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4. Tropical geometry, lecture 2 9
4.1. Valuations 9
4.2. Tropicalizing a Laurent polynomial in K 10
4.3. The fundamental theorem 11
4.4. How to compute multiplicities 11
5. Igusa local zeta function, lecture 3 11
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1. Igusa local zeta function, lecture 1

1.1. Preliminary aside. Consider the equations

x+ 1 ≡ 0 (mod 5) x ≡ 4 (mod 5)

x+ 1 ≡ 0 (mod 52) x ≡ 4 + 4 · 5 ≡ 24 (mod 52)

x+ 1 ≡ 0 (mod 53) x ≡ 4 + 4 · 5 + 4 · 52 ≡ 124 (mod 53),

where each solution is a lift of the previous solution. So

x = 4 + 4 · 5 + 4 · 52 + . . .

is a solution to

x+ 1 ≡ 0 (mod 5n)

for any n ∈ N.
Another example:

3x ≡ 2 (mod 5) x ≡ 4 (mod 5)

3x ≡ 2 (mod 52) x ≡ 4 + 1 · 5 (mod 52)

3x ≡ 2 (mod 53) x ≡ 4 + 1 · 5 + 3 · 52 (mod 53),

and so on. We want to have

4 + 1 · 5 + 3 · 52 + · · · → 2

3
.

1.2. Introduction to the p-adic numbers. We will denote the p-adic numbers Qp, and
the real numbers R = Q∞. We consider Q to be a “global” field. We have

N ↪→ Z ↪→ Q ↪→ Qp

for p ∈ {primes} ∪ {∞}.
Important figures:

• Kurt Hensel, 1861–1941 (1897)
• Helmut Hasse, 1889–1979 (1920)
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1.3. Local/global principle (Hasse principle). If P is a suitable property, then P
holds in Q if and only if P holds in Qp for all p prime, p =∞.

Example 1.1 (Hasse’s thesis). The quadratic form

f(x1, . . . , xn) = a1x
2
1 + a2x1x2 + · · ·+ amx

2
n

Example 1.2 (The Riemann zeta function).

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

1

1− p−s
=
∏
p

ζp(s).

1.4. Absolute values on Q. An absolute value on Q is a map

|·| : Q −→ Q+

such that for all x, y ∈ Q,

(i) |x| ≥ 0, |x| = 0 ⇐⇒ x = 0;
(ii) |x · y| = |x| · |y|;

(iii) |x+ y| ≤ |x|+ |y|.
Up to equivalence (the same sequences converge), there are three absolute values on Q:

|x|∞ =

{
x, x ≥ 0

−x, x < 0
(1)

|x|0 =

{
1, x 6= 0

0, x = 0
(2)

|x|p =

{
0, x = 0
1
pα
, x 6= 0, ordp(x) = α,

(3)

where we define the order ordp(x) to be the unique integer α such that

x = pα
a

b
,

where p 6
∣∣ a, b.

For the third absolute value, we have the ultrametric property

(3a) |x+ y|p ≤ max(|x|p , |y|p).

1.5. Examples with the p-adic absolute value. Set p = 5. We have

|1000|5 =
∣∣53 · 8

∣∣
5

=
1

53
,

|1001|5 =
∣∣50 · 1001

∣∣
5

= 1,

|1002|5 = 1,

|1005|5 =
1

5
.

1.6. Motivation for the p-adic numbers. If x ∈ Z, then |x|p ≤ 1. Also, if x ∈ Q with no

p in the denominator, then |x|p ≤ 1. If x ∈ Q with no p in the numerator or denominator,

then |x|p = 1. Finally, if x ∈ Q \ Z with p in the denominator, then |x|p > 1.
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1.7. Completion. Recall that the real numbers R are constructed as the set of all equiva-
lence classes of Cauchy sequences of rational numbers.

A sequence {an} is a Cauchy sequence if for all ε > 0, there exists Nε such that

|an − am|∞ < ε

for all n,m > Nε.

Example 1.3 (Cauchy sequences for |·|∞).

