SINGULAR LEARNING THEORY

Part I: Statistical Learning

Shaowei Lin (Institute for Infocomm Research, Singapore)

21-25 May 2013 Motivic Invariants and Singularities Thematic Program Notre Dame University

Overview

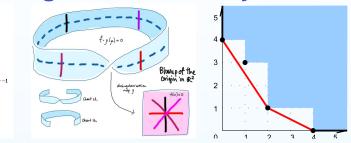
Probability

Statistics

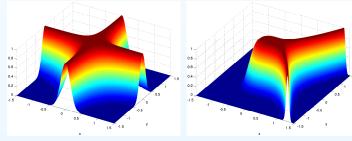
Bayesian

Regression

Algebraic Geometry

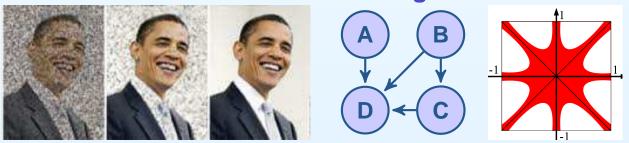


Asymptotic Theory



 $\int_{[0,1]^2} (1-x^2y^2)^{N/2} dx dy \approx \sqrt{\frac{\pi}{8}} N^{-\frac{1}{2}} \log N - \sqrt{\frac{\pi}{8}} (\frac{1}{\log 2} - 2\log 2 - \gamma) N^{-\frac{1}{2}} - \frac{1}{4} N^{-1} \log N + \frac{1}{4} (\frac{1}{\log 2} + 1 - \gamma) N^{-1} - \frac{\sqrt{2\pi}}{128} N^{-\frac{3}{2}} \log N + \cdots$

Statistical Learning



Algebraic Statistics Singular Learning Theory

			F1			
0	V	C		VI	C	vv
-		<u> </u>			-	

Probability

Statistics

Bayesian

Regression

Part I: Statistical Learning

Part II: Real Log Canonical Thresholds

Part III: Singularities in Graphical Models

Probability

- Random Variables
- Discrete · Continuous
- Gaussian
- Basic Concepts
- Independence

Statistics

Bayesian

Regression

Probability

Random Variables

Probability

- Random Variables
- Discrete · Continuous
- Gaussian
- Basic Concepts
- Independence

Statistics

Bayesian

Regression

A probability space $(\xi, \mathcal{F}, \mathbb{P})$ consists of

- a sample space ξ which is the set of all possible outcomes,
- a collection^{$\ddagger} <math>\mathcal{F}$ of *events*, which are subsets of ξ ,</sup>
 - an assignment ${}^{\flat} \mathbb{P} : \mathcal{F} \to [0,1]$ of *probabilities* to events

A (real-valued) random variable $X: \xi \to \mathbb{R}^k$ is

- a function[‡] from the sample space to a real vector space.
- a measurement of the possible outcomes.
- $X \sim \mathbb{P}$ means "X has the distribution given by \mathbb{P} ".

 $\overset{\sharp}{\underset{\natural}{\overset{\flat}{\overset{\flat}{\overset{\flat}{\overset{\bullet}{\overset{\bullet}}}}}} \sigma \text{-algebra: closed under complement, countable union and contains } \emptyset. } \\ \text{probability measure: } \mathbb{P}(\emptyset) = 0, \mathbb{P}(\xi) = 1, \text{ countable additivity for disjoint events.} \\ \text{measurable function: for all } x \in \mathbb{R}, \text{ the preimage of } \{y \in \mathbb{R}^k : y \leq x\} \text{ is in } \mathcal{F}. }$

Example. Rolling a fair die.

