective null
hypothesis is that �EWD

NG ¼ �SFNG, while the true null
hypothesis is that �EWD

NG � �SFNG. Conversely, the
alternative hypothesis is �EWD

NG > �SFNG.
. H4 (C of EWD versus END): The effective null

hypothesis is that �EWD
C ¼ �ENDC , while the true null

hypothesis is that �EWD
C � �ENDC . Conversely, the

alternative is �EWD
C > �ENDC .

. H5 (P of EWD versus END): The effective null
hypothesis is that �EWD

P ¼ �ENDP , while the true null
hypothesis is that �EWD

P � �ENDP . Conversely, the
alternative is �EWD

P > �ENDP .
. H6 (NG of EWD versus END): The effective null

hypothesis is that �EWD
NG ¼ �ENDNG , while the true null

hypothesis is that �EWD
NG � �ENDNG . Conversely, the

alternative is �EWD
NG > �ENDNG .

. H7 (C of END versus SF): The effective null hypothesis
is that �ENDC ¼ �SFC , while the true null hypothesis is
that �ENDC � �SFC . Conversely, the alternative hypoth-
esis is �ENDC > �SFC .

. H8 (P of END versus SF): The effective null hypothesis
is that �ENDP ¼ �SFP , while the true null hypothesis is
that �ENDP � �SFP . Conversely, the alternative hypoth-
esis is �ENDP > �SFP .

. H9 (NG of END versus SF): The effective null
hypothesis is that �ENDNG ¼ �SFNG, while the true null
hypothesis is that �ENDNG � �SFNG. Conversely, the
alternative hypothesis is �ENDNG > �SFNG.

The rationale behind the alternative hypotheses toH1,H2,
and H3 is that Exemplar allows users to quickly understand
how keywords in queries are related to implementations
using API calls in retrieved applications. The alternative
hypotheses to H4, H5, H6 are motivated by the fact that if
users see dataflow connections between API calls, they can
make better decisions about how closely retrieved applica-
tions match given tasks. Finally, having the alternative

hypotheses toH7,H8, andH9 ensures that Exemplar without
dataflow links still allows users to quickly understand how
keywords in queries are related to implementations using
API calls in retrieved applications.

5.5 Task Design

We designed 26 tasks that participants work on during
experiments in a way that these tasks belong to domains
that are easy to understand, and they have similar
complexity. The following are two example tasks; all others
may be downloaded from the Exemplar about page.10

1. “Develop a universal sound and voice system that
allows users to talk, record audio, and play MIDI
records. Users should be able to use open source
connections with each other and communicate. A
GUI should enable users to save conversations and
replay sounds.”

2. “Implement an application that performs pattern
matching operations on a character sequences in the
input text files. The application should support
iterating through the found sequences that match
the pattern. In addition, the application should
support replacing every subsequence of the input
sequence that matches the pattern with the given
replacement string.”

Additional criteria for these tasks is that they should
represent real-world programming tasks and should not be
biased toward any of the search engines that are used in this
experiment. Descriptions of these tasks should be flexible
enough to allow participants to suggest different keywords
for searching. This criteria significantly reduces any bias
toward evaluated search engines.

5.6 Normalizing Sources of Variations

Sources of variation are all issues that could cause an
observation to have a different value from another observa-
tion. We identify sources of variation as the prior experience
of the participants with specific applications retrieved by the
search engines in this study, the amount of time they spend
on learning how to use search engines, and different
computing environments which they use to evaluate
retrieved applications. The first point is sensitive since some
participants who already know how some retrieved applica-
tions behave are likely to be much more effective than other
participants who know nothing of these applications.

We design this experiment to drastically reduce the effects
of covariates (i.e., nuisance factors) in order to normalize
sources of variations. Using the cross-validation design, we
normalize variations to a certain degree since each partici-
pant uses all three search engines on different tasks.

5.7 Tests and the Normality Assumption

We use one-way ANOVA and randomization tests [44] to
evaluate the hypotheses. ANOVA is based on an assump-
tion that the population is normally distributed. The law of
large numbers states that if the population sample is
sufficiently large (between 30 to 50 participants), then the
central limit theorem applies even if the population is not

1074 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 5, SEPTEMBER/OCTOBER 2012

10. http://www.cs.wm.edu/semeru/exemplar/#casestudy (verified
03/28/2011).

normally distributed [43, pages 244-245]. Since we have
39 participants, the central limit theorem applies, and the
above-mentioned tests have statistical significance.

5.8 Threats to Validity

In this section, we discuss threats to the validity of this case
study and how we address these threats.

5.8.1 Internal Validity

Internal validity refers to the degree of validity of
statements about cause-effect inferences. In the context of
our experiment, threats to internal validity come from
confounding the effects of differences among participants,
tasks, and time pressure.

Participants. Since evaluating hypotheses is based on the
data collected from participants, we identify two threats to
internal validity: Java proficiency and motivation of
participants.

Even though we selected participants who have work-
ing knowledge of Java as it was documented by human
resources, we did not conduct an independent assessment
of how proficient these participants are in Java. The danger
of having poor Java programmers as participants of our
case study is that they can make poor choices of which
retrieved applications better match their queries. This
threat is mitigated by the fact that all participants from
Accenture worked on successful commercial projects as
Java programmers.

The other threat to validity is that not all participants
could be motivated sufficiently to evaluate retrieved
applications. We addressed this threat by asking partici-
pants to explain in a couple of sentences why they chose to
assign a certain confidence level to applications, and based
on their results we financially awarded top five performers.

Tasks. Improper tasks pose a big threat to validity. If
tasks are too general or trivial (e.g., open a file and read its
data into memory), then every application that has file-
related API calls will be retrieved, thus creating bias toward
Exemplar. On the other hand, if application and domain-
specific keywords describe the task (e.g., genealogy and
GENTECH), only a few applications will be retrieved whose
descriptions contain these keywords, thus creating a bias
toward Sourceforge. To avoid this threat, we based the task
descriptions on a dozen specifications of different software
systems that were written by different people for different
companies. The tasks we used in the case study are
available for download at the Exemplar website.11

Time pressure. Each experiment lasted for 2 hours, and
for some participants it was not enough time to explore all
retrieved applications for each of eight tasks. It is a threat to
validity that some participants could try to accomplish
more tasks by shallowly evaluating retrieved applications.
To counter this threat we notified participants that their
results would be discarded if we did not see sufficient
reported evidence of why they evaluated retrieved applica-
tions with certain confidence levels.

5.8.2 External Validity

To make the results of this case study generalizable, we must
address threats to external validity, which refer to the
generalizability of a casual relationship beyond the circum-

stances of our case study. The fact that supports the validity
of the case study design is that the participants are highly
representative of professional Java programmers. However,
a threat to external validity concerns the usage of search tools
in the industrial settings, where requirements are updated on
a regular basis. Programmers use these updated require-
ments to refine their queries and locate relevant applications
using multiple iterations of working with search engines. We
addressed this threat only partially by allowing program-
mers to refine their queries multiple times.

In addition, it is sometimes the case that when engineers
perform multiple searches using different combinations of
keywords, they select certain retrieved applications from
each of these search results. We believe that the results
produced by asking participants to decide on keywords and
then perform a single search and rank applications do not
deviate significantly from the situation where searches
using multiple (refined) queries are performed.

Another threat to external validity comes from different
sizes of software repositories. We populated Exemplar’s
repository with all Java projects from the Sourceforge
repository to address this threat to external validity.

Finally, the help documentation that we index in
Exemplar is an external threat to validity because this
documentation is provided by a third party, and its content
and format may vary. We addressed this threat to validity
by using the Java documentation extracted as JavaDocs
from the official Java Development Kit, which has a
uniform format.

6 EMPIRICAL RESULTS

In this section, we report the results of the case study and
evaluate the null hypotheses.

6.1 Variables

A main independent variable is the search engine (SF,
EWD, END) that participants use to find relevant Java
applications. Dependent variables are the values of con-
fidence level, C, precision, P , and normalized discounted
cumulative gain, NG. We report these variables in this
section. The effect of other variables (task description
length, prior knowledge) is minimized by the design of
this case study.

