SINGULAR LEARNING THEORY

Part I: Statistical Learning

Shaowei Lin
(Institute for Infocomm Research, Singapore)

21-25 May 2013
Motivic Invariants and Singularities Thematic Program
Notre Dame University

Probability
Statistics
Bayesian
Regression

Algebraic Geometry

Asymptotic Theory

$$
\begin{aligned}
& \int_{[0,1]^{2}}\left(1-x^{2} y^{2}\right)^{N / 2} d x d y \approx \\
& \sqrt{\frac{\pi}{8}} N^{-\frac{1}{2}} \log N-\sqrt{\frac{\pi}{8}}\left(\frac{1}{\log 2}-2 \log 2-\right. \\
& \gamma) N^{-\frac{1}{2}}-\frac{1}{4} N^{-1} \log N+\frac{1}{4}\left(\frac{1}{\log 2}+\right. \\
& 1-\gamma) N^{-1}-\frac{\sqrt{2 \pi}}{128} N^{-\frac{3}{2}} \log N+\cdots
\end{aligned}
$$

Statistical Learning

Algebraic Statistics Singular Learning Theory

Probability
Statistics
Bayesian
Regression

Overview

Part I: Statistical Learning

Part II: Real Log Canonical Thresholds
Part III: Singularities in Graphical Models

Probability

- Random Variables
- Discrete•Continuous
- Gaussian
- Basic Concepts
- Independence

Statistics
Bayesian

Regression
Probability

Random Variables

- Random Variables
- Discrete•Continuous
- Gaussian
- Basic Concepts
- Independence

Statistics
Bayesian
Regression

A probability space $(\xi, \mathcal{F}, \mathbb{P})$ consists of

- a sample space ξ which is the set of all possible outcomes,
- a collection ${ }^{\sharp} \mathcal{F}$ of events, which are subsets of ξ,
- an assignment ${ }^{b} \mathbb{P}: \mathcal{F} \rightarrow[0,1]$ of probabilities to events

A (real-valued) random variable $X: \xi \rightarrow \mathbb{R}^{k}$ is

- a function ${ }^{\natural}$ from the sample space to a real vector space.
- a measurement of the possible outcomes.
- $X \sim \mathbb{P}$ means " X has the distribution given by \mathbb{P} ".
\# σ-algebra: closed under complement, countable union and contains \emptyset.
${ }^{b}$ probability measure: $\mathbb{P}(\emptyset)=0, \mathbb{P}(\xi)=1$, countable additivity for disjoint events.
${ }^{\natural}$ measurable function: for all $x \in \mathbb{R}$, the preimage of $\left\{y \in \mathbb{R}^{k}: y \leq x\right\}$ is in \mathcal{F}.
Example. Rolling a fair die.

$$
\begin{aligned}
& X \in\{1,2,3,4,5,6\} \quad \mathbb{P}(X=1)=\frac{1}{6}, \mathbb{P}(X \leq 3)=\frac{1}{2}
\end{aligned}
$$

Discrete and Continuous Random Variables

Probability

- Random Variables
- Discrete•Continuous
- Gaussian
- Basic Concepts
- Independence

Statistics

Bayesian

Regression

If ξ is finite, we say X is a discrete random variable.

- probability mass function $p(x)=P(X=x), x \in \mathbb{R}^{k}$.

If ξ is infinite, we define the

- cumulative distribution function (CDF) $F(x)$

$$
F(x)=\mathbb{P}(X \leq x), \quad x \in \mathbb{R}^{k}
$$

- probability density function ${ }^{\sharp}$ (PDF) $p(y)$

$$
F(x)=\int_{\left\{y \in \mathbb{R}^{k}: y \leq x\right\}} p(y) d y, \quad x \in \mathbb{R}^{k}
$$

If the PDF exists, then X is a continuous ${ }^{b}$ random variable.
\# Radon-Nikodym derivative of $F(x)$ with respect to the Lebesgue measure on \mathbb{R}^{k}.
${ }^{b}$ We can also define PDFs for discrete variables if we allow the Dirac delta function.