 $\xi = \{ \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc \} \quad \mathcal{F} = \{ \emptyset, \{ \bigcirc\}, \{ \bigcirc, \bigcirc\}, \ldots \}$ $X \in \{1, 2, 3, 4, 5, 6\} \quad \mathbb{P}(X = 1) = \frac{1}{6}, \ \mathbb{P}(X \le 3) = \frac{1}{2}$

Discrete and Continuous Random Variables

Probability

- Random Variables
- Discrete · Continuous
- Gaussian
- Basic Concepts
- Independence

Statistics

Bayesian

Regression

If ξ is finite, we say X is a $\mbox{discrete}$ random variable.

• probability mass function $p(x) = P(X = x), x \in \mathbb{R}^k$.

If ξ is infinite, we define the

• cumulative distribution function (CDF) F(x)

 $F(x) = \mathbb{P}(X \le x), \quad x \in \mathbb{R}^k.$

• probability density function^{\ddagger} (PDF) p(y)

$$F(x) = \int_{\{y \in \mathbb{R}^k : y \le x\}} p(y) dy, \quad x \in \mathbb{R}^k.$$

If the PDF exists, then X is a **continuous**^{\flat} random variable.

[#] Radon-Nikodym derivative of F(x) with respect to the Lebesgue measure on \mathbb{R}^k . We can also define PDFs for discrete variables if we allow the Dirac delta function.

The probability mass/density function is often informally referred to as the **distribution** of X.

Gaussian Random Variables

Probability

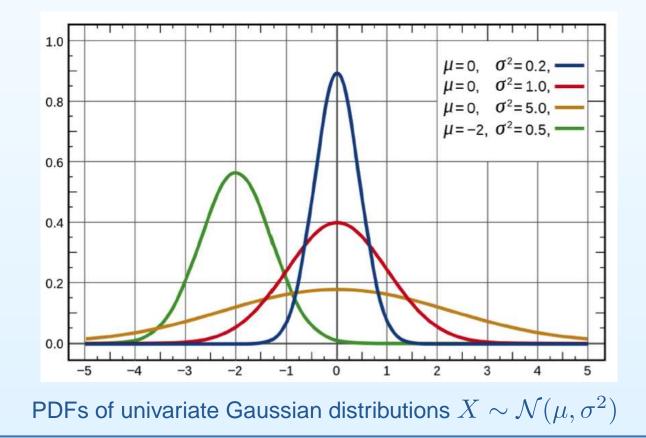
- Random Variables
- Discrete · Continuous
- Gaussian
- Basic Concepts
- Independence

Statistics

Bayesian

Regression

Example. Multivariate Gaussian distribution $X \sim \mathcal{N}(\mu, \Sigma)$. $X \in \mathbb{R}^k$, mean $\mu \in \mathbb{R}^k$, covariance $\Sigma \in \mathbb{R}^k_{\succ 0}$ $p(x) = \frac{1}{(2\pi \det \Sigma)^{k/2}} \exp\left(-\frac{1}{2}(x-\mu)^\top \Sigma^{-1}(x-\mu)\right)$



Basic Concepts

Probability

- Random Variables
- Discrete · Continuous
- Gaussian
- Basic Concepts
- Independence

Statistics

Bayesian

Regression

The **expectation** $\mathbb{E}[X]$ is the integral of the random variable X with respect to its probability measure, i.e. the "average".

 $\begin{array}{ll} \underline{\text{Discrete variables}} & \underline{\text{Continuous variables}} \\ \mathbb{E}[X] = \sum_{x \in \mathbb{R}^k} x \mathbb{P}(X \!=\! x) & \mathbb{E}[X] = \int_{\mathbb{R}^k} x p(x) \, dx \end{array}$

The variance $\mathbb{E}[(X - \mathbb{E}[X])^2]$ measures the "spread" of X.

The conditional probability^{\sharp} $\mathbb{P}(A|B)$ of two events $A, B \in \mathcal{F}$ is the probability that A will occur given that we know B has occurred.

 $\bullet \quad \text{If } \mathbb{P}(B) > 0 \text{, then } \mathbb{P}(A|B) = \mathbb{P}(A \cap B) / \mathbb{P}(B).$

[#] formal definition depends on the notion of conditional expectation.