6.2 Testing the Null Hypothesis

We used ANOVA [43] to evaluate the null hypothesis
H0�null that the variation in an experiment is no greater than
that due to normal variation of individuals’ characteristics
and error in their measurement. The results of ANOVA
confirm that there are large differences between the groups
for C with F ¼ 129 > Fcrit ¼ 3 with p � 6:4 � 10�55, which is
strongly statistically significant. The mean C for the SF
approach is 1.83 with the variance 1.02, which is smaller
than the mean C for END, 2.47 with the variance 1.27, and it
is smaller than the mean C for EWD, 2.35 with the variance
1.19. Also, the results of ANOVA confirm that there are
large differences between the groups for P with F ¼ 14 >
Fcrit ¼ 3:1 with p � 4 � 10�6, which is strongly statistically
significant. The mean P for the SF approach is 0.27 with the
variance 0.03, which is smaller than the mean P for END,
0.47 with the variance 0.03, and it is smaller than the mean

MCMILLAN ET AL.: EXEMPLAR: A SOURCE CODE SEARCH ENGINE FOR FINDING HIGHLY RELEVANT APPLICATIONS 1075

11. http://www.xemplar.org , follow the “About Exemplar” link to the
“Case Study” section.

P for EWD, 0.41 with the variance 0.026. Based on these

results we reject the null hypothesis and we accept the

alternative hypothesis H0�alt.
A statistical summary of the results of the case study for

C, P , and NG (median, quartiles, range, and extreme

values) is shown as box-and-whisker plots in Figs. 3a, 3b,

and 3c, correspondingly, with 95 percent confidence

interval for the mean.

6.3 Comparing Sourceforge with Exemplar

To test the null hypothesis H1, H2, H3, H7, H8, and H9 we

applied six randomization tests for C, P , and NG for

participants who used SF and both variants of Exemplar.

The results of this test are shown in Table 2. The column

Samples shows that 37 out of a total of 39 participants

participated in all experiments and created rankings for P

(two participants missed one experiment). Samples indi-

cates the number of results which were ranked in the case of

variable C. For NG, Samples shows the number of sets of

results. Based on these results we reject the null hypotheses

H1, H2, H3, H7, H8, and H9, and we accept the alternative

hypotheses that states that participants who use Exemplar
report higher relevance and precision on finding relevant
applications than those who use Sourceforge.

6.4 Comparing EWD with END

To test the null hypotheses H4, H5, and H6, we applied two
t-tests for paired two sample for means, for C, P , and NG
for participants who used END and EWD. The results of
this test are shown in Table 2. Based on these results we
reject the null hypothesis H4, and say that participants who
use END report higher relevance when finding relevant
applications than those who use EWD. On the other hand,
we fail to accept the null hypotheses H5 and H6, and say
that participants who use END do not report higher
precision or normalized discounted cumulative gain than
those who use EWD.

There are several explanations for this result. First,
given that our dataflow analysis is imperfect, some links
are missed and, subsequently, the remaining links cannot
affect the ranking score significantly. Second, it is possible
that our dataflow connectivity-based ranking mechanism
needs fine-tuning, and it is a subject of our future work.
Finally, after the case study, a few participants questioned
the idea of dataflow connections between API calls. A few
participants had vague ideas as to what dataflow connec-
tions meant and how to incorporate them into the
evaluation process. This phenomenon points to a need
for better descriptions of Exemplar’s internals in any future
case studies.

6.5 Qualitative Analysis and User Comments

Thirty-five of the participants in the case study completed
exit surveys (see Table 3) describing their experiences and
opinions. Of these, 22 reported that seeing standalone
fragments of the code alongside relevant applications
would be more useful than seeing only software applica-
tions. Only four preferred simply applications listed in the
results, while nine felt that either would be useful. Several
users stated that seeing entire relevant applications pro-
vides useful context for code fragments, while others read
code in order to understand certain algorithms or processes,
but ultimately reimplement the functionality themselves.

1076 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 5, SEPTEMBER/OCTOBER 2012

Fig. 3. Statistical summary of the results of the case study for C and P . The center point represents the mean. The dark and light gray boxes are the
lower and upper quartiles, respectively. The thin line extends from the minimum to the maximum value.

TABLE 2
Results of Randomization Tests of Hypotheses, H, for

Dependent Variable Specified in the Column Var (C, P , or NG)
Whose Measurements Are Reported in the Following Columns

Extremal values, median, means, �, and the Pearson correlation
coefficient, C, are reported along with the results of the evaluation of
the hypotheses, i.e., statistical significance, p.

After performing the case study, we responded to these
comments by providing the source code directly on
Exemplars results page, with links to the lines of files
where relevant API calls are used. This constitutes a new
feature of Exemplar which was not available to the
participants during the user study.

Nineteen of the participants reported using source code
search engines rarely, six said they sometimes use source
code search engines, and nine regularly. Of those that only
rarely use source code search engines, eight adapted
Google’s web search to look for code. Meanwhile, when
asked to state the biggest impediment in using source code
search engines, 14 participants answered that existing
engines return irrelevant results, four were mostly con-
cerned with the quality of the returned source code, six did
not answer, and 11 reported some other impediment. These
results support the recent studies [42] and point to a strong
need for improved code engines that return focused,
relevant results. New engines should show the specific
processes and useful fragments of code. We believe that
searching by API calls can fill this role because calls have
specific and well-defined semantics along with high-quality
documentation.

The following is a selection of comments written by
participants in the user study. Scanned copies of all
questionnaires are publicly available on the Exemplar
about page.

. “The Exemplar search is handy for finding the APIs
quickly.”

. “Many SourceForge projects [have] no files or
archives.”

. “A stand-alone fragment would be easy to see and
determine relevance to my needs, but an entire
application would allow for viewing context which
would be useful.”

. “[I] typically reuse the pattern/algorithm, not [the]
full code.”

. “Often [retrieved code or applications] give me a
clue as to how to approach a development task, but
usually the code is too specific to reuse without
many changes.”

. “Often, [with source code search engines] I find
results that do not have code.”

. “[I reuse code] not in its entirety, but [I] always find
inspiration.”

. “There seems to be a lot of time needed to under-
stand the code found before it can be usefully
applied.”

. “Could the line number reference [in Exemplar]
invoke a collapsible look at the code snippet?”

. “With proper keywords used, [Exemplar] is very
impressive. However, it does not filter well the
executables and noncode files. Overall, great for
retrieving simple code snippets.”

. “Most, if not all, results returned [by Exemplar]
provided valuable direction/foundation for com-
pleting the required tasks.”

. “During this experiment it became clear that
searching for API can be much more effective than
by keywords in many instances. This is because it is
the APIs that determine functionality and scope
potential.”

. “SourceForge was not as easy to find relevant
software as hoped for.”

. “[Using SourceForge] I definitely missed the report
within Exemplar that displays the matching API
methods/calls.”

. “SourceForge appears to be fairly unreliable for
projects to actually contain any files.”

. “Exemplar seems much more intuitive and easier to
use than SourceForge.”

. “Great tool to find APIs through projects.”

. “It was really helpful to know what API calls have
been implemented in the project while using
Exemplar.”

The users were overall satisfied with Exemplar, prefer-

ring it to SourceForge’s search. In Section 6, we found that

they rated results from Exemplar with statistically signifi-

cantly higher confidence levels than SourceForge. From our

examination of these surveys, we confirm the findings from

our analysis in Section 6 and conclude that the participants

in the case study did prefer to search for applications using

Exemplar rather than SourceForge. Moreover, we conclude

that the reason they preferred Exemplar is because of

Exemplar’s search of API documentation.

7 ANALYSIS OF USER STUDY RESULTS

During our case study of Exemplar (see Section 5), we

found that the original version of Exemplar outperformed

SourceForge in terms of both confidence and precision. In

this section, we will explore why Exemplar outperformed

SourceForge. Our goal is to identify which components of

Exemplar led to the improvements and to determine how

users interpreted tasks and interacted with the source code

search engine. Specifically, we intend to answer the

following research questions (RQ):

. RQ1. Do high Exemplar scores actually match high
confidence level ranks from the participants?