The probability mass/density function is often informally referred to as the distribution of X.

Gaussian Random Variables

Probability

- Random Variables
- Discrete•Continuous
- Gaussian
- Basic Concepts
- Independence

Statistics

Bayesian

Regression

Example. Multivariate Gaussian distribution $X \sim \mathcal{N}(\mu, \Sigma)$.
$X \in \mathbb{R}^{k}$, mean $\mu \in \mathbb{R}^{k}$, covariance $\Sigma \in \mathbb{R}_{\succ 0}^{k}$

$$
p(x)=\frac{1}{(2 \pi \operatorname{det} \Sigma)^{k / 2}} \exp \left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)
$$

PDFs of univariate Gaussian distributions $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$

Basic Concepts

Probability

- Random Variables
- Discrete•Continuous
- Gaussian
- Basic Concepts
- Independence

Statistics
Bayesian
Regression

The expectation $\mathbb{E}[X]$ is the integral of the random variable X with respect to its probability measure, i.e. the "average".

$$
\begin{array}{ll}
\text { Discrete variables } & \text { Continuous variables } \\
\mathbb{E}[X]=\sum_{x \in \mathbb{R}^{k}} x \mathbb{P}(X=x) & \mathbb{E}[X]=\int_{\mathbb{R}^{k}} x p(x) d x
\end{array}
$$

The variance $\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]$ measures the "spread" of X.
The conditional probability $\mathbb{P}^{\sharp}(A \mid B)$ of two events $A, B \in \mathcal{F}$ is the probability that A will occur given that we know B has occurred.

- If $\mathbb{P}(B)>0$, then $\mathbb{P}(A \mid B)=\mathbb{P}(A \cap B) / \mathbb{P}(B)$.
$\#$ formal definition depends on the notion of conditional expectation.
Example. Weather forecast.
\mathbb{P} (Rain \mid Thunder $)$
$=0.2 /(0.1+0.2)=2 / 3$

	Rain	No Rain
Thunder	0.2	0.1
No Thunder	0.3	0.4

Independence

Probability

- Random Variables
- Discrete•Continuous
- Gaussian
- Basic Concepts
- Independence

Statistics

Bayesian

Regression

Let $X \in \mathbb{R}^{k}, Y \in \mathbb{R}^{l}, Z \in \mathbb{R}^{m}$ be random variables.
X, Y are independent $(X \Perp Y)$ if

- $\mathbb{P}(X \in S, Y \in T)=\mathbb{P}(X \in S) \mathbb{P}(Y \in T)$ for all measurable subsets $S \subset \mathbb{R}^{k}, T \subset \mathbb{R}^{l}$.
- i.e. "knowing X gives no information about Y "
X, Y are conditionally independent given $Z(X \Perp Y \mid Z)$ if
- $\mathbb{P}(X \in S, Y \in T \mid Z=z)=\mathbb{P}(X \in S \mid Z=z) \mathbb{P}(Y \in T \mid Z=z)$ for all $z \in \mathbb{R}^{m}$ and measurable subsets $S \subset \mathbb{R}^{k}, T \subset \mathbb{R}^{l}$.
- i.e. "any dependence between X and Y is due to Z "

Example. Hidden variables.
Favorite color $X \in\{$ red, blue $\}$, favorite food $Y \in\{$ salad, steak $\}$. If X, Y are dependent, one may ask if there is a hidden variable, e.g. gender $Z \in\{$ female, male $\}$, such that $X \Perp Y \mid Z$.

Statistical Model

Probability
Statistics

- Statistical Model
- Maximum Likelihood
- Kullback-Leibler
- Mixture Models

Bayesian
Regression

Let Δ denote the space of distributions with outcomes ξ.
Model: a family \mathcal{M} of probability distributions, ie. a subset of Δ.
Parametric model: family \mathcal{M} of distributions $p(\cdot \mid \omega)$ are indexed by parameters ω in a space Ω, i.e. we have a $\operatorname{map} \Omega \rightarrow \Delta$.

