
Example to explain how to use Hironaka’s resolution of
singularities to compute the Igusa local zeta function

for a curve

Hironaka’s resolution of singularities states that for any polynomial
f(x1, x2, · · · , xn) in n variables with coefficients in a field K of charac-
teristic 0 there exists a manifold Y and a projection map (morphism)
h : Y → K such that

(1) Each irreducible component of foh = 0 is nonsingular
(2) The components of foh = 0 in Y intersect transversally.

It is always possible to find h such that

Z(s) =

∫
Zn
p

|f(x)|s dx =

∫
h−1(Zn

p )

|foh(y)|s h∗(dx)

where h∗ is the change in measure and h−1(Zn
p ) is chosen carefully.

The key is that h−1(Zn
p ) will be a union of a finite number of non

intersecting neighborhoods Di in Y in which

foh(y) = u(y)yN1
1 yN2

2 · · · yNn
n

h∗(dx) = v(y)ym1−1
1 ym2−1

2 · · · ymn−1
n dy

and u(y) and v(y) either do not intersect the axes of Di or they have
transverse intersections. Thus the zeta function becomes a finite sum
of integrals of essentially the form∫

Di

|y1|N1s+m1−1|y2|N2s+m2−1 · · · |yn|Nns+mn−1 dy

and these integral can all be computed.

Suppose that (0, 0) is a singular point on the curve f(x, y) = 0. (We
can also blow up a point (a, b) that is singular on f(x, y) = 0 but here
we will focus on blowing up (0,0).) The problem is that since

Z(s) =

∫
Zn
p

|f(x)|s dx =

∫
Zn
p\(0,0)

|f(x)|s dx

and the set Zn
p \ (0, 0) is not compact the integral could end up being a

sum of integrals over an infinite number of neighborhoods and in that
case it might very well not be rational.

We will construct a quasi projective variety Y = Aff 2(Zp)×P1(Zp)
and take a nonsingular closed subset V (Zp) ⊂ Y such that V = {(x, y :
u, v)| vx − uy = 0}. Remember that in projective space [u, v] 6= [0, 0]
and [u, v] ≡ [tu, tv].
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Note that this set up implies that if x 6= 0 then y
x

= v
u

so [u, v] =
[1, v

u
]u = [1, y

x
] so in Y the point (x, y : u, v) = (x, y : 1, y

x
). Similarly

if y 6= 0 then x
y

= u
v

so [u, v] = [u
v
, 1]v = [x

y
, 1] and so the point

(x, y : u, v) = (x, y : x
y
, 1). If both x and y are not zero then the point

(x, y : u, v) = (x, y : 1, y
x
) = (x, y : x

y
, 1).

Thus for example, (1, 2 : 1/2, 1) = (1, 2 : 1, 2) but the point (2, 0 :
1, 0) has only one representation.

Now there is a projection pr : V → Z2
p such that pr(x, y : u, v) =

(x, y) and pr−1(x, y) = (x, y, 1, y
x
) if x 6= 0 or (x, y : x

y
), 1) if y 6= 0 and

these points are the same if neither x nor y is 0. However pr−1(0, 0) =
(0, 0)×P1(Zp) so pr−1(0, 0) is not well-defined. It is true however that
pr : V \ pr−1(00)→ Z2

p \ (0, 0) is an isomorphism.
With this set up we see that V = W∪W ′. We have that W = {(x, y :

u, v)|x 6= 0} = {x, y : 1, y
x
)}. We can take coordinates x1 = x and

y1 = y
x

for our axes in W . Now W ′ = {(x, y : u, v)|y 6= 0} = {x, y : x
y
)}.

We can take coordinates ξ1 = y and η1 = x
y

for our axes in W ′.

0.1. Computation of the Igusa local zeta for f(x, y) = x3 + y2

using resolution of singularities. Resolve f(x, y) = x3 + y2 to find
the Igusa local zeta function.

Z(t) =

∫
Zp×Zp

|f(x, y)|s dx dy =
4∑

i=1

∫
Di

|f ◦ h|s|h∗(dx dy)|

Where h∗ is the change in measure and h−1(Zp×Zp) = D1∪D2∪D3∪D4.

Step 1:
Let h : W → Z2

p such that (x1, y1) = (x, y
x
) and h : W ′ → Z2

p such that
(ξ1, η1) = (y, x

y
). Therefore,

(x, y) =

{
(x1, x1y1) in W
(ξ1η1, ξ1) in W ′

So,

f(x, y) =

{
x21(x1 + y21) in W
ξ21(1 + ξ1η

3
1) in W ′

Now looking at f we see that in W ′ the curve f = 0 is resolved
because 1 + ξ1η

3
1 does not intersect the ξ1 or η1 axes. However, f = 0

in W is still singular at (x1, y1) = (0, 0) so we must blow up the point
(0, 0) in W .

Since x and y are in Zp, |x|p ≤ 1, |y|p ≤ 1, so either |x
y
|p ≤ 1 or

| y
x
|p < 1. Therefore, we can assume that |x1| ≤ 1, |y1| ≤ 1 and |ξ1| ≤

1, |η1| < 1. This means that (x1, y1) ∈ Z2
p and (ξ1, η1) ∈ Zp×pZp = D1.



Step 2:
Now we resolve f(x, y) = x21(x1 + y21) in W .