Example. Weather forecast.		Rain	No Rain
$\mathbb{P}(Rain Thunder)$	Thunder	0.2	0.1
= 0.2/(0.1 + 0.2) = 2/3	No Thunder	0.3	0.4

Independence

Probability

- Random Variables
- Discrete · Continuous
- Gaussian
- Basic Concepts

• Independence

Statistics

Bayesian

Regression

Let $X \in \mathbb{R}^k, Y \in \mathbb{R}^l, Z \in \mathbb{R}^m$ be random variables.

X,Y are independent $(X {\perp\!\!\!\!\perp} Y)$ if

- $\mathbb{P}(X \in S, Y \in T) = \mathbb{P}(X \in S) \mathbb{P}(Y \in T)$ for all measurable subsets $S \subset \mathbb{R}^k, T \subset \mathbb{R}^l$.
- i.e. "knowing X gives no information about Y "
- X, Y are conditionally independent given $Z(X \perp\!\!\!\perp Y \mid Z)$ if
 - $\mathbb{P}(X \in S, Y \in T | Z = z) = \mathbb{P}(X \in S | Z = z) \mathbb{P}(Y \in T | Z = z)$ for all $z \in \mathbb{R}^m$ and measurable subsets $S \subset \mathbb{R}^k, T \subset \mathbb{R}^l$.
 - i.e. "any dependence between X and Y is due to Z "

Example. Hidden variables.

Favorite color $X \in \{\text{red}, \text{blue}\}$, favorite food $Y \in \{\text{salad}, \text{steak}\}$. If X, Y are dependent, one may ask if there is a hidden variable, e.g. gender $Z \in \{\text{female}, \text{male}\}$, such that $X \perp Y \mid Z$.

Probability

Statistics

- Statistical Model
- Maximum Likelihood
- Kullback-Leibler
- Mixture Models

Bayesian

Regression

Statistics

Statistical Model

Probability

Statistics

- Statistical Model
- Maximum Likelihood
- Kullback-Leibler
- Mixture Models

Bayesian

Regression

Let Δ denote the space of distributions with outcomes ξ . **Model**: a family \mathcal{M} of probability distributions, i.e. a subset of Δ . **Parametric model**: family \mathcal{M} of distributions $p(\cdot|\omega)$ are indexed by parameters ω in a space Ω , i.e. we have a map $\Omega \to \Delta$.

Example. Biased coin tosses.

Number of heads in two tosses of coin: $H \in \xi = \{0, 1, 2\}$ Space of distributions:

$$\Delta = \{ p \in \mathbb{R}^3_{\geq 0} : p(0) + p(1) + p(2) = 1 \}$$

Probability of getting heads: $\omega \in \Omega = [0, 1] \subset \mathbb{R}$ Parametric model for H:

$$\begin{array}{ll} p(0|\omega) &= (1-\omega)^2 \\ p(1|\omega) &= 2(1-\omega)\omega \\ p(2|\omega) &= \omega^2 \end{array} \end{array} \right\} \begin{array}{l} \text{implicit equation} \\ 4 \, p(0) p(2) - p(1)^2 = 0 \end{array}$$

Maximum Likelihood

Probability

Statistics

- Statistical Model
- Maximum Likelihood
- Kullback-Leibler
- Mixture Models

Bayesian

Regression

A sample X_1, \ldots, X_N of X is a set of independent, identically distributed (i.i.d.) random variables with the same distribution.

Goal: Given a statistical model $\{p(\cdot|\omega) : \omega \in \Omega\}$ and a sample, find a distribution $p(\cdot|\hat{\omega})$ that best describes the sample.

A statistic $f(X_1, \ldots, X_N)$ is a function of the sample. An important statistic is the maximum likelihood estimate (MLE). It is a parameter $\hat{\omega}$ that maximizes the likelihood function

$$L(\omega) = \prod_{i=1}^{N} p(X_i | \omega).$$

Example. Biased coin tosses.

