# Singular Learning Theory Problems: Day 3 

Shaowei Lin

23 May 2013


1. (a) Suppose we have a discrete directed graphical model whose underlying graph is the above graph. Assume that all the random variables have two states $\{0,1\}$. Write down polynomial equations satisfied by the state probabilities $p_{i j k l}=\mathbb{P}(A=i, B=j, C=k, D=l)$ in the model which are consequences of the local Markov property.
(b) Suppose we have a Gaussian directed graphical model with the above graph. Write down the covariance matrix $\Sigma$ for the model. What are some polynomial equations satisfied by the entries $\Sigma_{i j}, i, j \in\{A, B, C, D\}$ arising from the local Markov property?
2. In the binary tree model example discussed in the lecture, we saw that the model is defined by the cumulant map $f:\left(\mu_{a}, \mu_{b}, \mu_{c}, \lambda_{r}, \lambda_{s}, \eta_{s}^{r}, \eta_{c}^{r}, \eta_{a}^{s}, \eta_{b}^{s}\right) \mapsto\left(k_{a}, k_{b}, k_{c}, k_{a b}, k_{a c}, k_{b c}, k_{a b c}\right)$,

$$
\begin{gathered}
k_{a}=\mu_{a}, \quad k_{b c}=\frac{1}{4}\left(1-\lambda_{r}^{2}\right) \eta_{s}^{r} \eta_{b}^{s} \eta_{c}^{r}, \\
k_{b}=\mu_{b}, \quad k_{a c}=\frac{1}{4}\left(1-\lambda_{r}^{2}\right) \eta_{s}^{r} \eta_{a}^{s} \eta_{c}^{r}, \\
k_{c}=\mu_{c}, \quad k_{a b}=\frac{1}{4}\left(1-\lambda_{s}^{2}\right) \eta_{a}^{s} \eta_{b}^{s}, \\
\quad k_{a b c}=\frac{1}{4}\left(1-\lambda_{r}^{2}\right) \lambda_{s} \eta_{s}^{r} \eta_{a}^{s} \eta_{b}^{s} \eta_{c}^{r} .
\end{gathered}
$$

Find the RLCT of the map $f$ at the point $\lambda_{s}=\lambda_{r}=1, \mu_{a}=\mu_{b}=\mu_{c}=\eta_{s}^{r}=\eta_{c}^{r}=\eta_{a}^{s}=\eta_{b}^{s}=0$.
3. Find the asymptotic coefficients $(\lambda, \theta)$ for the tubular volume

$$
\int_{|f(\omega)| \leq t} d \omega \approx C t^{\lambda}(-\log t)^{\theta-1}
$$

where the function $f(\omega)$ is:
(a) $f(\omega)=\omega_{1}^{2}+\omega_{2}^{2}+\ldots+\omega_{d}^{2}$,
(b) $f(\omega)=\omega_{1} \omega_{2} \cdots \omega_{d}$.
4. Prove that for the restricted Boltzmann machine,

$$
\mathbb{P}\left(h_{i}=1 \mid v\right)=\operatorname{sig}\left(b_{i}+\sum_{j} \omega_{i j} v_{j}\right), \quad \operatorname{sig}(x)=\frac{1}{1+e^{-x}} .
$$

## 1 Useful formulas for computing RLCTs

Given a polynomial map $f: \Omega \rightarrow V \subset \mathbb{R}^{k}, f=\left(f_{1}, \ldots, f_{k}\right)$, we define the RLCT of $f$ at an interior point $x \in \Omega \subset \mathbb{R}^{d}$ to be the RLCT (at the origin) of the ideal

$$
I=\left\langle f_{1}(\omega+x)-f_{1}(x), f_{2}(\omega+x)-f_{2}(x), \ldots, f_{k}(\omega+x)-f_{k}(x)\right\rangle \subset \mathbb{R}\left[\omega_{1}, \ldots, \omega_{d}\right] .
$$

Some useful properties of RLCTs:

1. Removing Units.

If $I=\left\langle h(\omega) g_{1}(\omega), g_{2}(\omega), \ldots, g_{k}(\omega)\right\rangle$ and $h(0) \neq 0$, then the RLCT of $I$ is the same as the RLCT of the ideal $\left\langle g_{1}(\omega), g_{2}(\omega), \ldots, g_{k}(\omega)\right\rangle(h(\omega)$ is removed).
2. Monomial Ideals.

If $I$ is a monomial ideal, then the RLCT is given by the Newton polyhedron method.
3. Sum and Product Rules.

Given indeterminates $a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{t}$, suppose that the ideal $I$ is generated by polynomials in $a_{1}, \ldots, a_{s}$ and the ideal $J$ is generated by polynomials in $b_{1}, \ldots, b_{t}$. Let $\operatorname{RLCT}(I)=\left(\lambda_{a}, \theta_{a}\right)$ and $\operatorname{RLCT}(J)=\left(\lambda_{b}, \theta_{b}\right)$. Then the following formulas hold.

$$
\begin{aligned}
\operatorname{RLCT}(I+J) & =\left(\lambda_{a}+\lambda_{b}, \theta_{a}+\theta_{b}-1\right) \\
\operatorname{RLCT}(I J) & = \begin{cases}\left(\lambda_{a}, \theta_{a}\right) & \text { if } \lambda_{a}<\lambda_{b}, \\
\left(\lambda_{b}, \theta_{b}\right) & \text { if } \lambda_{a}>\lambda_{b}, \\
\left(\lambda_{a}, \theta_{a}+\theta_{b}\right) & \text { if } \lambda_{a}=\lambda_{b} .\end{cases}
\end{aligned}
$$

4. Global and Local RLCTs.

The RLCT of an ideal $I$ globally over a set $\Omega$ is the minimum of the local RLCTs of $I$ at each point $x \in \Omega$ (remember to translate the origin to $x$ for each local RLCT).

