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1 Problems

1. Find RLCT of f(x, y) = y2 − x3 at the origin by using a resolution of singularities.

2. In this exercise, we will compute the leading coefficient C in the asymptotic formula

Z(N) =

∫
[0,1]2

(1− x2y2)N/2 dxdy ≈ CN−1/2(logN).

(a) Write down the corresponding zeta function ζ(z) for this integral.

(b) Given K(x, y) = −1
2

log(1− x2y2), show that K(x, y) has the Taylor expansion

K(x, y) =
x2y2

2

(
1 +

x2y2

2
+
x4y4

3
+ · · ·

)
(c) For now, suppose that z is a negative real number. Using the generalized binomial theorem,

we get the power series expansion

K(x, y)−z =
∞∑
i=0

2z · hi(z) · (xy)−2z+2i.

Prove that the coefficients hi(z) are polynomials in z, and find h0(z).

(d) Integrate K(x, y)−z term-by-term over {(x, y) ∈ [0, 1]2} to get a Laurent series expansion
for ζ(z). For each term in the series, find its contribution

a

(z − 1
2
)2
, for some a ∈ R,

to the pole at z = 1
2

of multiplicity 2.

(e) Asymptotic theory tells us that while ζ(z) is well-defined for z < 0, the zeta function has
an analytic continuation to the whole complex plane z ∈ C. Deduce that the coefficient of
(z − 1

2
)−2 in the Laurent expansion of ζ(z) is d = 1/

√
8.

(f) Finally, use Theorem 3.4 below and Γ(1
2
) =
√
π to compute the leading coefficient C.
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2 What is a Blow-up?

2.1 Blow-up of the origin

Consider Rn×Pn−1 with coords

((x1, x2, . . . , xn), (ξ1 : ξ2 : . . . : ξn)).

Let V be subset of points

((x1, x2, . . . , xn), (x1 : x2 : . . . : xn)), x ∈ Rn \ {0}.

Then, X = V ⊂ Rd×Pn−1 is the blow-up of the origin in Rn. The projection π : X → Rn, (x, ξ) 7→ x,
is the blow-up map.

1. X = V ∪E where E = {0}×Pn−1 is the exceptional divisor. The map π is an isomorphism from
V to Rn \ {0}, while π−1(0) = E.

2. X is a toric variety (defined by binomials).

X = {(x, ξ) ∈ Rn×Pn−1 | xiξj = xjξi for all i, j}

3. X covered by affine charts Ui = {(x, ξ) ∈ X | ξi 6= 0} ' Rn with coords

{(y1, . . . , yn) = (
ξ1

ξi
, . . . , xi, . . . ,

ξn
ξi
}

so π is given by affine maps πi : Ui → Rn

(y1, . . . , yn) 7→ (y1yi, . . . , yi, . . . , ynyi)

2.2 Blow-up of a linear subspace

π × id : X×Rm → Rn×Rm is the blowing-up of {0}×Rm in Rn+m.

2.3 Blow-up of a smooth center

Let Z ⊂ Rd be a smooth variety whose ideal is 〈f1, . . . , fr〉. For instance, when Z is the origin, its
ideal is 〈x1, . . . , xd〉. Let us blow up Rd with center Z.

For each point x = (x1, . . . , xd) ∈ Rd not in Z, let us tag it with the point

fP(x) = (f1(x) : · · · : fr(x)) ∈ Pr−1.

The set X of points
(x, fP(x)) ∈ Rd × Pr−1, x ∈ Rd\Z

has a Zariski closure X̃ called the blowup of Rd with center Z.
The projection π : X̃ ⊂ Rd×Pr−1 → Rd is the blowup map. This map restricts to an isomorphism

X → Rd\Z, while the preimage E = π−1Z ' Z×P codim(Z)−1 is the exceptional divisor.
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3 Zeta Functions

Laplace integrals occur frequently in physics, statistics and other applications. At first glance, the
relationship between their asymptotic expansions and the Laurent expansion of the zeta function
seems strange. The key is to write these integrals as

Z(n) =

∫
Ω

e−n|f(ω)||ϕ(ω)| dω =

∫ ∞
0

e−ntv(t) dt

ζ(z) =

∫
Ω

∣∣f(ω)
∣∣−z|ϕ(ω)| dω =

∫ ∞
0

t−zv(t) dt

where v(t) is the state density function or Gelfand-Leray function

v(t) =
d

dt

∫
0<|f(ω)|<t

|ϕ(ω)| dω.

Formally, Z(n) is the Laplace transform of v(t) while ζ(z) is its Mellin transform. Note that contrary
to its name, v(t) is generally not a function but a Schwartz distribution. We study the series expansions

Z(n) ≈
∑
α

d∑
i=1

cα,in
−a(log n)i−1 (1)

v(t)dt ≈
∑
α

d∑
i=1

bα,i t
α(log t)i−1dt (2)

ζ(z) ∼
∑
α

d∑
i=1

dα,i(z − α)−i (3)

where the series (1) and (2) are asymptotic expansions while (3) is the principal part of the Laurent
series expansion. Formulas relating their coefficients are then deduced from the Laplace and Mellin
transforms of tα(log t)i which appears in v(t). Detailed expositions on this subject have been written
by Arnol’d–Gusĕın-Zade–Varchenko [1], Watanabe [5] and Greenblatt [2].

Proposition 3.1. The asymptotic expansion of the Laplace transform of tα−1(log t)i is∫ ∞
0

e−nt tα−1(log t)i dt ≈
i∑

j=0

(
i

j

)
(−1)jΓ(i−j)(α)n−α(log n)j

while the Mellin transform of tα−1(log t)i is∫ 1

0

t−z tα−1(log t)i dt = − i! (z − α)−(i+1).

Proof. See [1, Thm 7.4] and [5, Ex 4.7] respectively.

In this section, we employ standard techniques to derive the asymptotic expansion of the Laplace
integral from the Laurent expansion of the zeta function. Recall that Γ is the Gamma function and
that Γ(i) is its i-th derivative.
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Theorem 3.2. Let Ω ⊂ Rd be a compact semianalytic subset and ϕ : Ω → R be nearly analytic. If
f ∈ AΩ with f(x) = 0 for some x ∈ Ω, then the Laplace integral

Z(n) =

∫
Ω

e−n|f(ω)||ϕ(ω)| dω

has the asymptotic expansion ∑
α

d∑
i=1

cα,i n
−α(log n)i−1. (4)

The α in this expansion range over positive rational numbers which are poles of

ζ(z) =

∫
Ωδ

∣∣f(ω)
∣∣−z|ϕ(ω)| dω (5)

where δ ∈ R is any δ > 0 and Ωδ = {ω ∈ Ω : |f(ω)| < δ}. The coefficients cα,i satisfy

cα,i =
(−1)i

(i− 1)!

d∑
j=i

Γ(j−i)(α)

(j − i)!
dα,j (6)

where dα,j is the coefficient of (z − α)−j in the Laurent expansion of ζ(z).

Proof. See [4, Thm 3.16].

Definition 3.3. The leading coefficient coefΩ(f ;ϕ) is the coefficient cλ,θ of the leading term in the
asymptotic expansion of Z(n). Note that (λ, θ) is the real log canonical threshold RLCTΩ(f ;ϕ).

Proposition 3.4. The leading coefficient coefΩ(f ;ϕ) is given by

cλ,θ =
(−1)θ Γ(λ)

(θ − 1)!
dλ,θ

where dλ,θ is the coefficient of (z − λ)−θ in the Laurent expansion of ζ(z).
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