(x2, y2) = (y1,
x1
y1

)

(ξ2, η2) = (x1,
y1
x1

)

Therefore,

(x1, y1) =

{
(x2y2, x2)in W1

(ξ2, ξ2η2)in W ′
1

So,

f(x, y) =

{
x32y

2
2(x2 + y2)in W1

ξ32(1 + ξ2η
2
2)in W ′

1

Now looking at f we see that in W ′
1 the curve f = 0 is resolved

because 1 + ξ2η
2
2 does not intersect the ξ2 or η2 axes. However, the

f = 0 in W1 is still singular at (x2, y2) = (0, 0) so we must blow up the
point (0, 0) in W1.

Since x1 and y1 are in Zp, |x1|p ≤ 1, |y1|p ≤ 1, so either |x1

y1
|p ≤ 1 or

| y1
x1
|p < 1. Therefore, we can assume that |x2| ≤ 1, |y2| ≤ 1 and |ξ2| ≤

1, |η2| < 1. This means that (x2, y2) ∈ Z2
p and (ξ2, η2) ∈ Zp×pZp = D2.

Step 3:
Now, we resolve f(x, y) = x32y

2
2(x2 + y2).

(x3, y3) = (x2,
y2
x2

)

(ξ3, η3) = (y2,
x2
y2

)

Therefore,

(x2, y2) =

{
(x3, x3y3)in W2

(ξ3η3, ξ3)in W ′
2

Therefore,

f(x, y) =

{
x63y

2
3(1 + y3)in W2

ξ63η
3
3(1 + η3)in W ′

2

Both of these curves are non singular with transverse intersections.
Now we must find D3 and D4. Since x2 and y2 are in Zp, |x2|p ≤
1, |y2|p ≤ 1, so either |x2

y2
|p ≤ 1 or | y2

x2
|p < 1. Therefore |x3| ≤ 1, |y3| ≤ 1

and |ξ3| ≤ 1, |η3| < 1. This means that (x3, y3) ∈ Z2
p = D4 and

(ξ3, η3) ∈ Zp × pZp = D3. Therefore, D1 = D2 = D3 = Zp × pZp while
D4 = Z2

p.



Next we calculate the change in measure due to the change of variables
in D1. Here I am using differential form but I could also us the Jacobian
to calculate the change in measure.

dx ∧ dy = d(ξ1, η1) ∧ dξ1
= ξ1 dη1 ∧ dξ1
= −ξ1 dξ1 ∧ dη1

Now, we calculate the first partial integral for the zeta function over
D1.

Z1(t) =

∫
Zp×pZp

|ξ21(1 + ξ1η
3
1)|s |ξ1| dξ1dη1

=

∫
Zp×pZp

|ξ1|2s+1 dξ1dη1

= p−1
∫
Zp

|ξ1|2s+1 dξ1

= p−1
1− p−1

1− p−2t2

Next we calculate the change in measure due to the change of variables
in D2.

dx ∧ dy = dx1 ∧ d(x1y1)

= x1 dx1 ∧ dy1
dx ∧ dy = ξ2 dξ2 ∧ d(ξ2η2) or x2y2 d(x2y2) ∧ dx2

= ξ22 dξ2 ∧ dη2 − x22y2 dx2 ∧ dy2
Now, calculate the second partial integral in the zeta function over D2.

Z2(t) =

∫
Zp×pZp

|ξ32(1 + ξ2η
2
2)|s |ξ2|2 dξ2dη2

=

∫
Zp×pZp

|ξ2|3s+2 dξ2dη2

= p−1
1− p−1

1− p−3t3

Next we calculate the change in measure due to the change of variables
in D3 and in D4.

dx ∧ dy = −(ξ3η3)
2ξ3 d(ξ3η3) ∧ dξ3 − x23x3y3 dx3 ∧ d(x3y3)

= ξ43η
2
3 dξ3 ∧ dη3 − x43y3 dx3 ∧ dy3



Now, calculate the third and fourth partial integral of the zeta function
over D3 and D4.

Z3(t) =

∫
Zp×pZp

|ξ63η33(1 + η3)|s |ξ3|4|η3|2 dξ3dη3

=

∫
Zp

|ξ3|6s+4 dξ3

∫
pZp

|η3|3s+2 dη3

= p−3t3
(

1− p−1

1− p−5t6

)(
1− p−1

1− p−3t3

)
Z4(t) =

∫
Z2
p

|x63y23(1 + y3)|s |x3|4|y3| dx3dy3

=

∫
Zp

|x3|6s+4 dx3

∫
Zp

|y3|2s+1|y3 + 1|s dy3

=
1− p−1

1− p−5t6
∑
amodp

∫
a+pZp

|y3|2s+1|y3 + 1|s dy3

=

(
1− p−1

1− p−5t6

)(
(p− 2)p−1 +

∫
pZp

|y3|2s+1 dy3 +

∫
−1+pZp

|y3 + 1|s dy3

)

=
1− p−1

1− p−5t6

(
(p− 2)p−1 + p−2t2

1− p−1

1− p−2t2
+ p−1t

1− p−1

1− p−1t

)
The Igusa local zeta function, Z(t) = Z1(t) + Z2(t) + Z3(t) + Z4(t),

or

Z(t) =
(1− p−1)(1− p−2t+ p−2t2 − p−5t5)

(1− p−1t)(1− p−5t6)