0 = {0, 0, 0, . . . } ∼ {.1, .01, .001, . . . } ,
1 = {1, 1, 1, . . . } ∼ {.9, .99, .999, . . . } .

We can also complete with respect to the p-adic numbers by replacing |·|∞ with |·|p in the
above definition.

Example 1.4 (Cauchy sequences for |·|p).

0 = {0, 0, 0, . . . } ∼
{
p, p2, p3, . . .

}
,

1 = {1, 1, 1, . . . } ∼
{

1 + p, 1 + p2, 1 + p3, . . .
}
.

1.8. Uniqueness of p-adic expansion.

Theorem 1.5. Given x ∈ Q, we can uniquely write

x = pα
(
a0 + a1p+ a2p

2 + . . .
)

=
{
pαa0, p

αa0 + pα+1a1, . . .
}
,

where 0 ≤ ai ≤ p− 1 and a0 6= 0.

We write Zp for the p-adic integers , the completion of Z with respect to |·|p. In other
words, these are the p-adic numbers with α ≥ 0 in the above theorem.

We can visualize the p-adic integers by placing them in nested circles based on congruences
modulo p.1

1.9. Sketch of integration. We can define a measure on Zp as follows: m(Zp) = 1, and in
general,

m(a+ pnZp) =
1

pn
.

In other words, each of the p “balls” at a given layer has the same measure, i.e.,

m(pZp) =
1

p
.

This is the correct definition in order to obtain a translation-invariant measure.

2. Tropical geometry, lecture 1

Reference: Macagan and Sturmfels, Introduction to Tropical Geometry.

1See https://en.wikipedia.org/wiki/File:3-adic_integers_with_dual_colorings.svg

https://en.wikipedia.org/wiki/File:3-adic_integers_with_dual_colorings.svg
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2.1. The tropical semiring. The tropical semiring is the set R ∪ {∞} = R with the
following operations:

• tropical addition ⊕ is the minimum;
• tropical multiplication � is classical addition.

Some properties:

(1) Tropical addition and multiplication are commutative and associative.
(2) The additive identity is ∞:

a⊕∞ = min(a,∞) = a

for all a ∈ R.
(3) The multiplicative identity is 0:

a� 0 = a

for all a ∈ R.
(4) Distributive law:

a� (b⊕ c) = (a� b)⊕ (a� c)
for all a, b, c ∈ R.

(5) There are no additive inverses, which is why R is a “semiring” instead of a ring.
(There are multiplicative inverses for all numbers other than ∞.)

Example 2.1.

2� (3⊕ 4) = 2� 3 = 5

= 2� 3⊕ 2� 4 = 5⊕ 6 = 5.

2.2. Graphs of polynomials. Write xn = x� . . .� x, as usual.

Example 2.2. What is the graph of x2 ⊕ x⊕ 1? We have

x2 ⊕ x⊕ 1 = min(x� x, x, 1).

This factors into two linear polynomials:

(x⊕ 0)� (x⊕ 1) = x2 ⊕ 0� x⊕ 1� x⊕ 1 = x2 ⊕ x⊕ 1.

The “roots” are where the function isn’t linear.

Example 2.3 (A double root). In the case of x2 ⊕ 1 � x ⊕ 1, the 1 � x term is never the
minimum, so it doesn’t appear in the graph.

Since the slope changes at x = 1
2
, but changes by 2, let’s call that a double root . But(

x⊕ 1

2

)2

= x2 ⊕ 1

2
� x⊕ 1

2
� x⊕ 1 = x2 ⊕ 1

2
� x⊕ 1.

So these two polynomials

x2 ⊕ 1� x⊕ 1, x2 ⊕ 1

2
� x⊕ 1

define the same function R −→ R.

Remark 2.4. Therefore, while we cannot always factor, we can always get a factorization
that defines the same function.
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2.3. The tropical fundamental theorem.

