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A probability space (ξ,F ,P) consists of

• a sample space ξ which is the set of all possible outcomes,
• a collection♯ F of events, which are subsets of ξ,
• an assignment♭ P : F → [0, 1] of probabilities to events

A (real-valued) random variable X : ξ → R
k is

• a function♮ from the sample space to a real vector space.
• a measurement of the possible outcomes.
• X ∼ P means “X has the distribution given by P ”.
♯ σ-algebra: closed under complement, countable union and contains ∅.
♭ probability measure: P(∅) = 0, P(ξ) = 1, countable additivity for disjoint events.
♮ measurable function: for all x ∈ R, the preimage of {y ∈ R

k : y ≤ x} is in F .

Example . Rolling a fair die.

ξ = { , , , , , } F = {∅, { }, { , }, . . .}
X ∈ {1, 2, 3, 4, 5, 6} P(X=1) = 1

6 , P(X≤3) = 1
2
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If ξ is finite, we say X is a discrete random variable.

• probability mass function p(x) = P (X = x), x ∈ R
k.

If ξ is infinite, we define the

• cumulative distribution function (CDF) F (x)

F (x) = P(X≤x), x ∈ R
k.

• probability density function ♯ (PDF) p(y)

F (x) =
∫

{y∈Rk:y≤x} p(y)dy, x ∈ R
k.

If the PDF exists, then X is a continuous ♭ random variable.
♯ Radon-Nikodym derivative of F (x) with respect to the Lebesgue measure on R

k .
♭ We can also define PDFs for discrete variables if we allow the Dirac delta function.

The probability mass/density function is often informally referred to
as the distribution of X .



Gaussian Random Variables

Probability

• Random Variables

• Discrete·Continuous

• Gaussian

• Basic Concepts

• Independence

Statistics

Bayesian

Regression

Example . Multivariate Gaussian distribution X ∼ N (µ,Σ).

X ∈ R
k, mean µ ∈ R

k, covariance Σ ∈ R
k
≻0

p(x) =
1

(2π detΣ)k/2
exp

(

−
1

2
(x− µ)⊤Σ−1(x− µ)

)

PDFs of univariate Gaussian distributions X ∼ N (µ, σ2)
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The expectation E[X] is the integral of the random variable X
with respect to its probability measure, i.e. the “average”.

Discrete variables Continuous variables

E[X] =
∑

x∈Rk

xP(X=x) E[X] =

∫

Rk

xp(x) dx

The variance E[(X − E[X])2] measures the “spread” of X .

The conditional probability ♯
P(A|B) of two events A,B ∈ F is

the probability that A will occur given that we know B has occurred.

• If P(B) > 0, then P(A|B) = P(A ∩B)/P(B).
♯ formal definition depends on the notion of conditional expectation.

Example . Weather forecast.

P(Rain|Thunder)
= 0.2/(0.1 + 0.2) = 2/3

Rain No Rain

Thunder 0.2 0.1
No Thunder 0.3 0.4
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Let X ∈ R
k, Y ∈ R

l, Z ∈ R
m be random variables.

X,Y are independent (X⊥⊥Y ) if

• P(X∈S, Y ∈T ) = P(X∈S)P(Y ∈T )
for all measurable subsets S ⊂ R

k, T ⊂ R
l.

• i.e. “ knowing X gives no information about Y ”

X,Y are conditionally independent given Z (X⊥⊥Y | Z) if

• P(X∈S, Y ∈T |Z=z) = P(X∈S|Z=z)P(Y ∈T |Z=z)
for all z ∈ R

m and measurable subsets S ⊂ R
k, T ⊂ R

l.
• i.e. “ any dependence between X and Y is due to Z ”

Example . Hidden variables.

Favorite color X ∈ {red, blue}, favorite food Y ∈ {salad, steak}.
If X,Y are dependent, one may ask if there is a hidden variable,
e.g. gender Z ∈ {female,male}, such that X⊥⊥Y | Z .
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Let ∆ denote the space of distributions with outcomes ξ.

Model : a family M of probability distributions, i.e. a subset of ∆.

Parametric model : family M of distributions p(·|ω) are indexed
by parameters ω in a space Ω, i.e. we have a map Ω → ∆.

Example . Biased coin tosses.

Number of heads in two tosses of coin: H ∈ ξ = {0, 1, 2}
Space of distributions:

∆ = {p ∈ R
3
≥0 : p(0)+p(1)+p(2) = 1}

Probability of getting heads: ω ∈ Ω = [0, 1] ⊂ R

Parametric model for H :
p(0|ω) = (1− ω)2

p(1|ω) = 2(1− ω)ω
p(2|ω) = ω2







implicit equation
4 p(0)p(2)− p(1)2 = 0
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A sample X1, . . . , XN of X is a set of independent, identically
distributed (i.i.d.) random variables with the same distribution.