Suppose the table below summarizes a sample of H of size 100.

H	0	1	2
Count	25	45	30

Then,
$$L(\omega)=2^{45}\omega^{105}(1-\omega)^{95}$$

 $\hat{\omega}=105/200.$

Probability

Statistics

- Statistical Model
- Maximum Likelihood
- Kullback-Leibler
- Mixture Models

Bayesian

Regression

Let X_1, \ldots, X_N be a sample of a *discrete* variable X. The **empirical distribution** is the function

$$\hat{q}(x) = \frac{1}{N} \sum_{i=1}^{N} \delta(x - X_i)$$

where $\delta(\cdot)$ is the Kronecker delta function.

The Kullback-Leibler divergence of a distribution p from q is $K(q||p) = \sum_{x \in \mathbb{R}^k} q(x) \log \frac{q(x)}{p(x)}.$

Proposition. ML distributions minimize the KL divergence of $q(\cdot) = p(\cdot|\omega) \in \mathcal{M}$ from the empirical distribution $\hat{q}(\cdot)$. $K(\hat{q}||q) = \sum_{x \in \mathbb{R}^k} \hat{q}(x) \log \hat{q}(x) - \frac{1}{N} \log L(\omega)$

Probability

Statistics

- Statistical Model
- Maximum Likelihood
- Kullback-Leibler
- Mixture Models

Bayesian

Regression

Let X_1, \ldots, X_N be a sample of a *continuous* variable X. The **empirical distribution** is the *generalized function*

$$\hat{q}(x) = \frac{1}{N} \sum_{i=1}^{N} \delta(x - X_i)$$

where $\delta(\cdot)$ is the *Dirac* delta function.

The **Kullback-Leibler divergence** of a distribution p from q is

$$K(q||p) = \int_{\mathbb{R}^k} q(x) \log \frac{q(x)}{p(x)} dx.$$

Proposition. ML distributions minimize the KL divergence of $q(\cdot) = p(\cdot|\omega) \in \mathcal{M}$ from the empirical distribution $\hat{q}(\cdot)$.

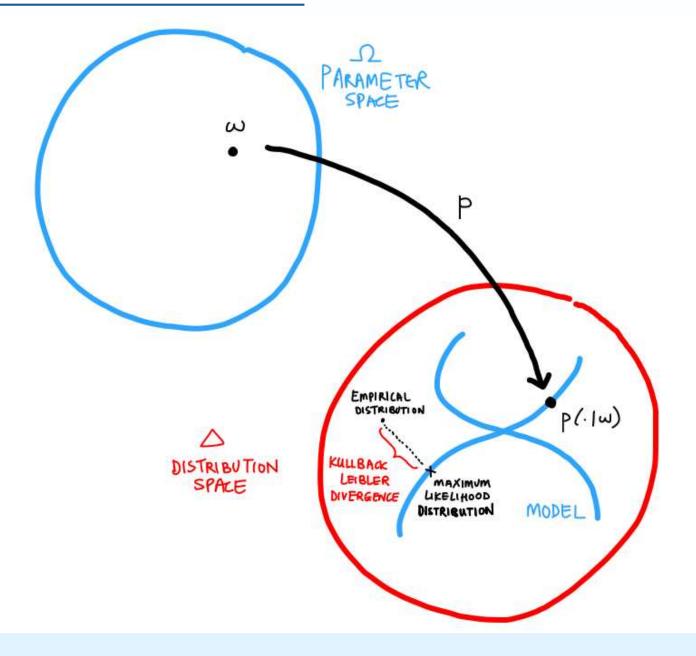
$$K(\hat{q}||q) = \underbrace{\int_{\mathbb{R}^k} \hat{q}(x) \log \hat{q}(x) dx}_{\text{entropy}} - \frac{1}{N} \log L(\omega)$$

Statistics

- Statistical Model
- Maximum Likelihood
- Kullback-Leibler
- Mixture Models

Bayesian

Regression



Probability

Statistics

- Statistical Model
- Maximum Likelihood
- Kullback-Leibler
- Mixture Models

Bayesian

Regression

Example. Population mean and variance.