Theorem 2.5 (Tropical fundamental theorem of algebra). For any tropical polynomial of
degree d

ad � xd ⊕ . . .⊕ a0 (ai ∈ R),

there is a unique product of d linear factors

ad � (x⊕ r1)� . . .� (x⊕ rd)
which defines the same function R −→ R.

The constants r1, . . . , rd correspond to points where the function is not linear; the multi-
plicity of the root is the amount by which the slope changes.

The proof is left as an exercise.

2.4. Polynomials in several variables. Q: What about polynomials in more variables?

Example 2.6. Consider x ⊕ y ⊕ 0: now the function fails to be linear on the line x = y for
x, y < 0 and on the positive x and y axes.

Definition 2.7. Given a tropical polynomial f in n variables, the corresponding tropical
hypersurface is the set of points where f is not linear, i.e., where two or more terms achieve
the minimum.

Remark 2.8. The tropical hypersurface is a union of (n− 1)-dimensional polyhedra (shapes
defined by linear equalities and inequalities) each defined where two terms agree.

Definition 2.9. The multiplicity of a tropical hypersurface at such a polyhedron is the gcd
of the entries of the difference of the exponent vectors on either side.

Example 2.10. The polynomial

x2 � y ⊕ x� y2 ⊕ x⊕ 1� y
has the following multiplicity at one of the boundaries: The exponent vector of x is (1, 0),
and the exponent vector of x� y is (1, 2). The difference is (0,−2), so the multiplicity is

gcd(0,−2) = 2.

2.5. Why multiplicities? At each point v of a plane curve (a 1-dimensional tropical hy-
persurface) and each edge e containing v, there exists a unique vector ue parallel to e, with
integer entries with gcd = 1.

Theorem 2.11 (Balancing condition). At any point v of a plane curve, let Ev be the set of
edges containing v. Then ∑

e∈Ev

meue = 0,

where ue is as above, and me is the multiplicity of e.

2.6. Tropical lines. Consider
a� x⊕ b� y � c,

where a, b, c ∈ R. For two general points in the plane, there exists a unique tropical line
passing through both of them.

Likewise, any two general tropical lines intersect at a unique point.
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3. Igusa local zeta function, lecture 2

3.1. The Haar measure on Zp. Recall:

Zp =
{
x ∈ Qp : |x|p ≤ 1

}
=

p−1∐
a−0

(a+ pZp) ,

pZp =
{
x ∈ Qp : |x|p < 1

}
,

Zp \ pZp =
{
x ∈ Zp : |x|p = 1

}
.

We have a basis of open sets of the form

a+ pnZ =
{
x ∈ Zp : |x− a|p ≤ p−n

}
,

where a ∈ Zp and n ∈ Z+.
Let E be a union of sets of the form a + pnZp. Then the Haar measure on E has the

following properties:

(1) m(E) ≥ 0, m(∅) = 0.
(2) If E1 ∩ E2 = ∅, then

m(E1 ∪ E2) = m(E1) +m(E2).

(Actually, we also have countable additivity.)
(3) m(E) = m(a+ E) for any a ∈ Zp.
(4) m(Zp) = 1.

So m is a countably additive, translation-invariant positive measure with total measure 1.
By translation invariance,

m(a+ pnZp) = m(pnZp) =
m(Zp)
pn

=
1

pn
.

Also,

1 =

∫
Zp
dx =

∫
pZp

dx+

∫
Zp\pZp

dx,

so

m(Zp \ pZp) =

∫
Zp\pZp

dx = 1− p−1.

Likewise,

m(peZp \ pe−1Zp) = p−e − p−(e+1) = p−e
(
1− p−1

)
.

3.2. The Igusa local zeta function. Let f(x1, x2, . . . , xn) ∈ Z[x1, x2, . . . , xn], and let
s ∈ C with Re s > 0. Define

Z(s) =

∫
· · ·
∫
Znp
|f(x1, x2, . . . , xn)|s dx1 dx2 . . . dxn︸ ︷︷ ︸

Haar measure on Znp

.