Example. Biased coin tosses.
Number of heads in two tosses of coin: $H \in \xi=\{0,1,2\}$
Space of distributions:

$$
\Delta=\left\{p \in \mathbb{R}_{\geq 0}^{3}: p(0)+p(1)+p(2)=1\right\}
$$

Probability of getting heads: $\omega \in \Omega=[0,1] \subset \mathbb{R}$
Parametric model for H :

$$
\left.\begin{array}{l}
p(0 \mid \omega)=(1-\omega)^{2} \\
p(1 \mid \omega)=2(1-\omega) \omega \\
p(2 \mid \omega)=\omega^{2}
\end{array}\right\} \quad \begin{aligned}
& \text { implicit equation } \\
& 4 p(0) p(2)-p(1)^{2}=0
\end{aligned}
$$

Maximum Likelihood

Probability
Statistics

- Statistical Model
- Maximum Likelihood
- Kullback-Leibler
- Mixture Models

Bayesian
Regression

A sample X_{1}, \ldots, X_{N} of X is a set of independent, identically distributed (i.i.d.) random variables with the same distribution.

Goal: Given a statistical model $\{p(\cdot \mid \omega): \omega \in \Omega\}$ and a sample, find a distribution $p(\cdot \mid \hat{\omega})$ that best describes the sample.

A statistic $f\left(X_{1}, \ldots, X_{N}\right)$ is a function of the sample. An important statistic is the maximum likelihood estimate (MLE). It is a parameter $\hat{\omega}$ that maximizes the likelihood function

$$
L(\omega)=\prod_{i=1}^{N} p\left(X_{i} \mid \omega\right)
$$

Example. Biased coin tosses.
Suppose the table below summarizes a sample of H of size 100.

H	0	1	2			
Count	25	45	30	\quad	Then, $L(\omega)$	$=2^{45} \omega^{105}(1-\omega)^{95}$
---:	:---					
$\hat{\omega}$	$=105 / 200$.					

Kullback-Leibler Divergence

Probability
Statistics

- Statistical Model
- Maximum Likelihood
- Kullback-Leibler
- Mixture Models

Bayesian
Regression

Let X_{1}, \ldots, X_{N} be a sample of a discrete variable X.
The empirical distribution is the function

$$
\hat{q}(x)=\frac{1}{N} \sum_{i=1}^{N} \delta\left(x-X_{i}\right)
$$

where $\delta(\cdot)$ is the Kronecker delta function.
The Kullback-Leibler divergence of a distribution p from q is

$$
K(q \| p)=\sum_{x \in \mathbb{R}^{k}} q(x) \log \frac{q(x)}{p(x)}
$$

Proposition. ML distributions minimize the KL divergence of $q(\cdot)=p(\cdot \mid \omega) \in \mathcal{M}$ from the empirical distribution $\hat{q}(\cdot)$.

$$
K(\hat{q} \| q)=\underbrace{\sum_{x \in \mathbb{R}^{k}} \hat{q}(x) \log \hat{q}(x)}_{\text {entropy }}-\frac{1}{N} \log L(\omega)
$$

Kullback-Leibler Divergence

Probability
Statistics

- Statistical Model
- Maximum Likelihood
- Kullback-Leibler
- Mixture Models

Bayesian
Regression

Let X_{1}, \ldots, X_{N} be a sample of a continuous variable X.
The empirical distribution is the generalized function

$$
\hat{q}(x)=\frac{1}{N} \sum_{i=1}^{N} \delta\left(x-X_{i}\right)
$$

where $\delta(\cdot)$ is the Dirac delta function.
The Kullback-Leibler divergence of a distribution p from q is

$$
K(q \| p)=\int_{\mathbb{R}^{k}} q(x) \log \frac{q(x)}{p(x)} d x
$$

Proposition. ML distributions minimize the KL divergence of $q(\cdot)=p(\cdot \mid \omega) \in \mathcal{M}$ from the empirical distribution $\hat{q}(\cdot)$.