. RQ2. Do the components of the Exemplar score
(WOS, RAS, and DCS scores) indicate relevance of
applications when the others do not (e.g., do the

MCMILLAN ET AL.: EXEMPLAR: A SOURCE CODE SEARCH ENGINE FOR FINDING HIGHLY RELEVANT APPLICATIONS 1077

TABLE 3
The Seven Questions Answered by the Case Study Participants

during the Exit Survey

All questions were open-ended.

components capture the same or orthogonal infor-
mation about retrieved software applications)?

. RQ3. Is Exemplar sensitive to differences in the user
queries when those queries were generated for the
same task by different users?

We want to know how we can optimize Exemplar given

answers to these research questions. Additionally, we want to
study how design decisions (such as whether RAS considers
the frequency of API calls, see Section 4) affected Exemplar.

7.1 Comparing Scores in Confidence Levels

Exemplar computes a score for every application to

represent that application’s relevance to the user query
(see Section 4). Ideally, higher scores will be attached to

applications with greater relevance. We know from Section 6
that Exemplar returns many relevant results, but this
information alone is insufficient to claim that a high score

from Exemplar for an application is actually an indicator of
the relevance of that application because irrelevant applica-
tions could still obtain high scores (see Section 9).

To better understand the relationship of Exemplar

ranking scores to relevance of retrieved software applica-
tions and to answer RQ1, we examined the scores given to

all results given by Exemplar during the user study. We
also consider the Java programmers’ confidence level
rankings of those results. The programmers ranked results

using a four-level Likert scale (see Section 5.1). We grouped
Exemplar’s scores for applications by the confidence level
provided by the case study participants for those applica-

tions. Fig. 4 is a statistical summary of the scores for the
results, grouped by the confidence level. These scores were

obtained from Exemplar using all 209 queries that the users
produced for 22 tasks during the case study.12 We have
made all these results available for download from the

Exemplar website so that other researchers can reproduce
our analysis and the results.

7.1.1 Hypotheses for RQ1

We want to determine to what degree the mean of the
scores from Exemplar increase as the user confidence level
rankings increase. We introduce the following null and
alternative hypotheses to evaluate the significance of any
difference at a 0.05 level of confidence:

. H10-null: The null hypothesis is that there is no
difference in the values of Exemplar scores of
applications among the groupings by the confidence
level.

. H10-alt: An alternative hypothesis to H10-null is that
there is a statistically significant difference in the
values of Exemplar scores of applications among the
groupings by the confidence level.

7.1.2 Testing the Null Hypothesis

The results of ANOVA for H10-null confirm that there are
statistically significant differences among the groupings by
confidence level. Intuitively, these results mean that higher
scores imply higher confidence levels from programmers.
Higher confidence levels, in turn, point to higher relevance
(see Section 5). Table 6 shows the F-value, P-value, and
critical F-value for the variance among the groups. We reject
the null hypothesis H10-null because the F > Fcritical. Ad-
ditionally, P < 0:05. Therefore, we find evidence supporting
the alternative hypothesis H10-alt.

Finding supporting evidence for H10-alt suggests that we
can answer RQ1. To confirm these results, however, we
grouped the results in terms of relevant (e.g., confidence 3 or
4) and nonrelevant (e.g., confidence 1 or 2), and tested the
difference of these groups. A randomization test of these
groups showed a P-value of < 0:0001, which provides
further evidence for answering RQ1. Therefore, we find that
higher Exemplar scores do in fact match to higher con-
fidence level rankings from participants in the user study.

7.2 Principal Components of the Score

The relevance score that Exemplar computes for every
retrieved application is actually a combination of the three
metrics (WOS, RAS, and DCS) presented in Section 3.
Technically, these three metrics were added together with
equal weights, using an affine transformation during the
case study. Ideally, each of these metrics should contribute
orthogonal information to the final relevance score, mean-
ing that each metric will indicate the relevance of applica-
tions when the others might not. To analyze the degree to
which WOS, RAS, and DCS contribute orthogonal informa-
tion to the final score and to address RQ2, we used Principal
Component Analysis (PCA)[24]. PCA locates uncorrelated
dimensions in a dataset and connects input parameters to
these dimensions. By looking at how the inputs connect to
the principal components, we can deduce how each
component relates to the others.

To apply PCA, we ran Exemplar using the queries from
the case study and obtained WOS, RAS, DCS, and
combined scores for the top 10 applications for each of the
queries. We then used these scores as the input parameters
to be analyzed. PCA identified three principal components;

1078 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 5, SEPTEMBER/OCTOBER 2012

Fig. 4. Statistical summary of the scores from the case study of
Exemplar. The y-axis is the score given by Exemplar during the case
study. The x-axis is the confidence level given by users to results from
Exemplar.

12. Note that the participants only completed 22 out of 26 total tasks
available.

Table 4 shows the results of this analysis. We find that the
first principal component is primarily RAS (99.5 percent
association), the second component is somewhat linked to
WOS (67.5 percent association), and the third component is
primarily DCS (95.3 percent association). The final Exem-
plar score (denoted ALL) is linked to each of the primary
components, which we expect because the input parameters
combine to form the Exemplar score. Because WOS, RAS,
and DCS are all positively associated with their own
principal components, we conclude that each metric
provides orthogonal information to Exemplar.

We also computed the Spearman correlations [43] for each
input parameter to each other. These correlations are
presented in Table 5. WOS and RAS are negatively correlated
with one another, a fact suggesting that the two metrics
contribute differently to the final ranking score. Moreover,
RAS exhibits moderate correlation to the final Exemplar
score, while WOS is at least positively correlated. DCS,
however, is entirely uncorrelated with either RAS or WOS.
We draw two conclusions given these results. First, we
answer RQ2 by observing that RAS and WOS do capture
orthogonal information (see PCA results in Table 4). Second,
because DCS does not correlate with the final score and
because DCS did not appear to benefit Exemplar during the
case study (see Section 6.4), we removed DCS from
Exemplar. We do not consider DCS in any other analysis in
this section.

7.2.1 Analysis of WOS and RAS

Given that WOS and RAS contribute orthogonally to the

Exemplar score, we now examine whether combining them

in Exemplar returns more relevant applications versus each

metric individually. We judged the benefit of WOS and

RAS by computing each metric for every application using

the queries from the case study. We then grouped both sets

of scores by the confidence level assigned to the application

by the case study participants in a setup similar to that in

Section 7.1. Figs. 5a and 5b are statistical summaries for

the WOS and RAS scores, respectively. We introduce the

following null and alternative hypotheses to evaluate the

significance of any difference at a 0.05 level of confidence:

. H11-null: The null hypothesis is that there is no
difference in the values of WOS scores of applica-
tions among the groupings by confidence level.

. H11-alt: An alternative hypothesis to H11-null is that
there is a statistically significant difference in the
values of WOS scores of applications among the
groupings by confidence level.

. H12-null: The null hypothesis is that there is no
difference in the combined values of RAS scores of
applications among the groupings by confidence
level.

. H12-alt: An alternative hypothesis to H12-null is that
there is a statistically significant difference in the
values of RAS scores of applications among the
groupings by confidence level.

MCMILLAN ET AL.: EXEMPLAR: A SOURCE CODE SEARCH ENGINE FOR FINDING HIGHLY RELEVANT APPLICATIONS 1079

TABLE 4
Factor Loading through Principal Component Analysis

of Each of the Scores (WOS, RAS, and DCS) that
Contribute to the Final Score in Exemplar (ALL)

TABLE 5
Spearman Correlations of the Score Components

to Each Other and to the Final Ranking

Fig. 5. Statistical summary of the WOS and RAS scores from the case study of Exemplar.