Theorem 3.1 (Igusa, 1975). Z(s) is a rational function of p−s = T (using Hironaka’s
resolution of singularities, depending on p and f(x)).
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Example 3.2. Let f(x) = xn. We have

Zp =
∞∐
e=0

pe(Zp \ pZp)
∐
{0} .

So ∫
Zp
|x|Nsp dx =

∞∑
e=0

∫
peZp\pe+1Zp

|x|Nsp dx

=
∞∑
e=0

∫
pe(Zp\pZp)

p−eNs dx

=
∞∑
e=0

p−eNsp−e
(
1− p−1

)
=
(
1− p−1

) ∞∑
e=0

(
p−Nsp−1

)e
=

1− p−1

1− p−Ns−1
=

1− p−1

1− p−1TN
.

Hence, we obtain ∫
Zp
|x|sp dx =

1− p−1

1− p−1p−s
.

An alternate method:

Z(s) =

∫
Zp
|x|Ns dx =

∫
pZp
|x|Ns +

∫
Zp\pZp

|x|Ns dx

=

∫
Zp
|py|Ns p−1 dy +

(
1− p−1

)
= p−Nsp−1

∫
Zp
|y|Ns dy +

(
1− p−1

)
= p−Nsp−1Z(s) +

(
1− p−1

)
,

thus

Z(s) =
1− p−1

1− p−1p−Ns
.

Example 3.3.∫
Zp

∣∣x2(x− 1)
∣∣s
p
dx =

∫
pZp

∣∣x2∣∣s dx+

∫
1+Zp
|x− 1|s dx+ (p− 2)p−1.

Example 3.4.∫
Zp

∫
Zp
|x+ y|s dx dy =

∞∑
f=0

∞∑
e=0

∫
pe(Zp\pZp)

∫
pf (Zp\pZp)

|x+ y|s dx dy =
1− p−1

1− p−1T
.
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3.3. Another form. Recall that

Z(s) =

∫
Znp
|f(x1, . . . , xn)|sp dx1 . . . dxn.

So we can write

Z(s) =
∞∑
e=0

m
(
(x1, . . . , xn)

∣∣ f(x) = peu
)
T e.

Observe that

Z(0) = m
(
(x1, . . . , xn)

∣∣ f(x) = u
)
,

Z(1) = 1.

3.4. Poincaré series. Generating function:

|Ne| = #
{

(x1, . . . , xn) ∈ (Z/peZ)n
∣∣ f(x1, . . . , xn) ≡ 0 mod pe

}
P (T ) =

∞∑
e=0

|Ne| p−neT e.

Note that |Ne| ≤ pen and |N0| = 1.

Theorem 3.5 (Igusa, 1975). The Igusa zeta function can be expressed as

Z(T ) = P (T )− T−1
(
P (T )− 1

)
.

Equivalently,

P (T ) =
1− Z(T )T

1− T
.

Proof. Observe that

Z(T ) =
∞∑
e=0

m
(
x ∈ Znp

∣∣ f(x) = peu
)
T e

=
∞∑
e=0

(
|Ne| p−enT e − |Ne+1| p−(e+1)nT e

)
= P (T )− T−1

( ∞∑
e=0

|Ne+1| p−(e+1)T e+1
)

= P (T )− T−1
(
P (T )− 1

)
. �

4. Tropical geometry, lecture 2

4.1. Valuations.

Definition 4.1. A valuation on a field K is a function v : K∗ −→ R such that:

(1) v(ab) = v(a) + v(b);
(2) v(a+ b) ≥ min {v(a), v(b)}.

Remark 4.2. By convention, v(0) =∞.

Example 4.3. The p-adic valuation on Q or Qp.

Example 4.4 (Trivial valuation). For K any field, set v(a) = 0 for all a ∈ K∗.
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Example 4.5 (Formal Laurent series). In the field K((π)) of formal Laurent series, define

v
( ∞∑
i=−N

aiπ
i
)

= min
{
i
∣∣ ai 6= 0

}
.