$$
K(\hat{q} \| q)=\underbrace{\int_{\mathbb{R}^{k}} \hat{q}(x) \log \hat{q}(x) d x}_{\text {entropy }}-\frac{1}{N} \log L(\omega)
$$

| Probability |
| :--- | :--- |
| Statistics |
| - Statistical Model |
| - Maximum Likelihood |
| - Mixture Models |
| Bayesian |
| Regression |

Kullback-Leibler Divergence

gression

Kullback-Leibler Divergence

Probability

Statistics

- Statistical Model
- Maximum Likelihood
- Kullback-Leibler
- Mixture Models

Bayesian

Regression

Example. Population mean and variance.
Let $X \sim N\left(\mu, \sigma^{2}\right)$ be the height of a random Singaporean. Given sample X_{1}, \ldots, X_{N}, estimate mean μ and variance σ^{2}.

Now, the Kullback-Leibler divergence is

$$
K(\hat{q} \| q)=\frac{1}{2 \sigma^{2} N} \sum_{i=1}^{N}\left(X_{i}-\mu\right)^{2}+\frac{1}{N} \log \sigma+\text { constant }
$$

Differentiating this function gives us the MLE

$$
\hat{\mu}=\frac{1}{N} \sum_{i=1}^{N} X_{i}, \quad \hat{\sigma}^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(X_{i}-\hat{\mu}\right)^{2}
$$

MLE for the model mean is the sample mean. MLE for the model variance is the sample variance.

Mixture Models

Probability
Statistics

- Statistical Model
- Maximum Likelihood
- Kullback-Leibler
- Mixture Models

Bayesian
Regression

A mixture of distributions $p_{1}(\cdot), \ldots, p_{m}(\cdot)$ is a convex combination

$$
p(x)=\sum_{i=1}^{m} \alpha_{i} p_{i}(x), \quad x \in \mathbb{R}^{k}
$$

i.e. the mixing coefficients α_{i} are nonnegative and sum to one.

Example. Gaussian mixtures.
Mixing univariate Gaussians $\mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right), i=1, \ldots, m$, produces distributions of the form

$$
p(x)=\sum_{i=1}^{m} \frac{\alpha_{i}}{\sqrt{2 \pi \sigma_{i}^{2}}} \exp \left(-\frac{\left(x-\mu_{i}\right)^{2}}{2 \sigma_{i}^{2}}\right)
$$

This mixture model is therefore described by parameters

$$
\omega=\left(\alpha_{1}, \ldots, \alpha_{m}, \mu_{1}, \ldots, \mu_{m}, \sigma_{1}, \ldots, \sigma_{m}\right)
$$

and is frequently used in cluster analysis.

Statistics
Bayesian

- Interpretations
- Bayes' Rule
- Parameter Estimation
- Model Selection
- Estimating Integrals
- Information Criterion
- Singularities

Regression

Interpretations of Probability Theory

Probability
FREQUENTIST:
surely, the die has some inherent probabilities and our purpose is to
BAYESIAN: discover them!!

Nope! These probabilities are not inherent. A die is a die. That's it. But as we observe the die, our belief about its outcomes changes too.

Bayes' Rule

Probability
Statistics
Bayesian

- Interpretations
- Bayes' Rule
- Parameter Estimation
- Model Selection
- Estimating Integrals
- Information Criterion
- Singularities

Regression

Updating our belief of event A based on an observation B.

$$
\underbrace{\mathbb{P}(A \mid B)}_{\text {posterior (new belief) }}=\frac{\mathbb{P}(B \mid A)}{\mathbb{P}(B)} \underbrace{\mathbb{P}(A)}_{\text {prior (old belief) }}
$$