7.2.2 Testing the Null Hypotheses

We used one-way ANOVA to evaluate H11-null and H12-null
that the variation in the experiment is no greater than that
due to normal variation of the case study participants
choices of confidence level as well as chance matching by
WOS and RAS, respectively. The results of ANOVA
confirm that there are statistically significant differences
among the groupings by confidence level for RAS, but not
for WOS. Table 6 shows the F-value, P-value, and critical
F-value for the variance among the groups for WOS. Table 6
shows the same values for RAS. We do not reject the null
hypothesis H11-null because F < Fcritical. Additionally,
P > 0:05. Therefore, we cannot support the alternative
hypothesis H12-alt. On the other hand, we reject the null
hypothesis H12-null because the F > Fcritical. Additionally,
P < 0:05. Therefore, we find evidence supporting the
alternative hypothesis H12-alt.

We finish our study of the contributions of RAS, WOS,
and DCS by concluding that RAS improves the results by
a statistically significant amount. Meanwhile, we cannot
infer any findings about WOS because we could not reject
H11-null. We did observe specific instances in the case study
where WOS contributed to the retrieval of relevant results
when RAS did not (see Section 9). Therefore, we include
WOS in the final version of Exemplar, albeit with a weight
reduced by 50 percent, from 0.5 to 0.25. We also increased
the weight of RAS by 50 percent from 0.5 to 0.75 because
we found that RAS contributes to more relevant results
than WOS.

7.3 Keyword Sensitivity of Exemplar

Recent research shows that users tend to generate different
kinds of queries [3]. It may be the case that different users of
Exemplar create different queries which represent the same
task that those users need to implement. If this occurs, some
users may see relevant results, whereas others see irrelevant
ones. During the case study, we provided the participants
with 22 varied tasks. The participants were then free to read
the tasks and generate queries on their own. Exemplar may
retrieve different results for the same task given different
queries, even if the participants generating those queries all
interpreted the meaning of the task in the same way. This
presents a threat to validity for the case study because
different participants may see different results (and
produce different rankings) for the same task. For example,
consider Task 1 from Section 5.5. Table 7 shows two
separate queries generated independently by users during
the case study for this task.13 By including more keywords,
the author of the second query found three different

applications than the author of the first query. In this
section, we will answer RQ3 by studying how sensitive
Exemplar is to variations in the query as formulated by
different users for the same task.

First, we need to know how different the queries and the

results are for individual tasks. We computed the query

overlap to measure how similar queries are for each task. We

defined query overlap as the pairwise comparison of the

number of words which overlap for each query. The formula

is queryoverlap ¼ query1

T
query2j j

query1

S
query2j j where query1 is the set of

words is the first query and query2 is the set of words in the

second query. For example, consider the queries “sound

voice midi” and “sound voice audio midi connection gui.”

The queries share the words “sound,” “voice,” and “midi.”

The total set of words is “sound voice midi audio connection

gui.” Therefore, the query overlap is 0.5, or 50 percent. To

obtain the query overlap for a task, we simply computed the

overlap numbers for every query to every other query in the

task. The queries were processed in the same way as they are

in Exemplar; we did not perform stemming or removal of

stop words.
Because we see different queries for each task, we expect

to see different sets of results from Exemplar over a task.
We surmise that if two users give two different queries for
the same task, then Exemplar will return different results as
well. We want to study the degree to which Exemplar is
sensitive to changes in the query for a task. Therefore, we
calculate the results overlap for each task using the formula
resultsoverlap ¼ unique�totalj j

expected�totalj j where total is the total
number of results found for a given task, unique is the
number of those results which are unique, and expected is
the number of results we expect if all the results overlapped
(e.g., the minimum number of unique results possible). For
example, consider the situation in Table 7 where, for a
single task, two users created two different queries. In the
case study, participants examined the top 10 results,
meaning that Exemplar returned 20 total results. At least
10 of the results must be unique, which is the expected
number if Exemplar returned the same set for all three

1080 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 5, SEPTEMBER/OCTOBER 2012

TABLE 6
Results of Testing H10-null, H11-null, and H12-null

TABLE 7
The Top 10 Applications Returned by Exemplar

for Two Separate Queries

Both queries were generated by users during the case study while
reading the same task. Shaded cells indicate applications in both sets
of results. Application names in bold were rated with confidence level 3
or 4 (relevant or highly relevant) by the author of the associated query.
Note: Ties of relevance scores are broken randomly; applications with
identical scores may appear in a different order.

13. We generated the results in Table 7 using Exemplar in the same
configuration as in the case study, which can be accessed here: http://
www.xemplar.org/original.html (verified 03/28/2011).

queries. In Table 7, however, 13 of the results were unique;
results overlap would be 0.7, or 70 percent overlapped.

Statistical summaries of the results overlap and query
overlap are in Fig. 6. The Spearman correlation for the
overlaps was 0.356. We observe a weak correlation between
results and query overlap, which we expect because more
similar queries will most likely cause Exemplar to produce
more similar results. Therefore, to answer RQ3, we do find
evidence that Exemplar is sensitive to differences in the
queries, even if those queries were created to address the
same task.

7.4 Sensitivity to the Number of API Calls

The RAS component of Exemplar is responsible for ranking
applications based on the API calls made in those
applications. This component first locates a number of
descriptions of API calls which match the keywords
provided in the user’s query. It then matches those API
calls to applications which use those calls. During the case
study, we limited the number of API calls that RAS
considers to 200 due to performance overhead. In this
section, we analyze the effect this design decision had on
the search results.

The maximum number of APIs to consider is an internal
parameter to Exemplar called maxapi. To study its effects,
we first obtained all 209 queries written by participants in
the case study from Section 5. We then set maxapi to
infinity (so that potentially every API could be returned)
and ran every query through Exemplar. From this run, we
determined that the maximum number of API calls
extracted for any query was 406. We also stored the list
of results from this run.

We then ran Exemplar with various entries as input for
maxapi ranging between 1 and 406.14 We then calculated the
results overlap for the results of each of these runs against the
results from the run in which maxapi was set to infinity. In
this way, we computed the percent of overlap of the various
levels of maxapi with case in which all API calls are

considered. The results of this analysis are summarized in
Fig. 7. We observe that when maxapi is set to a value greater
than or equal to 200, the percent overlap is always above
80 percent, meaning that 80 percent of the results are identical
to those in the case when all API calls are considered. We set
maxapi to 200 in the remainder of this paper.

7.5 Sensitivity to Frequency of API Calls

The RAS component ranking considers the frequency of
each API call that occurs in each application. For example, if
an application A makes an API call c twice, and an
application B makes an API call c only once, and c is
determined to be relevant to the user query, then applica-
tion A will be ranked higher than B. In Exemplar, we use
static analysis to determine the API calls used by an
application. Therefore, we do not know the precise number
of times an API call is actually made in each application
because we do not have execution information for these
applications. For example, consider the situation where
application A calls c twice and B calls c once. If the call to c
in B occurs inside a loop, B may call c many more times
than A, but we will not capture this information.

We developed a binary version of RAS to study the effects

this API frequency information may cause in our case study.

The binary version of RAS does not consider the frequency

of each API call in the applications. More formally, the

binary RAS calculates the scores according to the formula

Sjras ¼
Pp

i¼1
Cj
i

jAjj , where jAjj is the total number of API calls in

the application j and p is the number of API calls retrieved

for the query.
We then executed Exemplar using the 209 queries from

the case study in Section 5 for both the binary version of
RAS and the RAS that considers frequencies of API calls as
described in Section 3.3. We computed the results overlap
between the results for both. The mean overlap for the
results of every query was 93.2 percent. The standard
deviation was 13.4 percent. Therefore, we conclude that the
results from Exemplar with the binary version of RAS are
not dramatically different from the frequency-based version
of RAS. We use the frequency-based version of RAS in the
remainder of this paper.

MCMILLAN ET AL.: EXEMPLAR: A SOURCE CODE SEARCH ENGINE FOR FINDING HIGHLY RELEVANT APPLICATIONS 1081

Fig. 6. Statistical summary of the overlaps for tasks. The x-axis is the
type of overlap. The y-axis is the value of the overlap.

Fig. 7. A chart of the results overlap from various levels of maxapi. The
x-axis is the value of the overlap. The y-axis is the value of maxapi.

14. Note that Exemplar produces the same results when maxapi is set to
406 and infinity since 406 was the maximum amount of API calls returned.