Example 4.6 (Formal Puiseux series). The ring of formal Puiseux series

K{{π}} =
⋃

d∈Z>0

C
((
π1/d

))
is algebraically closed if K is algebraically closed, and in characteristic zero, it is the algebraic
closure of K((π)). We define a valuation

v
( ∞∑
i=−N

aiπ
i/d
)

= min

{
i

d

∣∣∣∣ ai 6= 0

}
.

Example 4.7. The algebraic closure Qp of Qp has an induced valuation.

Remark 4.8. For the rest of the talk, K will always be an algebraically closed field (of any
characteristic) with valuation.

4.2. Tropicalizing a Laurent polynomial in K. Given

f =
m∑
i=1

aix
e11
i · . . . · xe1nn ∈ K[x±1 , . . . , x

±
n ],

define

Trop(f) =
m⊕
i=1

v(ai)� xe111 � . . .� xe1nn .

Theorem 4.9 (Fundamental theorem of tropical geometry for hypersurfaces). If f is a
Laurent polynomial in K[x±1 , . . . , x

±
n ], then

V
(
Trop(f)

)
∩ v(K∗) =

{(
v(x1), . . . , v(xn)

) ∣∣ xi ∈ K∗, f(x1, . . . , xn) = 0
}
.

Proof sketch. We show part of the proof of the “⊇” direction. Suppose x1, . . . , xn ∈ K∗ such
that f(x1, . . . , xn) = 0. Note that

v(aix
ei1
1 · . . . · xein) = v(ai)� v(x1)

ei1 � . . .� v(xn)ein .

We want to show that the minimum of Trop(f) is achieved at least twice.
For contradiction, assume that the minimum is unique. Then f(x1, . . . , xn) 6= 0 by the

following lemma:

Lemma 4.10. If a, b ∈ K and v(a) 6= v(b), then

v(a+ b) = min {v(a), v(b)} .
The other direction (⊆) is hard! �

Example 4.11. If K = C{{π}} and f = πx− y + 1, then

Trop(f) = 1� x⊕ y ⊕ 0.

We have

x = π−1/2 v(x) = −1

2

y = 1 + π1/2v(y) = 0.
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4.3. The fundamental theorem.

Theorem 4.12 (Fundamental theorem of tropical geometry). Let I ⊂ K[x±1 , . . . , x
±
n ] be an

ideal. Then

Trop(I) ∩ v(K∗) =
{(
v(x1), . . . , v(xn)

) ∣∣ (x1, . . . , xn) ∈ V (I)
}
,

where

Trop(I) =
⋂
f∈I

V (Trop f),

V (I) =
{

(x1, . . . , xn) ∈ (K∗)n
∣∣ f(x1, . . . , xn) = 0 for all f ∈ I

}
.

Remark 4.13. The ideal I has a finite generating set, and for computing V (I), it’s sufficient
to check the generators.

However, for computing Trop(I), it is not sufficient to take generators of I.

Definition 4.14 (Tropical bases). If f1, . . . , fm are generators of I such that

Trop(I) =
m⋂
i=1

V (Trop fi),

then f1, . . . , fm is a tropical basis .

Remark 4.15. Tropical bases always exist (Gröbner bases).

Example 4.16. Let K = Q3 and n = 3. Consider the ideal I generated by the tropical basis

f = xy + y − x+ 3,

g = z−1 + 2− 3x.

4.4. How to compute multiplicities. Fix a point p = (p1, . . . , pn).

(1) Change coordinates so that the tropical variety is of the form xi = p for d ≤ i ≤ n,
where d = dim I.

(2) Choose “generic” ai such that v(ai) = pi for i = 1, . . . , d.
(3) Count the points in

V (I) ∩ V (x1 = a1, . . . , xd = ad)

with v(ai) = pi for i = 1, . . . , d.

This is the multiplicity.

5. Igusa local zeta function, lecture 3

In this lecture, we will discuss Igusa’s Stationary Phase Formula (1994) and Hironaka’s
Resolution of Singularities (1964) as methods of computing the Igusa local zeta function
(ILZF).