Example. Biased coin toss.
Let θ denote \mathbb{P} (heads) of a coin.
Determine if the coin is fair $\left(\theta=\frac{1}{2}\right)$ or biased $\left(\theta=\frac{3}{4}\right)$.
Old belief: $\mathbb{P}($ fair $)=0.9$
Now, suppose we observed a sample with 8 heads and 2 tails.
New belief:

$$
\begin{aligned}
\mathbb{P}(\text { fair } \mid \text { sample }) & =\frac{\mathbb{P}(\text { sample } \mid \text { fair })}{\mathbb{P}(\text { sample })} \mathbb{P}(\text { fair }) \\
& =\frac{\left(\frac{1}{2}\right)^{8}\left(\frac{1}{2}\right)^{2}(0.9)^{8}}{\left(\frac{1}{2}\right)^{8}\left(\frac{1}{2}\right)^{2}(0.9)^{8}+\left(\frac{3}{4}\right)^{8}\left(\frac{1}{4}\right)^{2}(0.1)^{8}} \approx 0.584
\end{aligned}
$$

Parameter Estimation

Probability
Statistics
Bayesian

- Interpretations
- Bayes' Rule
- Parameter Estimation
- Model Selection
- Estimating Integrals
- Information Criterion
- Singularities

Regression

Let $\mathcal{D}=\left\{X_{1}, \ldots, X_{N}\right\}$ denote a sample of X, i.e. "the data".
Frequentists: Compute maximum likelihood estimate.
Bayesians: Treat parameters $\omega \in \Omega$ as random variables with priors $p(\omega)$ that require updating.

Posterior distribution on parameters $\omega \in \Omega$

$$
p(\omega \mid \mathcal{D})=\frac{p(\mathcal{D} \mid \omega) p(\omega)}{\int_{\Omega} p(\mathcal{D} \mid \omega) p(\omega) d \omega}
$$

Posterior mean

$$
\int_{\Omega} \omega p(\omega \mid \mathcal{D}) d \omega
$$

Posterior mode

$$
\operatorname{argmax}_{\omega \in \Omega} p(\omega \mid \mathcal{D})
$$

Predictive distribution on outcomes $x \in \xi$

$$
p(x \mid \mathcal{D})=\int_{\Omega} p(x \mid \omega) p(\omega \mid \mathcal{D}) d \omega
$$

These integrals are difficult to compute or even estimate!

Model Selection

Probability

Statistics
Bayesian

- Interpretations
- Bayes' Rule
- Parameter Estimation
- Model Selection
- Estimating Integrals
- Information Criterion
- Singularities

Regression

Which model $\mathcal{M}_{1}, \ldots, \mathcal{M}_{m}$ best describes the sample \mathcal{D} ?
Frequentists: Pick model containing ML distribution.
Bayesians: Assign priors $p\left(\mathcal{M}_{i}\right), p\left(\omega \mid \mathcal{M}_{i}\right)$ and compute

$$
\mathbb{P}\left(\mathcal{M}_{i} \mid \mathcal{D}\right)=\frac{\mathbb{P}\left(\mathcal{D} \mid \mathcal{M}_{i}\right) \mathbb{P}\left(\mathcal{M}_{i}\right)}{\mathbb{P}(\mathcal{D})} \propto \mathbb{P}\left(\mathcal{D} \mid \mathcal{M}_{i}\right) \mathbb{P}\left(\mathcal{M}_{i}\right)
$$

where $\mathbb{P}\left(\mathcal{D} \mid \mathcal{M}_{i}\right)$ is the likelihood integral

$$
\mathbb{P}\left(\mathcal{D} \mid \mathcal{M}_{i}\right)=\int_{\Omega} \prod_{i=1}^{N} p\left(X_{i} \mid \omega, \mathcal{M}_{i}\right) p\left(\omega \mid \mathcal{M}_{i}\right) d \omega
$$

Parameter estimation is a form of model selection!
For each $\omega \in \Omega$, we define a model \mathcal{M}_{ω} with one distribution.

