Singular Learning Theory Problems: Day 2

Shaowei Lin

22 May 2013

1. Given integers $\alpha_{1}, \ldots, \alpha_{d} \geq 0$, compute the RLCT at the origin of the following monomial ideals:
(a) $\left\langle\omega_{1}^{\alpha_{1}}, \omega_{2}^{\alpha_{2}}, \ldots, \omega_{d}^{\alpha_{d}}\right\rangle$
(b) $\left\langle\omega_{1}^{\alpha_{1}} \omega_{2}^{\alpha_{2}} \cdots \omega_{d}^{\alpha_{d}}\right\rangle$
2. Find the RLCT over all points $(t, \omega) \in \mathbb{R}^{2}$ of the following ideal in the ring $\mathbb{R}[t, \omega]$:

$$
I=\left\langle\frac{1}{2} t+(1-t) \omega-\frac{1}{2}, \frac{1}{2} t+(1-t)(1-\omega)-\frac{1}{2}\right\rangle .
$$

3. Given an integer $m \geq 0$, find the threshold (λ, θ) appearing in the following exponential integral

$$
\int_{\mathbb{R}} e^{-n x^{2}}\left|x^{m}\right| d x \approx C N^{-\lambda}(\log N)^{\theta-1}
$$

If C is known, can you prove that the above is not an approximation but an exact formula? Hint: Substitute $x=t y$, and study the limit as $t \rightarrow \infty$ of $Z\left(N t^{2}\right) /\left(C(N t)^{-\lambda}(\log N t)^{\theta-1}\right)$.
4. Blowing up a singularity. Find the RLCT of the ideal $\left\langle x^{3} y-x y^{3}\right\rangle$.

Hint: You may need a transformation called a blow up to resolve the singularity at the origin. The blow up of the origin in \mathbb{R}^{2} is a map $\rho: U \rightarrow \mathbb{R}^{2}$ where the manifold U is covered by two charts U_{1}, U_{2}. Each chart is isomorphic to \mathbb{R}^{2} and the map ρ restricted to each chart is given by

$$
\begin{array}{ll}
\rho: U_{1} \rightarrow \mathbb{R}^{2}, & (s, t) \mapsto(s t, t) \\
\rho: U_{2} \rightarrow \mathbb{R}^{2}, & (u, v) \mapsto(u, u v)
\end{array}
$$

5. (Hard) Sum and product rules for ideals with disjoint indeterminates.

Given indeterminates $a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{t}$, suppose that the ideal I is generated by polynomials in a_{1}, \ldots, a_{s} and the ideal J is generated by polynomials in b_{1}, \ldots, b_{t}. Let $\operatorname{RLCT}(I)=\left(\lambda_{a}, \theta_{a}\right)$ and $\operatorname{RLCT}(J)=\left(\lambda_{b}, \theta_{b}\right)$. Prove the following formulas for the sum and the product of I and J.

$$
\begin{aligned}
\operatorname{RLCT}(I+J) & =\left(\lambda_{a}+\lambda_{b}, \theta_{a}+\theta_{b}-1\right) \\
\operatorname{RLCT}(I J) & = \begin{cases}\left(\lambda_{a}, \theta_{a}\right) & \text { if } \lambda_{a}<\lambda_{b} \\
\left(\lambda_{b}, \theta_{b}\right) & \text { if } \lambda_{a}>\lambda_{b} \\
\left(\lambda_{a}, \theta_{a}+\theta_{b}\right) & \text { if } \lambda_{a}=\lambda_{b}\end{cases}
\end{aligned}
$$