Recall:

Z(s) =

∫
Znp
|f(x1, . . . , xn)|s dx1 . . . dxn

is a rational function of p−s = T .
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5.1. Poincaré series and ILZF.

Z(T ) = P (T )− T−1 (P (T )− 1)

PT (T ) =
1− Z(T )T

1− T
|Ne| = #

{
(x1, . . . , xn) ∈ (Z/peZ)n

∣∣ f(x1, . . . , xn) ≡ 0 mod pe
}
.

Aside 5.1 (Special computation). Let n = # of variables of f(x1, . . . , xn). Recall from last
time that

Z(T ) =
∞∑
e=0

[
|Ne| p−ne − |Ne+1| p−n(e+1)

]
T e.

Consider the special case

f(x1, . . . , xn) = a+ c1x1 + c2x2 + · · ·+ cnxn + p(some mess),

where at least one ci 6≡ 0 mod p. We have

|Ne| = pe(n−1),

so

Z(T ) =
∞∑
e=0

[
pe(n−1)p−en − p(e+1)(n−1)e−(e+1)n

]
T e

=
∞∑
e=0

[
p−e − p−(e+1)

]
T e

=
∞∑
e=0

(
p−1T

)e (
1− p−1

)
=

1− p−1

1− p−1T
.

5.2. The stationary phase formula.

Theorem 5.2 (Stationary phase formula, Igusa 1994). Let f(x) ∈ Zp[x1, . . . , xn], and write
T = p−s. Then

Z(T ) =
(
pn −

∣∣N1

∣∣) p−n +
(∣∣N1

∣∣− ∣∣S∣∣) p−nT ( 1− p−1

1− p−1T

)
+

∫
S

|f(x)|s dx,

where:

• f(x) ≡ f(x) (mod p),

• n = # of variables in f(x),

•
∣∣N1

∣∣ = # of vectors x ∈ (Z/pZ)n such that f(x) ≡ 0 (mod p),

•
∣∣S∣∣ = # of vectors x ∈ N1 such that ∂f

∂xi
(x) ≡ 0 (mod p),

• S = the set of all vectors x ∈ (Zp)n that are congruent mod p to vectors in S.
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5.3. Applications of SPF.

Example 5.3. Let f(x1, x2, x3, x4) = x1x2 + x3x4. Then∣∣N1

∣∣ =
(
p2 − 1

)
p+ p2 = p3 + p2 − p

for (x1, x3) 6= (0, 0), and
∣∣S∣∣ = 1, so

S = 0 + (pZp)4.

Hence, we obtain

Z(T ) =
(
p4 − (p3 + p2 − p)

)
p−4 +

(
p3 − p2 − p− 1

)
p−4T

1− p−1

1− p−1T

+

∫
(pZp)4

|x1x2 + x3x4|s dx1 dx2 dx3 dx4︸ ︷︷ ︸
=I

.

By a change of coordinates xi = pyi, dxi = p−1 dyi,

I =

∫
(Zp)4
|py1py2 + py3py4|s p−4 dy1 dy2 dy3 dy4

= p−4T 2

∫
(Zp)4
|y1y2 + y3y4|s dy1 dy2 dy3 dy4

= p−4T 2Z(T ).

So

Z(T ) =
(
1− p−1

) (
1− p−2

)
+

(p−1 + p−2 − p−3 − p−4)T (1− p−1)
1− p−1T

+ p−4T 2Z(T )

Z(T ) =
(1− p−1)(1− p−2)

(1− p−1T )(1− p−2T )
.

Example 5.4. Consider f(x, y) = y2 − x3, |N1| = p. Then

Z(T ) =

∫
Z2
p

∣∣y2 − x3∣∣
p
dx dy =

∑
ξ∈(Z/pZ)2

∫
ξ+(pZp)2

∣∣y2 − x3∣∣s
p
dx dy

=
(
p2 − p

)
p−2 + (p− 1)p−2T

1− p−1

1− p−1T
+

∫
(pZp)2

∣∣y2 − x3∣∣s
p
dx dy.

