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A B Directed edges: A causes B.

A B Undirected edges: A and B are correlated.

Graphical models are defined by
a collection of random variables

e.g. X = (XA, XB, XC , XD)

and a graph G = (V,E) describing
the relationship between the variables.

A B

D C

Discrete Gaussian

Directed
Acyclic Graphs

Also known as
Baysian networks.

Undirected
Graphs

Also known as
Markov random fields.
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Factorization Property (parametric)

P(X) =
∏

v∈V

P(Xv|Xparents(v))

A B

D C

Discrete

P(A,B,C,D)
= P(A)P(B)︸ ︷︷ ︸

root probabilities

P(C|B)P(D|A,B,C)︸ ︷︷ ︸
conditional probabilities
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Factorization Property (parametric)

P(X) =
∏

v∈V

P(Xv|Xparents(v))

A B

D C

Gaussian
A = εA, εA, εB, εC , εD ∼ N (0, 1)
B = εB
C = λBCB + εC
D = λADA+ λBDB + λCDC + εD




1 0 0 0
0 1 0 0
0 −λBC 1 0

−λAD −λBD −λCD 1







A
B
C
D


 ∼ N (0, Id)
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Local Markov Property (implicit)

Xv⊥⊥XV \descendents(v) | Xparents(v) for all v ∈ V

A B

D C

A⊥⊥B,C
B⊥⊥A
C⊥⊥A | B
D⊥⊥∅ | A,B,C

Global Markov Property (implicit)

XA⊥⊥XB | XC iff A is d-separated from B by C
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Hammersley-Clifford Theorem

The following are equivalent:

• Factorization Property
• Local Markov Property
• Global Markov Property
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Factorization Property (parametric)

P(X) =
1

Z

∏

max−clique C

ϕC(XC), Z normalizing const.

A B

D C

Discrete

P(A,B,C,D)
= 1

Z
ϕAD(A,D)ϕBCD(B,C,D)
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Factorization Property (parametric)

P(X) =
1

Z

∏

max−clique C

ϕC(XC), Z normalizing const.

A B

D C

Gaussian

X = (Xv)v∈V ∼ N (0,Σ)

such that (Σ−1)uv = 0 iff (u, v) ∈ E.
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Local Markov Property (implicit)

Xv⊥⊥X{v}∪nonneighbors(v) | Xneighbors(v) for all v ∈ V

A B

D C

A⊥⊥B,C | D
B⊥⊥A | C,D
C⊥⊥A | B,D
D⊥⊥∅ | A,B,C

Global Markov Property (implicit)

XA⊥⊥XB | XC iff A is separated from B by C
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Hammersley-Clifford Theorem

If P(X = x) > 0 for all x,
then the following are equivalent:

• Factorization Property
• Local Markov Property
• Global Markov Property
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Hidden Markov Models

Gaussian Mixtures

Restricted Boltzmann
Machines
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r

s

a b c

Parameters (9-dim): for each (i, j) ∈ E,
πr = P(Xr = 0),

ti0j = P(Xj = 0|Xi = 0),

ti1j = P(Xj = 0|Xi = 1).

Probabilities (7-dim): for each I ⊂ {a, b, c},
pI = P(Xi = 1 for i ∈ I,Xi = 0 otherwise).

e.g. pab =
∑

i,j Pr(i)Ps|r(j|i)Pa|s(1|j)Pb|s(1|j)Pc|r(0|i)

= πrt
r0
s (1− ts0a )(1− ts0b )tr0c

+ πr(1− tr0s )(1− ts1a )(1− ts1b )tr0c

+ (1− πr)t
r1
s (1− ts0a )(1− ts0b )tr1c

+ (1− πr)(1− tr1s )(1− ts1a )(1− ts1b )tr1c

Compute the RLCT of the fiber ideal 〈pa − p̂a, . . . , pabc − p̂abc〉?
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Strategy : Transform both the parameter space Ω and distribution
space ∆ so that the resulting map Ω̃ → ∆̃ is almost monomial.

transitions Ω −→ ∆ probabilities
↓ ↓

regressions Ω̃ −→ ∆̃ cumulants

r

s

a b c

Regressions (9-dim):
λr, λs, µa, µb, µc,
ηrs , η

r
c , η

s
a, η

s
b .