Let $X \sim N(\mu, \sigma^2)$ be the height of a random Singaporean. Given sample X_1, \ldots, X_N , estimate mean μ and variance σ^2 .

Now, the Kullback-Leibler divergence is

$$K(\hat{q}||q) = \frac{1}{2\sigma^2 N} \sum_{i=1}^{N} (X_i - \mu)^2 + \frac{1}{N} \log \sigma + \text{constant.}$$

Differentiating this function gives us the MLE

$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} X_i, \quad \hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} (X_i - \hat{\mu})^2.$$

MLE for the model mean is the sample mean. MLE for the model variance is the sample variance.

Mixture Models

Probability

Statistics

- Statistical Model
- Maximum Likelihood
- Kullback-Leibler
- Mixture Models

Bayesian

Regression

A mixture of distributions $p_1(\cdot), \ldots, p_m(\cdot)$ is a convex combination

$$p(x) = \sum_{i=1}^{m} \alpha_i p_i(x), \quad x \in \mathbb{R}^k$$

i.e. the **mixing coefficients** α_i are nonnegative and sum to one. **Example**. Gaussian mixtures.

Mixing univariate Gaussians $\mathcal{N}(\mu_i, \sigma_i^2)$, $i = 1, \ldots, m$, produces distributions of the form

$$p(x) = \sum_{i=1}^{m} \frac{\alpha_i}{\sqrt{2\pi\sigma_i^2}} \exp\left(-\frac{(x-\mu_i)^2}{2\sigma_i^2}\right).$$

This mixture model is therefore described by parameters

$$\omega = (\alpha_1, \ldots, \alpha_m, \mu_1, \ldots, \mu_m, \sigma_1, \ldots, \sigma_m)$$

and is frequently used in cluster analysis.

Probability

Statistics

Bayesian

- Interpretations
- Bayes' Rule
- Parameter Estimation
- Model Selection
- Estimating Integrals
- Information Criterion
- Singularities

Regression

Bayesian Statistics

Interpretations of Probability Theory

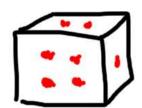
Probability

Statistics

Bayesian

- Interpretations
- Bayes' Rule
- Parameter Estimation
- Model Selection
- Estimating Integrals
- Information Criterion
- Singularities

Regression



FREQUENTIST: each number occurs about N/6 times out of N throws of the die.

BAYESIAN:

No, not really. That's only what you BELIEVE about the die.

Interpretations of Probability Theory

Probability

Statistics

Bayesian

- Interpretations
- Bayes' Rule
- Parameter Estimation
- Model Selection
- Estimating Integrals
- Information Criterion
- Singularities

Regression

FREQUENTIST:

surely, the die has some inherent probabilities and our purpose is to discover them!!

BAYESIAN:

Nope! These probabilities are not inherent. A die is a die. That's it. But as we observe the die, our belief about its outcomes changes too.

Bayes' Rule

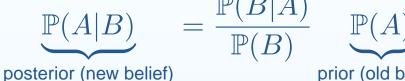
Probability

Statistics

- **Bayesian**
- Interpretations
- Bayes' Rule
- Parameter Estimation
- Model Selection
- Estimating Integrals
- Information Criterion
- Singularities

Regression

Updating our belief of event A based on an observation B.



Example. Biased coin toss.