8 EVALUATION OF CHANGES TO EXEMPLAR

We made several alterations to Exemplar based on our
analysis in Section 7. Specifically, we removed DCS,
rebalanced the weights of WOS and RAS (to 0.25 and
0.75), and updated the interface so that project source code
is visible without downloading whole projects. We compare
the quality of the results from the updated version of
Exemplar against the previous version. In this study, we
refer to the previous Exemplar as ExemplarOLD and the new
Exemplar as ExemplarNEW .

8.1 Methodology

We performed a case study identical in design to that
presented in Section 5, except that we evaluate two engines
(ExemplarNEW , ExemplarOLD) instead of three (EWN, END,
SF). Table 8 outlines the study. We chose END to represent
the old Exemplar because END was the best-performing
configuration. In this case, we randomly divided 26 case
study participants15 into two groups. There were two
experiments, and both groups participated in each. In each
experiment, each group was given a different search engine
(e.g., ExemplarNEW or ExemplarOLD) and a set of tasks. The
participants then generated queries for each task and
entered those queries into the specified search engine. The
participants rated each result on a four-point Likert scale as
in Section 5. From these ratings, we computed the three
measures confidence (C), precision (P), and normalized
discounted cumulative gain (NG).

8.2 Hypotheses

We introduce the following null and alternative hypotheses
to evaluate the differences in the metrics at a 0.05
confidence level:

. H13: The null hypothesis is that there is no difference
in the values of C for ExemplarNEW versus
ExemplarOLD. Conversely, the alternative is that
there is a statistically significant difference in the
values of C for ExemplarNEW versus ExemplarOLD.

. H14: The null hypothesis is that there is no difference
in the values of P for ExemplarNEW versus
ExemplarOLD. Conversely, the alternative is that there
is a statistically significant difference in the values of
P for ExemplarNEW versus ExemplarOLD.

. H15: The null hypothesis is that there is no difference
in the values of NG for ExemplarNEW versus
ExemplarOLD. Conversely, the alternative is that
there is a statistically significant difference in the
values of NG for ExemplarNEW versus ExemplarOLD.

8.3 Results

We applied randomization tests to evaluate the hypotheses
H13, H14, and H15. The results of this test are in Table 9. We
do not reject the null hypothesis H14 because the P-value is
greater than 0.05. Therefore, participants do not report a
statistically significant difference in terms of precision of the
results. On the other hand, we reject the null hypotheses H13

and H15, meaning that participants report higher confidence
level in the results. Also, the participants report higher
normalized discounted cumulative gain when using
ExemplarNEW versus ExemplarOLD.

The difference in average confidence level between the
updated and original versions of Exemplar is statistically
significant, as seen in Fig. 8a, though the difference is very
small. The difference in precision is not statistically
significant (see Fig. 8b). One explanation for the small size
of this difference is that both versions of Exemplar return
the same sets of applications to the user. Returning the same
set of applications is expected because both ExemplarNEW
and ExemplarOLD use the same underlying information to
locate these applications (e.g., API calls and project
descriptions). The order of the results is also important,
and the new version of Exemplar does return the more
relevant results in higher positions, as reported by the
normalized discounted cumulative gain (NG, see Fig. 8c).

Table 10 illustrates an example of the improvement made
by ExemplarNEW . This table includes the results for the same
query on both engines as well as the confidence level for the
applications as reported by a participant in the case study.
The normalized discounted cumulative gain is higher in this
example for ExemplarNEW than ExemplarOLD. Even though a
majority of the applications are shared by both sets of results,
ExemplarNEW organizes the results such that the most-
relevant applications appear sooner.

8.4 Participant Comments on ExemplarNEW
Seventeen of the case study participants answered the same
exit survey from Table 3. The responses generally support
those which we discuss in Section 6.5: Roughly half of the
participants reported rarely or never using source code
search engines, and of those a majority prefer to use Google.
The top reason cited for not using source code search
engines was the perceived poor quality results given by
those engines. These results, along with those in Section 6.5,
are a strong motivation for improvements in source code
search engines.

In addition to rebalancing the weights of the ranking
components in ExemplarNEW , we made the source code of
the applications immediately available through the engine.
The following are comments provided by participants
regarding these changes. We conclude from these com-
ments that 1) users prefer to see source code along with
relevant applications, and 2) API calls helped participants
determine the relevance of results.

. “Very convenient to be able to open to view source
files immediately. Much more convenient to user.”

. “[WOS in ExemplarOLD] got in the way quite a bit”

. “I definitely like viewing code in the browser better”

. “[ExemplarNEW] is really useful since we can know
which API we should choose.”

1082 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 5, SEPTEMBER/OCTOBER 2012

TABLE 8
Plan for the Case Study of ExemplarNEW and ExemplarOLD

15. Nine of the participants in this study were graduate students from
the University of Illinois at Chicago. Five were graduate students at the
College of William & Mary. Ten were undergraduate students at William &
Mary. We reimbursed the participants $35 after the case study.

. “[API calls] are very useful if the call is relevant, a lot
of API calls had nothing to do with the task.”

. “[API calls] are very useful for determining initial
area of source code which should be examined.”

8.5 Suggestions for Future Work

The participants in the case study had several suggestions for
Exemplar, and we have incorporated these into our future
work. One participant asked that we filter “trivial” results
such as API calls named equal() or toString(). Another
suggested that we provide descriptions of API calls directly
on the results page. A participant also requested a way to sort
and filter the API calls; he was frustrated that some source
code files contain “the same type-check method many times.”

9 SUPPORTING EXAMPLES

Table 11 shows the results from Exemplar for three separate
queries, including the top 10 applications and the WOS and
RAS scores for each.16 For instance, consider the query
connect to an http server. Only one of the top 10 results from
Exemplar is returned (see Table 11) due to a high WOS
score (e.g., because the query matches the high-level
description of the project). The remaining nine projects
pertain to different problem domains, including Internet
security testing, programming utilities, and bioinformatics.
These nine applications, however, all use API calls from the
Java class java.net.HttpURLConnection.17 Exemplar was

MCMILLAN ET AL.: EXEMPLAR: A SOURCE CODE SEARCH ENGINE FOR FINDING HIGHLY RELEVANT APPLICATIONS 1083

TABLE 10
The Search Results from a Single Query

from the Second Case Study; Applications Are Listed
with the Assigned Confidence Levels

A case study participant generated the query and provided the relevancy
rankings when evaluating ExemplarOLD. Applications with a confidence
level zero were not able to be accessed by the participant, and are
discarded during our analysis. We ran the same query on ExemplarNEW .
The confidence levels for the results of ExemplarNEW are copied from
the confidence levels given by the participant who ran ExemplarOLD. NG
represents the normalized discounted cumulative gain for the top 6 (all
evaluated, zeros discarded) and top 10 (all retrieved, zeros included).

TABLE 9
Results of Randomization Tests of Hypotheses, H, for Dependent Variable Specified in the Column Var (C, P , or NG)

Whose Measurements Are Reported in the Following Columns

Extremal values, median, means, �, and the Pearson correlation coefficient, C, are reported along with the results of the evaluation of the
hypotheses, i.e., statistical significance, p.

Fig. 8. Statistical summary of C, P , andNG from the case study evaluating the new version of Exemplar. The y-axis is the value for C, P , or NG from
the case study. The x-axis is the version of Exemplar.

16. We generated the results in Table 11 using Exemplar in the same
configuration as in the case study, which can be accessed here: http://
www.xemplar.org/original.html.

17. The documentation for this API class can be found at: http://
download.oracle.com/javase/6/docs/api/java/net/HttpURLConnec-
tion.html (verified 03/28/2011).

able to retrieve these applications only because of the
contribution from the RAS score.

Other queries may reflect the high-level concepts in a
software application, rather than low-level details. For
example, for the query text editor, Exemplar returns six of
10 top results without any matching from RAS (see Table 11).
While the query does match certain API calls, such as those
in the class javax.swing.text.JTextComponent,18 Exemplar
finds several text editing programs which do not use API
calls from matching documentation. Locating these applica-
tions was possible because of relatively high WOS scores.