Estimating Integrals

Probability

Statistics

Bayesian

- Interpretations
- Bayes' Rule
- Parameter Estimation
- Model Selection
- Estimating Integrals
- Information Criterion
- Singularities

Regression

Generally, there are three ways to estimate statistical integrals.

1. Exact methods

Compute a closed form formula for the integral, e.g.
Baldoni•Berline•De Loera•Köppe•Vergne, 2010;
Lin•Sturmfels•Xu, 2009.
2. Numerical methods

Approximate using Markov Chain Monte Carlo (MCMC) and other sampling techniques.
3. Asymptotic methods

Analyze how the integral behaves for large samples.
Rewrite the likelihood integral as

$$
Z_{N}=\int_{\Omega} e^{-N f(\omega)} \varphi(\omega) d \omega
$$

where $f(\omega)=-\frac{1}{N} \log L(\omega)$ and $\varphi(\omega)$ is the prior on Ω.

Bayesian Information Criterion

Probability

Statistics

Bayesian

- Interpretations
- Bayes' Rule
- Parameter Estimation
- Model Selection
- Estimating Integrals
- Information Criterion
- Singularities

Regression

Laplace approximation: If $f(\omega)$ is uniquely minimized at MLE $\hat{\omega}$ and the Hessian $\partial^{2} f(\hat{\omega})$ is full rank, then asymptotically

$$
-\log Z_{N} \approx N f(\hat{\omega})+\frac{\operatorname{dim} \Omega}{2} \log N+O(1)
$$

as sample size $N \rightarrow \infty$.
Bayesian information criterion (BIC): Select model that maximizes

$$
N f(\hat{\omega})+\frac{\operatorname{dim} \Omega}{2} \log N
$$

Graphs of $e^{-N f(\omega)}$ for different N. Integral = volume under graph.

Singularities in Statistical Models

Probability

Statistics
Bayesian

- Interpretations
- Bayes' Rule
- Parameter Estimation
- Model Selection
- Estimating Integrals
- Information Criterion
- Singularities

Regression

Informally, the model is singular at $\omega_{0} \in \Omega$ if the Laplace approximation fails when the empirical distribution is $p\left(\cdot \mid \omega_{0}\right)$.

Formally, if we define the Kullback-Leibler function

$$
K(\omega)=\int_{\xi} p\left(x \mid \omega_{0}\right) \log \frac{p\left(x \mid \omega_{0}\right)}{p(x \mid \omega)} d x
$$

then ω_{0} is a singularity when the Hessian $\partial^{2} K\left(\omega_{0}\right)$ is not full rank.
Statistical models with hidden variables, e.g. mixture models, often contain many singularities.

Probability
Statistics
Bayesian
Regression

- Least Squares
- Sparsity Penalty
- Paradigms

Linear Regression

Least Squares

Probability

Statistics
Bayesian

Regression

- Least Squares
- Sparsity Penalty
- Paradigms

Suppose we have random variables $Y \in \mathbb{R}, X \in \mathbb{R}^{d}$ that satisfy

$$
Y=\omega \cdot X+\varepsilon .
$$

Parameters $\omega \in \mathbb{R}^{d}$; noise $\varepsilon \in \mathcal{N}(0,1)$; data $\left(Y_{i}, X_{i}\right), i=1 . . N$.

- Commonly computed quantities

$$
\begin{array}{ll}
\text { MLE } & \operatorname{argmin}_{\omega} \sum_{i=1}^{N}\left|Y_{i}-\omega \cdot X_{i}\right|^{2} \\
\text { Penalized MLE } & \operatorname{argmin}_{\omega} \sum_{i=1}^{N}\left|Y_{i}-\omega \cdot X_{i}\right|^{2}+\pi(\omega)
\end{array}
$$

- Commonly used penalties

LASSO
Bayesian Info Criterion (BIC)
Akaike Info Criterion (AIC)

$$
\pi(\omega)=|\omega|_{1} \cdot \beta
$$

$$
\pi(\omega)=|\omega|_{0} \cdot \log N
$$

$$
\pi(\omega)=|\omega|_{0} \cdot 2
$$

- Commonly asked questions

Model selection (e.g. which factors are important?)
Parameter estimation (e.g. how important are the factors?)