Let θ denote $\mathbb{P}(\text{heads})$ of a coin. Determine if the coin is fair $(\theta = \frac{1}{2})$ or biased $(\theta = \frac{3}{4})$. Old belief: $\mathbb{P}(\text{fair}) = 0.9$ Now, suppose we observed a sample with 8 heads and 2 tails. New belief: $\mathbb{P}(\text{fair}|\text{sample}) = \frac{\mathbb{P}(\text{sample}|\text{fair})}{\mathbb{P}(\text{sample})}\mathbb{P}(\text{fair})$ $=\frac{(\frac{1}{2})^8(\frac{1}{2})^2(0.9)^8}{(\frac{1}{2})^2(0.9)^8+(\frac{3}{4})^8(\frac{1}{4})^2(0.1)^8}\approx 0.584$

Parameter Estimation

Probability

Statistics

Bayesian

- Interpretations
- Bayes' Rule
- Parameter Estimation
- Model Selection
- Estimating Integrals
- Information Criterion
- Singularities

Regression

Let $\mathcal{D} = \{X_1, \ldots, X_N\}$ denote a sample of X, i.e. "the data".

Frequentists: Compute maximum likelihood estimate. Bayesians: Treat parameters $\omega \in \Omega$ as random variables with priors $p(\omega)$ that require updating.

Posterior distribution on parameters $\omega \in \Omega$

Posterior mean

Posterior mode

Predictive distribution on outcomes $x \in \xi$

 $p(\omega|\mathcal{D}) = \frac{p(\mathcal{D}|\omega)p(\omega)}{\int_{\Omega} p(\mathcal{D}|\omega)p(\omega)d\omega}$ $\int_{\Omega} \omega p(\omega|\mathcal{D})d\omega$ $\operatorname{argmax}_{\omega \in \Omega} p(\omega|\mathcal{D})$ $p(x|\mathcal{D}) = \int_{\Omega} p(x|\omega)p(\omega|\mathcal{D})d\omega$

These integrals are difficult to compute or even estimate!

Model Selection

Probability

Statistics

Bayesian

- Interpretations
- Bayes' Rule
- Parameter Estimation
- Model Selection
- Estimating Integrals
- Information Criterion
- Singularities

```
Regression
```

Which model $\mathcal{M}_1, \ldots, \mathcal{M}_m$ best describes the sample \mathcal{D} ?

Frequentists: Pick model containing ML distribution. **Bayesians**: Assign priors $p(\mathcal{M}_i)$, $p(\omega|\mathcal{M}_i)$ and compute

$$\mathbb{P}(\mathcal{M}_i|\mathcal{D}) = \frac{\mathbb{P}(\mathcal{D}|\mathcal{M}_i)\mathbb{P}(\mathcal{M}_i)}{\mathbb{P}(\mathcal{D})} \propto \mathbb{P}(\mathcal{D}|\mathcal{M}_i)\mathbb{P}(\mathcal{M}_i).$$

where $\mathbb{P}(\mathcal{D}|\mathcal{M}_i)$ is the likelihood integral

$$\mathbb{P}(\mathcal{D}|\mathcal{M}_i) = \int_{\Omega} \prod_{i=1}^{N} p(X_i|\omega, \mathcal{M}_i) p(\omega|\mathcal{M}_i) d\omega.$$

Parameter estimation is a form of model selection! For each $\omega \in \Omega$, we define a model \mathcal{M}_{ω} with one distribution.

Estimating Integrals

Probability

Bayesian

- Interpretations
- Bayes' Rule
- Parameter Estimation
- Model Selection
- Estimating Integrals
- Information Criterion
- Singularities

Regression

Generally, there are three ways to estimate statistical integrals.

1. Exact methods

Compute a closed form formula for the integral, e.g. Baldoni·Berline·De Loera·Köppe·Vergne, 2010; Lin·Sturmfels·Xu, 2009.

2. Numerical methods

Approximate using Markov Chain Monte Carlo (MCMC) and other sampling techniques.

3. Asymptotic methods

Analyze how the integral behaves for large samples. Rewrite the likelihood integral as

$$Z_N = \int_{\Omega} e^{-Nf(\omega)} \varphi(\omega) d\omega$$

where $f(\omega) = -\frac{1}{N} \log L(\omega)$ and $\varphi(\omega)$ is the prior on Ω .