Cumulants (7-dim):
ka, kb, kc, kab, kbc, kac, kabc.



Cumulant Equations

Graphical Models

Tree Cumulants

• Tree Models

• Reparametrization

• Cumulant Equations

PC Algorithm

Sparse Models

Neural Networks

transitions Ω −→ ∆ probabilities
↓ ↓

regressions Ω̃ −→ ∆̃ cumulants

ka = µa, kbc =
1
4(1− λ2

r)η
r
sη

s
bη

r
c ,

kb = µb, kac =
1
4(1− λ2

r)η
r
sη

s
aη

r
c ,

kc = µc, kab =
1
4(1− λ2

s)η
s
aη

s
b ,

kabc =
1
4(1− λ2

r)λsη
r
sη

s
aη

s
bη

r
c .

Cumulants recently extended to non-binary non-tree models.

Statistics give new insights to difficult algebraic geometry problems.
• J. Q. SMITH, P. ZWIERNIK: Tree-cumulants and the geometry of binary tree models, Bernoulli 18

(2012), 290–321.
• P. ZWIERNIK: An Asymptotic Behaviour of the Marginal Likelihood for General Markov Models, J. of

Machine Learning Research 12 (2011), 3283–3310.
• B. STURMFELS, P. ZWIERNIK: Binary cumulant varieties, Ann. Combinatorics 17 (2013), 229–250.
• M. MICHAŁEK, L. OEDING, P. ZWIERNIK: Secant cumulants and toric geometry, arXiv:1212.1515.
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Volumes of Tubular Neighborhoods
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Real log canonical thresholds also allow us to approximate the
volume of small tubular neighborhoods of varieties. Such problems
occur frequently in error estimation and convergence analysis.

(a) x (b) xy (c) x
2
y
3 (d) x

3
y − xy

3

Tubes |f(x, y)| ≤ t for various polynomials in two variables.
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Partial Correlations .
Gaussian model with variables V , concentration matrix K = Σ−1.
Given i, j ∈ V and S ⊂ V \ {i, j}, let R = V \ (S ∪ {i, j}).

corri,j|S =
det(KiR,jR)√

det(KiR,iR) · det(KjR,jR)

The partial correlation (PC) algorithm constructs directed
Gaussian graphical models by inferring conditional
independence statements i⊥⊥j | S from the data.

1. Fix a small tolerance t > 0.
2. Start with a complete graph G.
3. Run through all triples (i, j, S), i, j /∈ S, systematically.
4. For each (i, j, S), compute the partial correlation corri,j|S .
5. If corri,j|S ≤ t, then remove edge (i, j) from graph G.
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• A distribution p(·|ω) is t-strong-faithful to a graph G if

|corri,j|S(ω)| ≤ t ⇔ i is d-separated from j given S.

Otherwise, it is unfaithful.

• Using singular learning theory, we can approximate the volume
of unfaithful parameters as t goes to zero.∫

|f(ω)|≤t

dω ≈ Ctλ(− log t)θ−1

Here (λ, θ) is the learning coefficient of f(ω) = corri,j|S(ω).
Determines performance of the PC algorithm for large samples.

• e.g. (λ, θ) =

{
(1, 1) for all star trees,
(1, p− 1) for a chain with p nodes.