By applying the change of variables

x = px1 dx = p−1 dx1

y = py1 dy = p−1 dy1,

we obtain

Z(T ) =
(
1− p−1

)
+

(1− p−1)p−1T (1− p−1)
1− p−1T

+ p−2T 2

∫
(Zp)2

∣∣y21 − px31∣∣sp dx1 dy1.
Denoting the integral at the end by I1, write

f1(x1, y1) = y21 − px31,
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so that f1 = y21 ≡ 0 (mod p), yielding

I1 =

∫
Z2
p

∣∣y21 − px31∣∣sp dx1 dy1 = (p− 1)p−1 +

∫
Zp×pZp

∣∣y21 − px31∣∣sp dx1 dy1.
Change variables again:

x1 = x2, dx1 = dx2,

y1 = py2, dy1 = p−1 dy2.

So

I1 =
(
1− p−1

)
+ p−1T

∫
Z2
p

∣∣py22 − x32∣∣sp dx2 dy2.
Now we denote the remaining integral by I2. We will need to apply SPF two more times.

Eventually, we obtain

Z(T ) =
(1− p−1)(1− p−2T + p−2T 2 − p−5T 5)

(1− p−1T )(1− p−5T 6))
,

Z(0) =
(
1− p−1

)
=
(
p2 − p

)
p−2,

Z(1) =
(1− p−1)(1− p−5)
(1− p−1)(1− p−5)

= 1.

Remark 5.5. This method is equivalent to finding a resolution modulo p. This is an open
question, so we don’t know that it will work in general.

5.4. Proof of SPF. We have

Z(T ) =
∑

ξ∈(Z/pZ)n

∫
ξ+pZnp

|f(x)|s dx.

Let us consider the values of the integral for different ξ:

(1) If ξ ∈ (Z/pZ)n \N1, then it is (pn − |N1|)p−n.
(2) If ξ ∈ N1 \ S, then . . .

6. Tropical geometry, lecture 3

6.1. Abstract tropical curves. Today’s lecture is on the intrinsic viewpoint for tropical
curves, i.e., how to get an abstract tropical curve from an embedded tropical curve.

(1) Take a 1-dimensional tropical curve with all edges having multiplicity 1.
(2) Label the “points at infinity” for the unbounded edges.
(3) Consider the tropical curve as a graph, including a vertex for each unbounded direc-

tion.
(4) Give the bounded edges lengths equal to their lattice length, the real number d such

that
v − w = d(u1, . . . , un),

where u1, . . . , un are integers with gcd 1.

Definition 6.1 (abstract tropical curve). An abstract tropical curve is a finite connected
graph G, together with marked vertices v1, . . . , vn, all having degree 1, and positive lengths
for each edge which doesn’t contain a marked vertex. (The marked vertices correspond to
unbounded edges.)
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Definition 6.2 (genus). The genus of a curve G is given by

g = E − V + 1 = dimH1(G,Q),

where E is the number of edges, and V the number of vertices.

6.2. Stable curves and stabilization.

Definition 6.3. An abstract tropical curve is stable if every unmarked vertex has degree at
least 3 and there exists at least one unmarked vertex.

There is a stabilization procedure to obtain a stable curve from an unstable curve:

(1) If an unmarked degree 1 vertex exists, delete it and the edge containing it.
(2) Repeat (1) as necessary.
(3) If any vertex has degree 2 (and is not part of a loop), replace the vertex and its edges

with a single edge with length equal to the sum of the old lengths.
(4) Repeat (3) as necessary.

Remark 6.4. Stabilization doesn’t change the genus.

Remark 6.5. Sometimes, we end up with a loop that has a vertex of degree 2 and get stuck!

Proposition 6.6. A curve of genus g with n marked points has a stabilization if and only
if 2g − 2 + n > 0. If a stabilization exists, then it is unique.

6.3. Genus 0 stable curves: small cases. What are the genus 0 stable curves with n
marked points for n ≥ 3?

Definition 6.7. The combinatorial type of a curve is the data of the curve without the
lengths.