Bayesian Information Criterion

Probability

Statistics

Bayesian

- Interpretations
- Bayes' Rule
- Parameter Estimation
- Model Selection
- Estimating Integrals
- Information Criterion
- Singularities

Regression

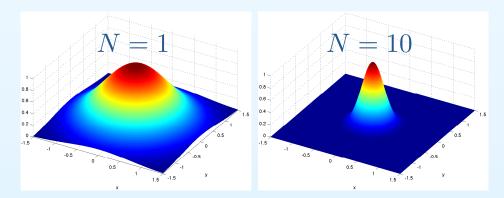
Laplace approximation: If $f(\omega)$ is uniquely minimized at MLE $\hat{\omega}$ and the Hessian $\partial^2 f(\hat{\omega})$ is full rank, then *asymptotically*

$$-\log Z_N \approx Nf(\hat{\omega}) + \frac{\dim\Omega}{2}\log N + O(1)$$

as sample size $N \to \infty$.

Bayesian information criterion (BIC): Select model that maximizes

$$Nf(\hat{\omega}) + \frac{\dim\Omega}{2}\log N$$



Graphs of $e^{-Nf(\omega)}$ for different N. Integral = volume under graph.

Singularities in Statistical Models

Probability

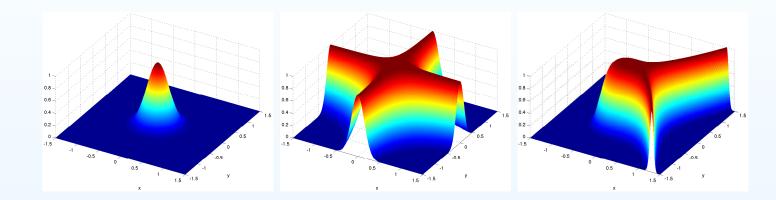
Statistics

Bayesian

- Interpretations
- Bayes' Rule
- Parameter Estimation
- Model Selection
- Estimating Integrals
- Information Criterion
- Singularities

Regression

Informally, the model is **singular** at $\omega_0 \in \Omega$ if the Laplace approximation fails when the empirical distribution is $p(\cdot|\omega_0)$.



Formally, if we define the Kullback-Leibler function

$$K(\omega) = \int_{\xi} p(x|\omega_0) \log \frac{p(x|\omega_0)}{p(x|\omega)} dx.$$

then ω_0 is a *singularity* when the Hessian $\partial^2 K(\omega_0)$ is not full rank.

Statistical models with **hidden variables**, e.g. mixture models, often contain many singularities.

Probability

Statistics

Bayesian

Regression

• Least Squares

• Sparsity Penalty

• Paradigms

Linear Regression

Least Squares

Probability

Statistics

Bayesian

Regression

- Least Squares
- Sparsity Penalty
- Paradigms

Suppose we have random variables $Y \in \mathbb{R}, X \in \mathbb{R}^d$ that satisfy $Y \equiv \omega \cdot X + \varepsilon$

Parameters $\omega \in \mathbb{R}^d$; noise $\varepsilon \in \mathcal{N}(0,1)$; data $(Y_i, X_i), i = 1 \dots N$.

- Commonly computed quantities $\operatorname{argmin}_{\omega} \sum_{i=1}^{N} |Y_i - \omega \cdot X_i|^2$ MLE $\operatorname{argmin}_{\omega}, \sum_{i=1}^{N} |Y_i - \omega \cdot X_i|^2 + \pi(\omega)$ Penalized MLE
- Commonly used penalties LASSO Bayesian Info Criterion (BIC) $\pi(\omega) = |\omega|_0 \cdot \log N$ Akaike Info Criterion (AIC) $\pi(\omega) = |\omega|_0 \cdot 2$
 - $\pi(\omega) = |\omega|_1 \cdot \beta$
- Commonly asked questions Model selection (e.g. which factors are important?) Parameter estimation (e.g. how important are the factors?)