Goal: Given a statistical model {p(·|ω) : ω∈Ω} and a sample,
find a distribution p(·|ω̂) that best describes the sample.

A statistic f(X1, . . . , XN ) is a function of the sample.
An important statistic is the maximum likelihood estimate (MLE).
It is a parameter ω̂ that maximizes the likelihood function

L(ω) =

N∏

i=1

p(Xi|ω).

Example . Biased coin tosses.

Suppose the table below summarizes a sample of H of size 100.

H 0 1 2

Count 25 45 30
Then, L(ω) = 245ω105(1− ω)95

ω̂ = 105/200.
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Let X1, . . . , XN be a sample of a discrete variable X .
The empirical distribution is the function

q̂(x) =
1

N

N∑

i=1

δ(x−Xi)

where δ(·) is the Kronecker delta function.

The Kullback-Leibler divergence of a distribution p from q is

K(q||p) =
∑

x∈Rk

q(x) log
q(x)

p(x)
.

Proposition . ML distributions minimize the KL divergence
of q(·) = p(·|ω) ∈ M from the empirical distribution q̂(·).

K(q̂||q) =
∑

x∈Rk

q̂(x) log q̂(x)

︸ ︷︷ ︸

entropy

−
1

N
logL(ω)
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Let X1, . . . , XN be a sample of a continuous variable X .
The empirical distribution is the generalized function

q̂(x) =
1

N

N∑

i=1

δ(x−Xi)

where δ(·) is the Dirac delta function.

The Kullback-Leibler divergence of a distribution p from q is

K(q||p) =

∫

Rk

q(x) log
q(x)

p(x)
dx.

Proposition . ML distributions minimize the KL divergence
of q(·) = p(·|ω) ∈ M from the empirical distribution q̂(·).

K(q̂||q) =

∫

Rk

q̂(x) log q̂(x)dx

︸ ︷︷ ︸

entropy

−
1

N
logL(ω)
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Example . Population mean and variance.

Let X ∼ N(µ, σ2) be the height of a random Singaporean.
Given sample X1, . . . , XN , estimate mean µ and variance σ2.

Now, the Kullback-Leibler divergence is

K(q̂||q) =
1

2σ2N

N∑

i=1

(Xi − µ)2 +
1

N
log σ + constant.

Differentiating this function gives us the MLE

µ̂ =
1

N

N∑

i=1

Xi, σ̂2 =
1

N

N∑

i=1

(Xi − µ̂)2.

MLE for the model mean is the sample mean.
MLE for the model variance is the sample variance.
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A mixture of distributions p1(·), . . . , pm(·) is a convex combination

p(x) =
m∑

i=1

αipi(x), x ∈ R
k

i.e. the mixing coefficients αi are nonnegative and sum to one.

Example . Gaussian mixtures.

Mixing univariate Gaussians N (µi, σ
2
i ), i = 1, . . . ,m, produces

distributions of the form

p(x) =
m∑

i=1

αi
√

2πσ2
i

exp

(

−
(x− µi)

2

2σ2
i

)

.

This mixture model is therefore described by parameters

ω = (α1, . . . , αm, µ1, . . . , µm, σ1, . . . , σm)

and is frequently used in cluster analysis.
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Updating our belief of event A based on an observation B.

P(A|B)
︸ ︷︷ ︸

posterior (new belief)

=
P(B|A)

P(B)
P(A)
︸ ︷︷ ︸

prior (old belief)

Example . Biased coin toss.

Let θ denote P(heads) of a coin.
Determine if the coin is fair (θ = 1

2) or biased (θ = 3
4).

Old belief : P(fair) = 0.9
Now, suppose we observed a sample with 8 heads and 2 tails.
New belief :

P(fair|sample) =
P(sample|fair)

P(sample)
P(fair)

=
(12)

8(12)
2(0.9)8

(12)
8(12)

2(0.9)8 + (34)
8(14)

2(0.1)8
≈ 0.584
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Let D = {X1, . . . , XN} denote a sample of X , i.e. “the data”.

Frequentists : Compute maximum likelihood estimate.
Bayesians : Treat parameters ω ∈ Ω as random variables

with priors p(ω) that require updating.