• S. LIN, C. UHLER, B. STURMFELS, AND P. BÜHLMANN: Hypersurfaces and their singularities in partial
correlation testing, arXiv:1209.0285.
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Examples of applications

• image recognition
• speech recognition
• language translation
• sentiment analysis
• pedestrian detection
• bioinformatics
• healthcare planning
• recommendation systems

Characteristics of Big Data

1. High dimensional data vectors
2. Data cuts out a low dimensional manifold
3. Learning a model with high dimensional parameter space
4. Very large sample sizes



Curse of Singularities

Graphical Models

Tree Cumulants

PC Algorithm

Sparse Models

• Big Data

• Curse of Singularities

• Singular Model

• Learning Coefficients

• Computation

Neural Networks

• Approximation of high dimensional integrals is difficult
because of the curse of dimensionality singularities.

For smooth models, Laplace approximation works well
even if parameter space R

d has high dimension.

• But many models in machine learning are singular,
e.g. mixtures, neural networks, hidden variables.

• Important to analyze asymptotics of integrals with singularities.
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X ∼ N (ω2, 1), Y ∼ N (ω3, 1)

data (Xi, Yi), i = 1 .. N
parameter ω ∈ R, mean (X̄, Ȳ )

• MLE: argminω |ω2 − X̄|2 + |ω3 − Ȳ |2

BIC performs poorly when MLE is close to 0.

• Recall that the likelihood integral is

ZN =
1

2π

∫

R

exp(−
1

2

N∑

i=1

|ω2 −Xi|
2 + |ω3 − Yi|

2) dω

• If true distribution is X ∼ N (u2, 1), Y ∼ N (u3, 1), then

− logZN (u) ≈
1

2

N∑

i=1

(u2−Xi)
2+(u3−Yi)

2+π(u)+Op(1)

where π(u) = 1
4 logN if u = 0; otherwise π(u) = 1

2 logN .
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• Given u ∈ Ω, there exist learning coefficients (λu, θu)
such that for all sufficiently small nbhds Ωu of u,∫

Ωu

e−Nf(ω) ϕ(ω)dω ≈ CN−λu(logN)θu−1.

• Sparsity penalty for MLE: Given the log likelihood

ℓ(u) = −
∑N

i=1 log p(Xi|u),

for large samples we have the asymptotic approximation

− logZ(u) ≈ ℓ(u) + π(u) +Op(1)

where π(u) = λu logN − (θu − 1) log logN.

• To find the model Mu that minimizes Z(u), we compute

argminu∈Ω l(u) + π(u).

• This is a generalization of the BIC to singular models.
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• How do we generalize compressive sensing to singular models?

Compressive Sensing Bayesian Info Criterion (BIC)
π(ω) = |ω|1 · β π(ω) = |ω|0 · logN

(Parameter space partitioned into regions with different weights.)

• How do we use RLCTs to improve MCMC techniques?
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Motivation for Neural Networks
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Neural networks are highly singular models inspired by biology.

The lack of success forced researchers to abandon these models
in the 70’s and 80’s. But the introduction of multiple layers and
nonlinear sparse methods turned the tide. Computationally fast.

Singular learning tells us that proper learning requires sparsity.
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Undirected discrete graphical model with binary states.
Graph G is bipartite with two layers: observed and hidden nodes.
Parameters: weights ωij for each edge (hi, vj),

bias bi for each hi, bias cj for each vj .

P(hi = 1|v) = sig(bi +
∑

j

ωijvj), sig(x) =
1

1 + e−x

Mimics behavior of biological neurons! Used in Deep Learning.

Tropical geometry used to find the dimension of the RBM.
Some RLCTs were also computed (via desingularizations).
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Wireless network of sensors communicating real-time information.

Machine learning principles (graphical models, sparsity, singularities)
for analyzing and designing wireless sensor networks
(data compression, transmission, network connectivity, security).

WE ARE HIRING!
Bachelors/PhD with strong background
in mathematics and machine learning.
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Thank you!

“Algebraic Methods for Evaluating Integrals in Bayesian Statistics”

http://math.berkeley.edu/~shaowei/swthesis.pdf

(PhD dissertation, May 2011)

http://math.berkeley.edu/~shaowei/swthesis.pdf
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