We observed instances during the case study where the
negative correlation between WOS and RAS improved the
final search results. Consider Task 2 from Section 5.5. For
this task, one programmer entered the query find replace
string text files into Exemplar (see Table 11). The first result
was a program called RText, which is a programmer’s text
editor with find/replace functionality. The second result
was Nodepublisher, a content management system for
websites. Nodepublisher’s high-level description did not
match the query and has a WOS score of 0 percent. The
query did match several API call descriptions, including
calls inside the class java.text.DictionaryBasedBreakItera-
tor,19 which Nodepublisher uses. Conversely, RText con-
tained no API calls with documentation matching the query,
but had a relevant high-level description. Since both
applications were rated as highly relevant by the program-
mer in the case study, both WOS and RAS aided in finding a
relevant result for this query. Specific situations such as this
one support our decision to keep WOS in the final version of
Exemplar, even with a reduced weight (see Section 7.2.2).
Not all applications with high WOS or RAS scores were
relevant, however. Despite occurring in the top 10 list of
applications, both MMOpenGraph and AppletServer were
rated with a confidence level of 2 (“mostly irrelevant”) by the
author of the query.

10 RELATED WORK

Different code mining techniques and tools have been
proposed to retrieve relevant software components from

different repositories as is shown in Table 12. CodeFinder
iteratively refines code repositories in order to improve the
precision of returned software components [16]. Codefinder
finds similar code using spreading activation based on the
terms that appear in that code. Exemplar is different in that
we locate source code based on keywords from API
documentation. It is not necessary for Exemplar to find
any matching keywords in the source code itself.

The Codebroker system uses source code and comments
written by programmers to query code repositories to find
relevant artifacts [50]. Unlike Exemplar, Codebroker is
dependent upon the descriptions of documents and mean-
ingful names of program variables and types, and this
dependency often leads to lower precision of returned
projects.

Even though it returns code snippets rather than applica-
tions, Mica is similar to Exemplar since it uses help pages to

1084 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 5, SEPTEMBER/OCTOBER 2012

TABLE 11
The Top 10 Applications Returned by Exemplar for Three Separate Queries, along with the WOS and RAS Scores for Each

The DCS score was zero in every case. Note: Ties of relevance scores are broken randomly; applications with identical scores may appear in a
different order.

TABLE 12
Comparison of Exemplar with Other Related Approaches

Column Granularity specifies how search results are returned by
each approach (Fragment of code, Module, or Application), and how
users specify queries (Concept, API call, or Test case). The column
Corpora specifies the scope of search, i.e., Code or Documents,
followed by the column Query Expansion that specifies if an approach
uses this technique to improve the precision of search queries.

18. The documentation for this API class can be found at: http://
cupi2.uniandes.edu.co/site/images/recursos/javadoc/j2se/1.5.0/docs/
api/javax/swing/text/JTextComponent.html (verified 03/28/2011).

19. The documentation for this API class can be found at: http://
www.docjar.com/docs/api/java/text/DictionaryBasedBreakIterator.html
(verified 03/28/2011).

find relevant API calls to guide code search [45]. However,
Mica uses help documentation to refine the results of the
search, while Exemplar uses help pages as an integral
instrument in order to expand the range of the query.

SSI examines the API calls made in source code in
order to determine the similarity of that code [5]. SSI
indexes each source code element based on the identifier
names and comments in that code. Then, SSI adds terms
to the index of a source element. The new terms come
from other source code elements which use the same set
of API calls. Additionally, SSI seeds the index with
keywords from API call documentation. On the other
hand, Exemplar matches query keywords directly to API
documentation, and then calculates RAS, which is a
ranking based on which projects use the API calls that
the matching documentation describes. The fundamental
difference between Exemplar and SSI is that Exemplar
bases its ranking on how many relevant API calls appear
in the source code (RAS, Section 3.3), unlike SSI, which
ranks source code based on the keyword occurrences in
the source code. Also, Exemplar has been evaluated with
a user study of professional programmers.

SNIFF extends the idea of using documentation for API
calls for source code search [14], [45] in several ways [8].
After retrieving code fragments, SNIFF then performs
intersection of types in these code chunks to retain the
most relevant and common part of the code chunks. SNIFF
also ranks these pruned chunks using the frequency of their
occurrence in the indexed code base. In contrast to SNIFF
[8], MICA [45], and our original MSR idea [14], we
evaluated Exemplar using a large-scale case study with
39 programmers to obtain statistically significant results, we
followed a standard IR methodology for comparing search
engines, and we return fully executable applications.
Exemplar’s internals differ substantially from previous
attempts to use API calls for searching, including SNIFF:
Our search results contain multiple levels of granularity, we
conduct a thorough comparison with the state-of-the-art
search engine using a large body of Java application code,
and we are not tied to a specific IDE.

Prospector is a tool that synthesizes fragments of code in
response to user queries that contain input types and desired
output types [29]. Prospector is an effective tool to assist
programmers in writing complicated code; however, it does
not provide support for a full-fledged code search engine.

Keyword programming is a technique which translates a
few user-provided keywords into a valid source code
statement [28]. Keyword programming matches the key-
words to API calls and the parameters of those calls. Then,
it links those parameters to variables or other functions also
mentioned in the keywords. Exemplar is similar to keyword
programming in that Exemplar matches user queries to API
calls and can recommend usage of those calls. Unlike
keyword programming, Exemplar show examples of pre-
vious usage of those APIs and does not attempt to integrate
those calls into the user’s own source code.

The Hipikat tool recommends relevant development
artifacts (i.e., source revisions associated with a past change
task) from a project’s history to a developer [9]. Unlike
Exemplar, Hipikat is a programming task-oriented tool that
does not recommend applications whose functionalities
match high-level requirements.

Strathcona is a tool that heuristically matches the
structure of the code under development to the example
code [19], [18]. Strathcona is beneficial when assisting
programmers while working with existing code; however,
its utility is not applicable when searching for relevant
projects given a query containing high-level concepts with
no source code.

There are techniques that navigate the dependency
structure of software. Robillard proposed an algorithm for
calculating program elements of likely interest to a
developer [37], [38]. FRAN is a technique which helps
programmers to locate functions similar to given functions
[41]. Finally, XSnippet is a context-sensitive tool that allows
developers to query a sample repository for code snippets
that are relevant to the programming task at hand [39].
Exemplar is similar to these algorithms in that it uses
relations between API calls in the retrieved projects to
compute the level of interest (ranking) of the project. Unlike
these approaches, Exemplar requires only a natural
language query describing a programming task. We found
in this paper that considering the dataflow among API calls
does not improve the relevancy of results in our case.

Existing work on ranking mechanisms for retrieving
source code are centered on locating components of source
code that match other components. Quality of match
(QOM) ranking measures the overall goodness of match
between two given components [46], which is different
from Exemplar which retrieves applications based on high-
level concepts that users specify in queries. Component rank
model (CRM) is based on analyzing actual usage relations of
the components and propagating the significance through
the usage relations [22], [23]. Yokomori et al. used CRM to
measure the impact of changes to frameworks and APIs
[52]. Unlike CRM, Exemplar’s ranking mechanism is based
on a combination of the usage of API calls and relations
between those API calls that implement high-level concepts
in queries.
S6 is a code search engine that uses a set of user-guided

program transformations to map high-level queries into a
subset of relevant code fragments [36], not complete
applications. Like Exemplar, S6 returns source code;
however, it requires additional low-level details from the
user, such as data types of test cases.

11 CONCLUSIONS

We created Exemplar, a search engine for highly relevant
software projects. Exemplar searches among over 8,000 Java
applications by looking at the API calls used in those
applications. In evaluating our work, we showed that
Exemplar outperformed SourceForge in a case study with
39 professional programmers. These results suggest that the
performance of software search engines can be improved if
those engines consider the API calls that the software uses.
Also, we modified Exemplar to increase the weight of RAS,
and performed a second case study evaluating the effects of
this increase. We found that not only does including API call
information increase the relevance of the results, but it also
improves the ordering of the results. In other words,
Exemplar places the relevant applications at the top of list
of results.