Posterior distribution
on parameters ω ∈ Ω

p(ω|D) =
p(D|ω)p(ω)

∫

Ω p(D|ω)p(ω)dω

Posterior mean

∫

Ω
ω p(ω|D)dω

Posterior mode argmaxω∈Ω p(ω|D)

Predictive distribution
on outcomes x ∈ ξ

p(x|D) =

∫

Ω
p(x|ω)p(ω|D)dω

These integrals are difficult to compute or even estimate!
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Which model M1, . . . ,Mm best describes the sample D?

Frequentists : Pick model containing ML distribution.
Bayesians : Assign priors p(Mi), p(ω|Mi) and compute

P(Mi|D) =
P(D|Mi)P(Mi)

P(D)
∝ P(D|Mi)P(Mi).

where P(D|Mi) is the likelihood integral

P(D|Mi) =

∫

Ω

N∏

i=1

p(Xi|ω,Mi)p(ω|Mi)dω.

Parameter estimation is a form of model selection!
For each ω ∈ Ω, we define a model Mω with one distribution.
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Generally, there are three ways to estimate statistical integrals.

1. Exact methods
Compute a closed form formula for the integral, e.g.
Baldoni·Berline·De Loera·Köppe·Vergne, 2010;
Lin·Sturmfels·Xu, 2009.

2. Numerical methods
Approximate using Markov Chain Monte Carlo (MCMC)
and other sampling techniques.

3. Asymptotic methods
Analyze how the integral behaves for large samples.
Rewrite the likelihood integral as

ZN =

∫

Ω
e−Nf(ω)ϕ(ω)dω

where f(ω) = − 1
N logL(ω) and ϕ(ω) is the prior on Ω.
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Laplace approximation : If f(ω) is uniquely minimized at MLE ω̂
and the Hessian ∂2f(ω̂) is full rank, then asymptotically

− logZN ≈ Nf(ω̂) +
dimΩ

2
logN +O(1)

as sample size N → ∞.

Bayesian information criterion (BIC): Select model that maximizes

Nf(ω̂) +
dimΩ

2
logN

N = 1 N = 10

Graphs of e−Nf(ω) for different N . Integral = volume under graph.
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Informally, the model is singular at ω0 ∈ Ω if the Laplace
approximation fails when the empirical distribution is p(·|ω0).

Formally, if we define the Kullback-Leibler function

K(ω) =

∫

ξ
p(x|ω0) log

p(x|ω0)

p(x|ω)
dx.

then ω0 is a singularity when the Hessian ∂2K(ω0) is not full rank.

Statistical models with hidden variables , e.g. mixture models,
often contain many singularities.
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Suppose we have random variables Y ∈ R, X ∈ R
d that satisfy

Y = ω ·X + ε.

Parameters ω ∈ R
d; noise ε ∈ N (0, 1); data (Yi, Xi), i = 1 .. N .

• Commonly computed quantities
MLE argminω

∑N
i=1 |Yi − ω ·Xi|

2

Penalized MLE argminω
∑N

i=1 |Yi − ω ·Xi|
2 + π(ω)

• Commonly used penalties
LASSO π(ω) = |ω|1 · β
Bayesian Info Criterion (BIC) π(ω) = |ω|0 · logN
Akaike Info Criterion (AIC) π(ω) = |ω|0 · 2

• Commonly asked questions
Model selection (e.g. which factors are important?)
Parameter estimation (e.g. how important are the factors?)
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The best model is usually selected using a score

argminu∈Ω l(u) + π(u)

where the likelihood l(u) measures the fitting error of the model
while the penalty π(u) measures its complexity .

Recently, sparse penalties derived from statistical considerations
were found to be highly effective.

Bayesian info criterion (BIC) ↔ Marginal likelihood integral
Akaike info criterion (AIC) ↔ Kullback-Leibler divergence

Compressive sensing ↔ ℓ1-regularization of BIC

Singular learning theory plays an important role in these derivations.
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• Probability
theory of random phenomena
Statistics
theory of making sense of data
Learning
the art of prediction using data

• Frequentists : “True distribution, maximum likelihood”
Bayesians : “Belief updates, maximum a posteriori”

Interpretations do not affect the correctness of probability theory,
but they greatly affect the statistical methodology .

• We often have to balance the complexity of the model
with its fitting error via some suitable probabilistic criteria.
The learning algorithm also needs to be computable to be useful.
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Thank you!

“Algebraic Methods for Evaluating Integrals in Bayesian Statistics”

http://math.berkeley.edu/~shaowei/swthesis.pdf

(PhD dissertation, May 2011)

http://math.berkeley.edu/~shaowei/swthesis.pdf
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