TROPICAL GEOMETRY PROBLEMS, DAY 2

DUSTIN CARTWRIGHT

(1) Let K be any field with valuation. Prove that if a and b are elements of K with $v(a) \neq v(b)$, then $v(a+b)=\min \{v(a), v(b)\}$.
(2) In this example, we work with $K=\mathbb{Q}_{5}$, the field of 5-adic numbers. What is the tropicalization of $f=x-y+25$? Prove that for any point (a, b) in the tropicalization such that a and b are integers, then there exists $x, y \in \mathbb{Q}_{5}$ with $f(x, y)=0, v(x)=a$, and $v(y)=b$. (This is stronger than the fundamental theorem because we're showing solutions in \mathbb{Q}_{5}, not its algebraic closure.)
(3) Let K and f be as in the previous problem. If a and b are rational numbers such that (a, b) is in the tropical curve of f, then can you find x and y in $\overline{\mathbb{Q}}_{5}$, the algebraic closure of \mathbb{Q}_{5}, such that $f(x, y)=0, v(x)=a$, and $v(y)=b$?
(4) Let K be $\mathbb{C}\{\{\pi\}\}$ and let I be the ideal in $K\left[x^{ \pm}, y^{ \pm}\right]$generated by $f_{1}=x-\pi$ and $f_{2}=y-4$. What is $V(I)$? What is $\operatorname{Trop}(I)$? Give a tropical basis for I and give a generating set for I which is not a tropical basis.
(5) Recall the following example from lecture: $K=\overline{\mathbb{Q}}_{3}$ and I has a tropical basis of $x y+y-x+3$ and $z^{-1}+2-3 x$. We verified that the multiplicity at $(2,1,0)$ was 1 . Use the balancing condition to show that all multiplicities are 1 .
(6) Let $K=\mathbb{Q}_{3}$ and let $f=3 x^{2}+y^{2}+1$. Verify that the point $(0,0)$ is in the tropical hypersurface of f. Show, however, that there is no point $(x, y) \in \mathbb{Q}_{3}^{2}$ such that $f(x, y)=0$ and $v(x)=v(y)=0$. (Hint: consider the reduction of such a solution modulo 3.) Give an example of such (x, y) if they're instead allowed to be in $\overline{\mathbb{Q}}_{3}$.
(7) Prove that tropical hypersurfaces are connected through codimension 1.
(8) Understand the following definition: Let I be an ideal in the ring of Laurent polynomials $K\left[x_{1}^{ \pm}, \ldots, x_{n}^{ \pm}\right]$and $w=\left(w_{1}, \ldots, w_{n}\right)$ be any point. Now let t_{1}, \ldots, t_{n} be elements of K with $v\left(t_{i}\right)=$ w_{i} (you may need to enlarge your field to do this). Let R denote the subring of K of elements with non-negative valuation and \mathfrak{m} the ideal in R of elements with positive valuation. Define $\operatorname{in}_{w}(I)$ to be the image of the ideal

$$
\left(\left\{f\left(t_{1} x_{1}, \ldots, t_{n} x_{n}\right) \mid f\left(x_{1}, \ldots, x_{n}\right) \in I\right\} \cap R\left[x_{1}^{ \pm}, \ldots, x_{n}^{ \pm}\right]\right.
$$

in the ring $k\left[x_{1}^{ \pm}, \ldots, x_{n}^{ \pm}\right]$, where $k=R / \mathfrak{m}$.
(9) Let I be as in the previous problem. Prove that the tropical variety of I consists of those points $w \in \mathbb{R}^{n} \operatorname{such}^{\text {that }} \operatorname{in}_{w}(I)$ does not contain 1.