MCMILLAN ET AL.: EXEMPLAR: A SOURCE CODE SEARCH ENGINE FOR FINDING HIGHLY RELEVANT APPLICATIONS 1085

ACKNOWLEDGMENTS

The authors thank the anonymous TSE and ICSE 2010

reviewers for their comments and suggestions that helped

them to greatly improve the quality of this submission.

They are grateful to Dr. Kishore Swaminathan, the Chief

Scientist and Director of Research for his invaluable

support. They also thank Malcom Gethers from William &

Mary (W&M) for assisting in computation of the statistical

tests, Bogdan Dit from W&M for helpful suggestions in

editing this paper, and Himanshu Sharma from the

University of Illinois Chicago for his work on the updated

interface for Exemplar. This work is supported by US

National Science Foundation (NSF) CCF-0916139, CCF-

0916260, and Accenture Technology Labs. Any opinions,

findings and conclusions expressed herein are the authors’

and do not necessarily reflect those of the sponsors.

REFERENCES

[1] A. Al-Maskari, M. Sanderson, and P. Clough, “The Relationship
between IR Effectiveness Measures and User Satisfaction,” Proc.
30th Ann. Int’l ACM SIGIR Conf. Research and Development in
Information Retrieval, pp. 773-774, 2007.

[2] N. Anquetil and T.C. Lethbridge, “Assessing the Relevance of
Identifier Names in a Legacy Software System,” Proc. Conf. Centre
for Advanced Studies on Collaborative Research, p. 4, 1998.

[3] S. Bajracharya and C. Lopes, “Analyzing and Mining an Internet-
Scale Code Search Engine Usage Log,” J. Empirical Software Eng.,
2009.

[4] S. Bajracharya, J. Ossher, and C. Lopes, “Searching API Usage
Examples in Code Repositories with Sourcerer API Search,” Proc.
ICSE Workshop Search-Driven Development: Users, Infrastructure,
Tools and Evaluation, pp. 5-8, 2010.

[5] S.K. Bajracharya, J. Ossher, and C.V. Lopes, “Leveraging Usage
Similarity for Effective Retrieval of Examples in Code Reposi-
tories,” Proc. 18th ACM SIGSOFT Int’l Symp. Foundations of
Software Eng., pp. 157-166, 2010.

[6] T.J. Biggerstaff, B.G. Mitbander, and D.E. Webster, “Program
Understanding and the Concept Assigment Problem,” Comm.
ACM, vol. 37, no. 5 pp. 72-82, 1994.

[7] J. Brandt, M. Dontcheva, M. Weskamp, and S.R. Klemmer,
“Example-Centric Programming: Integrating Web Search into
the Development Environment,” Proc. 28th Int’l Conf. Human
Factors in Computing Systems, pp. 513-522, 2010.

[8] S. Chatterjee, S. Juvekar, and K. Sen, “SNIFF: A Search Engine for
Java Using Free-Form Queries,” Proc. Int’l Conf. Fundamental
Approaches to Software Eng., pp. 385-400, 2009.

[9] D. Cubranic, G.C. Murphy, J. Singer, and K.S. Booth, “Hipikat: A
Project Memory for Software Development,” IEEE Trans. Software
Eng. vol. 31, no. 6, pp. 446-465, June 2005.

[10] U. Dekel and J.D. Herbsleb, “Improving API Documentation
Usability with Knowledge Pushing,” Proc. 31st IEEE Int’l Conf.
Software Eng., pp. 320-330, 2009.

[11] G.W. Furnas, T.K. Landauer, L.M. Gomez, and S.T. Dumais, “The
Vocabulary Problem in Human-System Communication,” Comm.
ACM, vol. 30, no. 11 pp. 964-971, 1987.

[12] M. Gabel and Z. Su, “A Study of the Uniqueness of Source Code,”
Proc. 18th ACM SIGSOFT Int’l Symp. Foundations of Software Eng.,
pp. 147-156, 2010.

[13] L.A. Granka, T. Joachims, and G. Gay, “Eye-Tracking Analysis of
User Behavior in WWW Search,” Proc. 27th Ann. Int’l ACM SIGIR
Conf. Research and Development in Information Retrieval, pp. 478-479,
2004.

[14] M. Grechanik, K.M. Conroy, and K. Probst, “Finding Relevant
Applications for Prototyping,” Proc. Fourth Int’l Symp. Mining
Software Repositories, p. 12, 2007.

[15] M. Grechanik, C. Fu, Q. Xie, C. McMillan, D. Poshyvanyk, and C.M.
Cumby, “A Search Engine for Finding Highly Relevant Applica-
tions,” Proc. 32nd ACM/IEEE Int’l Conf. Software Eng., pp. 475-484,
2010.

[16] S. Henninger, “Supporting the Construction and Evolution of
Component Repositories,” Proc. 18th Int’l Conf. Software Eng.,
pp. 279-288, 1996.

[17] R. Hill and J. Rideout, “Automatic Method Completion,” Proc.
IEEE 19th Int’l Conf. Automated Software Eng., pp. 228-235, 2004.

[18] R. Holmes and G.C. Murphy, “Using Structural Context to
Recommend Source Code Examples,” Proc. 27th Int’l Conf. Software
Eng., pp. 117-125, 2005.

[19] R. Holmes, R.J. Walker, and G.C. Murphy, “Strathcona Example
Recommendation Tool,” Proc. 10th European Software Eng. Conf.
Held Jointly with 13th ACM SIGSOFT Int’l Symp. Foundations of
Software Eng., pp. 237-240, 2005.

[20] R. Holmes, R.J. Walker, and G.C. Murphy, “Approximate
Structural Context Matching: An Approach to Recommend
Relevant Examples,” IEEE Trans. Software Eng. vol. 32, no. 12,
pp. 952-970, Dec. 2006.

[21] J. Howison and K. Crowston, “The Perils and Pitfalls of Mining
Sourceforge,” Proc. Workshop Mining Software Repositories at the
Int’l Conf. Software Eng., 2004.

[22] K. Inoue, R. Yokomori, H. Fujiwara, T. Yamamoto, M. Matsushita,
and S. Kusumoto, “Component Rank: Relative Significance Rank
for Software Component Search,” Proc. 25th Int’l Conf. Software
Eng., pp. 14-24, 2003.

[23] K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita, and S.
Kusumoto, “Ranking Significance of Software Components Based
on Use Relations,” IEEE Trans. Software Eng. vol. 31, no. 3 pp. 213-
225, Mar. 2005.

[24] I.T. Jolliffe, Principal Component Analysis. Springer Verlag, 1986.
[25] C.W. Krueger, “Software Reuse,” ACM Computing Surveys, vol. 24,

no. 2, pp. 131-183, 1992.
[26] O.A.L. Lemos, S. Bajracharya, J. Ossher, P.C. Masiero, and C.

Lopes, “Applying Test-Driven Code Search to the Reuse of
Auxiliary Functionality,” Proc. Symp. Applied Computing, pp. 476-
482, 2009.

[27] E. Linstead, S. Bajracharya, T. Ngo, P. Rigor, C. Lopes, and P.
Baldi, “Sourcerer: Mining and Searching Internet-Scale Software
Repositories,” Data Mining and Knowledge Discovery, vol. 18,
pp. 300-336, 2009.

[28] G. Little and R.C. Miller, “Keyword Programming in Java,” Proc.
22nd IEEE/ACM Int’l Conf. Automated Software Eng., pp. 84-93,
2007.

[29] D. Mandelin, L. Xu, R. Bodik, and D. Kimelman, “Jungloid
Mining: Helping to Navigate the API Jungle,” Proc. ACM
SIGPLAN Conf. Programming Language Design and Implementation,
pp. 48-61, 2005.

[30] C.D. Manning, P. Raghavan, and H. Schtze, Introduction to
Information Retrieval. Cambridge Univ. Press, 2008.

[31] S.S. Muchnick, Advanced Compiler Design and Implementation.
Morgan Kaufmann Publishers Inc., 1997.

[32] G.C. Murphy, D. Notkin, and K.J. Sullivan, “Software Reflexion
Models: Bridging the Gap between Source and High-Level
Models,” Proc. ACM SIGSOFT Symp. Foundations of Software
Eng., pp. 18-28, 1995.

