Example to illustrate the connection between the Igusa Local Zeta function $Z(T)$ and its Poincaré series $P(T)$

We showed in class that

$$
P(T)=\frac{1-Z(T) T}{1-T}=\frac{1}{1-t}-\frac{Z(T) T}{1-T}
$$

From this relation follows that if $Z(T)$ is a rational function of $T=p^{-s}$ then so is $P(T)$.

Example Let $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{2}+x_{3} x_{4}$. Later using SPF we will show that

$$
Z(T)=\frac{\left(1-p^{-1}\right)\left(1-p^{-2}\right)}{\left(1-p^{-1} T\right)\left(1-p^{-2} T\right)}
$$

We want to use $Z(T)$ and the relation above to find $\left|N_{e}\right|$ and $P(T)$. First we use partial fractions to find A and B such that

$$
Z(T)=\frac{A}{1-p^{-1} T}+\frac{B}{1-p^{-2} T}
$$

We find that $A=\left(1-p^{-2}\right)$ and $B=-p^{-1}\left(1-p^{-2}\right)$ so that

$$
\begin{aligned}
Z(T)= & \frac{\left(1-p^{-2}\right)}{1-p^{-1} T}-\frac{p^{-1}\left(1-p^{-2}\right)}{1-p^{-2} T} \\
= & \left(1-p^{-2}\right)\left[1+p^{-1} T+p^{-2} T^{2}+p^{-3} T^{3}+\cdots\right] \\
& -p^{-1}\left(1-p^{-2}\right)\left[1+p^{-2} T+p^{-4} T^{2}+p^{-6} T^{3}+\cdots\right] \\
= & \left(1-p^{-2}\right)\left[1-p^{-1}+\left(p^{-1}-p^{-3}\right) T+\left(p^{-2}-p^{-5}\right) T^{2}\right. \\
& \left.+\left(p^{-3}-p^{-7}\right) T^{3}+\cdots+\left(p^{-e}-p^{-2 e-1}\right) T^{e}+\cdots\right]
\end{aligned}
$$

Now using the relation above

$$
\begin{aligned}
P(T)= & \frac{1}{1-t}-\frac{Z(T) T}{1-T} \\
= & 1+T+T^{2}+T^{3}+\cdots \\
& -Z(T) T-Z(T) T^{2}-Z(T) T^{3}+\cdots \\
= & 1+\left(1-\left(1-p^{-1}\right)\left(1-p^{-2}\right)\right) T \\
& +\left[1-\left(1-p^{-2}\right) p^{-1}\left(1-p^{-2}\right)-\left(1-p^{-1}\right)\left(1-p^{-2}\right)\right] T^{2} \\
& +\left(1-\left(1-p^{-2}\right) p^{-2}\left(1-p^{-3}\right)-\left(1-p^{-2}\right) p^{-1}\left(1-p^{-2}\right)-\left(1-p^{-1}\right)\left(1-p^{-2}\right)\right) T^{3}+\cdots \\
= & 1+\left(p^{3}+p^{2}-p\right) p^{-4} T+\left(p^{6}+p^{5}-p^{3}\right) p^{-8} T^{2}+\cdots \\
& +\left(p^{3 e}+p^{3 e-1}-p^{2 e-1}\right) p^{-4 e} T^{e}+\cdots
\end{aligned}
$$

From the last line above we see that $\left|N_{e}\right|=p^{3 e}+p^{3 e-1}-p^{2 e-1}$. Finally we sum the series above to computer the rational function for $P(T)$.

$$
\begin{aligned}
P(T)= & 1+\left(p^{3}+p^{2}-p\right) p^{-4} T+\left(p^{6}+p^{5}-p^{3}\right) p^{-8} T^{2}+\cdots \\
& +\left(p^{3 e}+p^{3 e-1}-p^{2 e-1}\right) p^{-4 e} T^{e}+\cdots \\
= & 1+p^{-1} T+p^{-2} T-p^{-3} T \\
& +p^{-2} T^{2}+p^{-3} T^{2}-p^{-5} T^{2} \\
& +p^{-3} T^{3}+p^{-4} T^{3}-p^{-7} T^{3}+\cdots \\
& +p^{-e} T^{e}+p^{-e-1} T^{e}-p^{-2 e-1} T^{e}+\cdots
\end{aligned}
$$

Summing we get that

$$
\begin{aligned}
P(T) & =\frac{1}{1-p^{-1} T}+\frac{p^{-2} T}{1-p^{-1} T}-\frac{p^{-3} T}{1-p^{-2} T} \\
& =\frac{1-p^{-3} T}{\left(1-p^{-1} T\right)\left(1-p^{-2} T\right)}
\end{aligned}
$$