Sparsity Penalty

Probability
Statistics
Bayesian
Regression

- Least Squares
- Sparsity Penalty
- Paradigms

The best model is usually selected using a score

$$
\operatorname{argmin}_{u \in \Omega} l(u)+\pi(u)
$$

where the likelihood $l(u)$ measures the fitting error of the model while the penalty $\pi(u)$ measures its complexity.

Recently, sparse penalties derived from statistical considerations were found to be highly effective.

$$
\begin{array}{rll}
\text { Bayesian info criterion (BIC) } & \leftrightarrow & \text { Marginal likelihood integral } \\
\text { Akaike info criterion (AIC) } & \leftrightarrow & \text { Kullback-Leibler divergence } \\
\text { Compressive sensing } & \leftrightarrow & \ell_{1} \text {-regularization of BIC }
\end{array}
$$

Singular learning theory plays an important role in these derivations.

Paradigms in Statistical Learning

Probability
Statistics
Bayesian
Regression

- Least Squares
- Sparsity Penalty
- Paradigms
- Probability
theory of random phenomena Statistics
theory of making sense of data
Learning
the art of prediction using data

- Frequentists: "True distribution, maximum likelihood" Bayesians: "Belief updates, maximum a posteriori" Interpretations do not affect the correctness of probability theory, but they greatly affect the statistical methodology.
- We often have to balance the complexity of the model with its fitting error via some suitable probabilistic criteria.
The learning algorithm also needs to be computable to be useful.

Probability
Statistics
Bayesian
Regression

- Least Squares
- Sparsity Penalty
- Paradigms

Thank you!

"Algebraic Methods for Evaluating Integrals in Bayesian Statistics" http://math.berkeley.edu/~shaowei/swthesis.pdf (PhD dissertation, May 2011)

Statistics
Bayesian
Regression

- Least Squares
- Sparsity Penalty
- Paradigms

References

1. V. I. Arnol'd, S. M. Guseĭn-Zade and A. N. Varchenko: Singularities of Differentiable Maps, Vol. II, Birkhäuser, Boston, 1985.
2. V. Baldoni, N. Berline, J. A. De Loera, M. Köppe, M. Vergne: How to integrate a polynomial over a simplex, Mathematics of Computation 80 (2010) 297-325.
3. A. Bravo, S. Encinas and O. Villamayor: A simplified proof of desingularisation and applications, Rev. Math. Iberoamericana 21 (2005) 349-458.
4. D. A. Cox, J. B. Little, and D. O'Shea: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, Springer-Verlag, New York, 1997.
5. R. Durrett: Probability - Theory and Examples (4th edition), Cambridge U. Press, 2010.
6. M. Evans, Z. Gilula and I. Guttman: Latent class analysis of two-way contingency tables by Bayesian methods, Biometrika 76 (1989) 557-563.
7. H. HIRONAKA: Resolution of singularities of an algebraic variety over a field of characteristic zero I, II, Ann. of Math. (2) 79 (1964) 109-203.
8. S. Lin, B. Sturmfels and Z. Xu: Marginal likelihood integrals for mixtures of independence models, J. Mach. Learn. Res. 10 (2009) 1611-1631.
9. S. LIN: Algebraic methods for evaluating integrals in Bayesian statistics, PhD dissertation, Dept. Mathematics, UC Berkeley (2011).
10. L. MACKEY: Fundamentals - Probability and Statistics, (slides for CS 281A: Statistical Learning Theory at UC Berkeley, Aug 2009).
11. S. Watanabe: Algebraic Geometry and Statistical Learning Theory, Cambridge Monographs on Applied and Computational Mathematics 25, Cambridge University Press, Cambridge, 2009.