[33] G.C. Murphy, D. Notkin, and K.J. Sullivan, “Software Reflexion
Models: Bridging the Gap between Design and Implementation,”
IEEE Trans. Software Eng. vol. 27, no. 4, pp. 364-380, Apr. 2001.

[34] D. Poshyvanyk, Y.-G. Gueheneuc, A. Marcus, G. Antoniol, and V.
Rajlich, “Feature Location Using Probabilistic Ranking of Methods
Based on Execution Scenarios and Information Retrieval,” IEEE
Trans. Software Eng., vol. 33, no. 6 pp. 420-432, June 2007.

[35] D. Poshyvanyk and M. Grechanik, “Creating and Evolving
Software by Searching, Selecting and Synthesizing Relevant
Source Code,” Proc. 31st Int’l Conf. Software Eng.—Companion
Vol., pp. 283-286, 2009.

[36] S.P. Reiss, “Semantics-Based Code Search,” Proc. IEEE 31st Int’l
Conf. Software Eng., pp. 243-253, 2009.

[37] M.P. Robillard, “Automatic Generation of Suggestions for
Program Investigation,” Proc. 10th European Software Eng. Conf.
Held Jointly with 13th ACM SIGSOFT Int’l Symp. Foundations of
Software Eng., pp. 11-20, 2005.

[38] M.P. Robillard, “Topology Analysis of Software Dependencies,”
ACM Trans. Software Eng. Methodology, vol. 17, no. 4, pp. 1-36,
2008.

[39] N. Sahavechaphan and K.T. Claypool, “XSnippet: Mining for
Sample Code,” Proc. ACM SIGPLAN Int’l Conf. Object-Oriented
Programming Systems, Languages, and Applications, pp. 413-430,
2006.

1086 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 5, SEPTEMBER/OCTOBER 2012

[40] G. Salton, Automatic Text Processing: The Transformation, Analysis,
and Retrieval of Information by Computer. Addison-Wesley, 1989.

[41] Z.M. Saul, V. Filkov, P. Devanbu, and C. Bird, “Recommending
Random Walks,” Proc. Sixth Joint Meeting of the European Software
Eng. Conf. and the ACM SIGSOFT Symp. Foundations of Software
Eng., pp. 15-24, 2007.

[42] S.E. Sim, M. Umarji, S. Ratanotayanon, and C. Lopes, “How Well
Do Internet Code Search Engines Support Open Source Reuse
Strategies?” ACM Trans. Software Eng. and Methodologies, 2009.

[43] R. Mark Sirkin, Statistics for the Social Sciences, third ed. Sage
Publications, Aug. 2005.

[44] M.D. Smucker, J. Allan, and B. Carterette, “A Comparison of
Statistical Significance Tests for Information Retrieval Evalua-
tion,” Proc. 16 ACM Conf. Information and Knowledge Management,
pp. 623-632, 2007.

[45] J. Stylos and B.A. Myers, “A Web-Search Tool for Finding API
Components and Examples,” Proc. IEEE Symp. Visual Languages
and Human Centric Computing, pp. 195-202, 2006.

[46] N. Tansalarak and K.T. Claypool, “Finding a Needle in the
Haystack: A Technique for Ranking Matches Between Compo-
nents,” Proc. Int’l Symp. Component-Based Software Eng., pp. 171-
186, 2005.

[47] S. Thummalapenta and T. Xie, “Spotweb: Detecting Framework
Hotspots and Coldspots via Mining Open Source Code on the
Web,” Proc. 23rd IEEE/ACM Int’l Conf. Automated Software Eng.,
pp. 327-336, 2008.

[48] S. Thummalapenta and T. Xie, “Parseweb: A Programmer
Assistant for Reusing Open Source Code on the Web,” Proc.
IEEE/ACM 22nd Int’l Conf. Automated Software Eng., pp. 204-213,
2007.

[49] I.H. Witten, A. Moffat, and T.C. Bell, Managing Gigabytes:
Compressing and Indexing Documents and Images, second ed.
Morgan Kaufmann, 1999.

[50] Y. Ye and G. Fischer, “Supporting Reuse by Delivering Task-
Relevant and Personalized Information,” Proc. 24th Int’l Conf.
Software Eng., pp. 513-523, 2002.

[51] Y. Ye and G. Fischer, “Reuse-Conducive Development Environ-
ments,” Automated Software Eng. vol. 12, pp. 199-235, Apr. 2005.

[52] R. Yokomori, H. Siy, M. Noro, and K. Inoue, “Assessing the
Impact of Framework Changes Using Component Ranking,” Proc.
IEEE Int’l Conf. Software Maintenance, pp. 189-198, 2009.

Collin McMillan received the MS degree in
computer science from the College of William &
Mary in 2009 and is working toward the PhD
degree in computer science at the College of
William & Mary, advised by Denys Poshyvanyk.
He is a recipient of the NASA Virginia Space
Grant Consortium Graduate Research Fellow-
ship. His research interests include software
engineering, software maintenance and evolu-
tion, software repository mining, and source

code analysis and metrics. He is a member of the ACM and the IEEE.

Mark Grechanik received the PhD degree in
computer science from the Department of
Computer Sciences of the University of Texas
at Austin. He is a researcher with the Accenture
Technology Labs and an adjunct professor in the
Departments of Computer Science at several
universities, including the University of Illinois at
Chicago and Northwestern University. In parallel
with his academic activities, he worked for more
than 20 years as a software consultant for

startups and Fortune 500 companies. He is a recipient of best paper
awards from competitive conferences, US National Science Foundation
(NSF) grants, and patents. His research focuses on increasing
programmers’ productivity by automating various activities at different
stages of the development life cycle. In his research, he utilizes various
techniques from software engineering, language design, program
analysis, and machine learning to address specific issues that affect
programmers when they design, debug, and test software. His research
is funded by NSF grants and industry partners who sponsor his research
by investing in his ideas and providing platforms and applications to
empirically validate his research prototypes. He is a member of the
IEEE.

Denys Poshyvanyk received the MS and MA
degrees in computer science from the National
University of Kyiv-Mohyla Academy, Ukraine,
and Wayne State University in 2003 and 2006,
respectively, and the PhD degree in computer
science from Wayne State University in 2008.
He is an assistant professor at the College of
William & Mary in Virginia. Since 2010, he has
been serving on the steering committee of the
International Conference on Program Compre-

hension (ICPC). He served as a program cochair for the 18th and 19th
International Working Conference on Reverse Engineering (WCRE
2011 and WCRE 2012). He will also serve as a program cochair for the
21st International Conference on Program Comprehension (ICPC
2013). His research interests include software engineering, software
maintenance and evolution, program comprehension, reverse engineer-
ing, software repository mining, source code analysis, and metrics. He is
a member of the IEEE and the ACM.

Chen Fu received the PhD degree in computer
science in 2008 from Rutgers University, under
the guidance of Professor Barbara G. Ryder. His
dissertation focused on cxception analysis and
robustness testing of OO programs. He is a
researcher at Accenture Technology Labs. His
research interests include program analysis and
software engineering. His recent research fo-
cuses on using program analysis techniques to
improve software development and testing. The

goal is to reduce manual efforts and also human error by increasing
automation in these activates. He is a member of the IEEE.

Qing Xie received the BS degree in computer
science in 1996 from the South China University
of Technology, the MS and PhD degrees in
computer science in 2002 and 2006, respec-
tively, from the University of Maryland, College
Park. She is a researcher at Accenture Technol-
ogy Labs. She is a recipient of best paper
awards from the International Conference of
Software Testing, Verification and Validation
(ICST ’09) and the International Symposium on

Software Reliability and Engineering (ISSRE ’10). Her research interests
include program testing, software engineering, software maintenance,
and empirical studies. She is a member of ACM SIGSOFT, the IEEE
Computer Society, and the IEEE, and has served on program
committees of several international conferences and as the reviewers
of reputable journals.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

MCMILLAN ET AL.: EXEMPLAR: A SOURCE CODE SEARCH ENGINE FOR FINDING HIGHLY RELEVANT APPLICATIONS 1087

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