There is a unique stable curve of genus 0 with 3 marked points.
There are four combinatorial types of stable genus 0 curves with 4 marked points. Each

of the first three cases has a length parameter ` ∈ R>0. The fourth case (the “star tree”)
can be thought of as a limiting case ` = 0 of the other three.

Therefore, the classification of stable curves of genus 0 with 4 marked points “is” three
rays R≥0 glued along their vertex. In other words, the tropical curve x⊕ y⊕ 0 parametrizes
stable genus 0 tropical curves with 4 marked points.

This is the moduli space of stable tropical curves of genus 0 with 4 marked points. A
moduli space classifies not just as a set, but as a tropical variety.

6.4. Genus 0 stable curves: the general case. Embed the set of genus 0 stable curves
with n ≥ 3 marked points in RN :

(1) Pick arbitrary lengths for unbounded edges.
(2) Record, for each pair 1 ≤ i < j ≤ n, the distance (sum of lengths of a path) from Vi

and Vj. Let dij = −length,2 giving a vector (dij) ∈ R(n2).
(3) Take the image of this vector in

R(n2)/Rn,

where Rn is the subspace of distances on the n-th star tree.

2The negative sign is so that the resulting moduli space will be a tropical variety.
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Theorem 6.8. The above defines an injective map

{genus 0 stable curves with n marked points} ↪→ R(n2)−n.

The image consists of the tropical variety⋂
i<j<k<`

V
(
(dij � dk` ⊕ dik � dj` ⊕ di` � djk) · d−1ij � d−1k`

)
.

Remark 6.9. The terms in the above expression are known as the “tropical Plücker relations”.

7. Tropical geometry, lecture 4

7.1. Classical/tropical correspondences. Classical geometry:

(1) 1 line through 2 points in general position
(2) 1 quadric through 5 general points
(3) 12 singular cubics through 8 general points

Tropical geometry:

(1) 1 line through 2 general points
(2) 1 quadric through 5 general points
(3) 12 singular cubics through 8 general points

In general, how many curves pass through k given general points? This is a hard question
in classical geometry, and the answer wasn’t known until the 1990s.

7.2. The genus formula. Classically, a smooth degree d curve has genus

g =
(d− 1)(d− 2)

2
.

A tropical reason for the genus formula: Arrange monomials of a general degree d = 3 curve
in a triangle. Then

genus of a tropical curve = # holes of the tropical curve

= # of points in triangle which are not on the edge

=
(d− 1)(d− 2)

2
.

7.3. Nodes.

Definition 7.1. A node is a singular point where two smooth branches of the curve cross,
i.e., the blow-up has two distinct points and is an immersion near each point.

Equivalently, there is a node at (0, 0) iff the equation for the curve is

xy + (cubic and higher terms)

after a change of coordinates.

A degree d curve with n nodes has (geometric) genus equal to

(d− 1)(d− 2)

2
− n.

Tropical analogue: When resolving a tropical node, introduce one new vertex, so

g = E − V + 1

decreases by one.
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7.4. Counting curves through general points. Returning to the original question: How
many irreducible curves of genus g and degree d pass through k given general points?

Proposition 7.2. There are

{
infinitely many
finitely many

no

}
irreducible curves of degree d and genus

g passing through k general points if

k


<

=

>

 g + 3d− 1.

Definition 7.3. Ng,d = # of irreducible curves of degree d and genus g through k = g+3d−1
general points.

Theorem 7.4 (Kontsevich 1994).

N0,d =
∑

d1+d2=d
d1,d2>0

[
d21d

2
2

(
3d− 4

3d1 − 2

)
− d31d2

(
3d− 4

3d1 − 1

)]
N0,d1N0,d2 .

Theorem 7.5 (Mikhalkin 2005). Ng,d = number of tropical curves through g+3d−1 general
points (counted with multiplicity).

Remark 7.6. Gathmann–Markwig reproved Kontsevich’s formula in 2007/2008 using the
above theorem of tropical geometry.
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