Sparsity Penalty

Probability

Statistics

Bayesian

Regression

- Least Squares
- Sparsity Penalty
- Paradigms

The best model is usually selected using a score $\operatorname{argmin}_{u\in\Omega} l(u) + \pi(u)$

where the likelihood l(u) measures the *fitting error* of the model while the penalty $\pi(u)$ measures its *complexity*.

Recently, *sparse penalties* derived from statistical considerations were found to be highly effective.

 \leftrightarrow

Bayesian info criterion (BIC) Akaike info criterion (AIC) Compressive sensing Marginal likelihood integral

- $\leftrightarrow \quad \text{Kullback-Leibler divergence}$
- $\leftrightarrow \quad \ell_1 \text{-regularization of BIC}$

Singular learning theory plays an important role in these derivations.

Paradigms in Statistical Learning

Probability

• **Probability**

Statistics

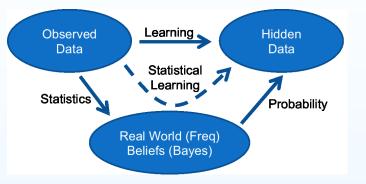
Bayesian

Regression

- Least Squares
- Sparsity Penalty
- Paradigms

theory of random phenomena Statistics theory of making sense of data Learning

the art of prediction using data



• Frequentists: "True distribution, maximum likelihood" Bayesians: "Belief updates, maximum a posteriori"

Interpretations do not affect the *correctness* of probability theory, but they greatly affect the *statistical methodology*.

 We often have to balance the *complexity* of the model with its *fitting error* via some suitable probabilistic criteria. The learning algorithm also needs to be *computable* to be useful. Probability

Statistics

Bayesian

Regression

Least Squares

• Sparsity Penalty

• Paradigms

Thank you!

"Algebraic Methods for Evaluating Integrals in Bayesian Statistics" http://math.berkeley.edu/~shaowei/swthesis.pdf (PhD dissertation, May 2011)

References

Probability

Statistics

Bayesian

- Regression
- Least Squares
- Sparsity Penalty
- Paradigms

- 1. V. I. ARNOL'D, S. M. GUSEĬN-ZADE AND A. N. VARCHENKO: Singularities of Differentiable Maps, Vol. II, Birkhäuser, Boston, 1985.
- 2. V. BALDONI, N. BERLINE, J. A. DE LOERA, M. KÖPPE, M. VERGNE: *How to integrate a polynomial over a simplex*, Mathematics of Computation **80** (2010) 297–325.
- 3. A. BRAVO, S. ENCINAS AND O. VILLAMAYOR: A simplified proof of desingularisation and applications, *Rev. Math. Iberoamericana* **21** (2005) 349–458.
- 4. D. A. COX, J. B. LITTLE, AND D. O'SHEA: *Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra*, Springer-Verlag, New York, 1997.
- 5. R. DURRETT: Probability Theory and Examples (4th edition), Cambridge U. Press, 2010.
- 6. M. EVANS, Z. GILULA AND I. GUTTMAN: Latent class analysis of two-way contingency tables by Bayesian methods, *Biometrika* **76** (1989) 557–563.
- 7. H. HIRONAKA: Resolution of singularities of an algebraic variety over a field of characteristic zero I, II, *Ann. of Math.* (2) **79** (1964) 109–203.
- 8. S. LIN, B. STURMFELS AND Z. XU: Marginal likelihood integrals for mixtures of independence models, *J. Mach. Learn. Res.* **10** (2009) 1611–1631.
- 9. S. LIN: Algebraic methods for evaluating integrals in Bayesian statistics, PhD dissertation, Dept. Mathematics, UC Berkeley (2011).
- 10. L. MACKEY: *Fundamentals Probability and Statistics*, (slides for CS 281A: Statistical Learning Theory at UC Berkeley, Aug 2009).
- 11. S. WATANABE: Algebraic Geometry and Statistical Learning Theory, Cambridge Monographs on Applied and Computational Mathematics **25**, Cambridge University Press, Cambridge, 2009.