Example to explain how to use Hironaka's Resolution of SIngularities to compute the Igusa local zeta function

FOR A CURVE
Hironaka's resolution of singularities states that for any polynomial $f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ in n variables with coefficients in a field \mathbb{K} of characteristic 0 there exists a manifold Y and a projection map (morphism) $h: Y \rightarrow \mathbb{K}$ such that
(1) Each irreducible component of $f o h=0$ is nonsingular
(2) The components of $f o h=0$ in Y intersect transversally.

It is always possible to find h such that

$$
Z(s)=\int_{\mathbb{Z}_{p}^{n}}|f(x)|^{s} d x=\int_{h^{-1}\left(\mathbb{Z}_{p}^{n}\right)}|f o h(y)|^{s} h^{*}(d x)
$$

where h^{*} is the change in measure and $h^{-1}\left(\mathbb{Z}_{p}^{n}\right)$ is chosen carefully.
The key is that $h^{-1}\left(\mathbb{Z}_{p}^{n}\right)$ will be a union of a finite number of non intersecting neighborhoods D_{i} in Y in which

$$
\begin{aligned}
f o h(y) & =u(y) y_{1}^{N_{1}} y_{2}^{N_{2}} \cdots y_{n}^{N_{n}} \\
h^{*}(d x) & =v(y) y_{1}^{m_{1}-1} y_{2}^{m_{2}-1} \cdots y_{n}^{m_{n}-1} d y
\end{aligned}
$$

and $u(y)$ and $v(y)$ either do not intersect the axes of D_{i} or they have transverse intersections. Thus the zeta function becomes a finite sum of integrals of essentially the form

$$
\int_{D_{i}}\left|y_{1}\right|^{N_{1} s+m_{1}-1}\left|y_{2}\right|^{N_{2} s+m_{2}-1} \cdots\left|y_{n}\right|^{N_{n} s+m_{n}-1} d y
$$

and these integral can all be computed.
Suppose that $(0,0)$ is a singular point on the curve $f(x, y)=0$. (We can also blow up a point (a, b) that is singular on $f(x, y)=0$ but here we will focus on blowing up (0,0).) The problem is that since

$$
Z(s)=\int_{\mathbb{Z}_{p}^{n}}|f(x)|^{s} d x=\int_{\mathbb{Z}_{p}^{n} \backslash(0,0)}|f(x)|^{s} d x
$$

and the set $\mathbb{Z}_{p}^{n} \backslash(0,0)$ is not compact the integral could end up being a sum of integrals over an infinite number of neighborhoods and in that case it might very well not be rational.

We will construct a quasi projective variety $Y=\mathbb{A} f f^{2}\left(\mathbb{Z}_{p}\right) \times \mathbb{P}^{1}\left(\mathbb{Z}_{p}\right)$ and take a nonsingular closed subset $V\left(\mathbb{Z}_{p}\right) \subset Y$ such that $V=\{(x, y$: $u, v) \mid v x-u y=0\}$. Remember that in projective space $[u, v] \neq[0,0]$ and $[u, v] \equiv[t u, t v]$.

Note that this set up implies that if $x \neq 0$ then $\frac{y}{x}=\frac{v}{u}$ so $[u, v]=$ $\left[1, \frac{v}{u}\right] u=\left[1, \frac{y}{x}\right]$ so in Y the point $(x, y: u, v)=\left(x, y: 1, \frac{y}{x}\right)$. Similarly if $y \neq 0$ then $\frac{x}{y}=\frac{u}{v}$ so $[u, v]=\left[\frac{u}{v}, 1\right] v=\left[\frac{x}{y}, 1\right]$ and so the point $(x, y: u, v)=\left(x, y: \frac{x}{y}, 1\right)$. If both x and y are not zero then the point $(x, y: u, v)=\left(x, y: 1, \frac{y}{x}\right)=\left(x, y: \frac{x}{y}, 1\right)$.

Thus for example, $(1,2: 1 / 2,1)=(1,2: 1,2)$ but the point $(2,0:$ $1,0)$ has only one representation.

Now there is a projection $p r: V \rightarrow \mathbb{Z}_{p}^{2}$ such that $\operatorname{pr}(x, y: u, v)=$ (x, y) and $p^{-1}(x, y)=\left(x, y, 1, \frac{y}{x}\right)$ if $x \neq 0$ or $\left.\left(x, y: \frac{x}{y}\right), 1\right)$ if $y \neq 0$ and these points are the same if neither x nor y is 0 . However $p r^{-1}(0,0)=$ $(0,0) \times \mathbb{P}^{1}\left(\mathbb{Z}_{p}\right)$ so $p r^{-1}(0,0)$ is not well-defined. It is true however that $p r: V \backslash p r^{-1}(00) \rightarrow \mathbb{Z}_{p}^{2} \backslash(0,0)$ is an isomorphism.

With this set up we see that $V=W \cup W^{\prime}$. We have that $W=\{(x, y$: $\left.u, v) \mid x \neq 0\}=\left\{x, y: 1, \frac{y}{x}\right)\right\}$. We can take coordinates $x_{1}=x$ and $y_{1}=\frac{y}{x}$ for our axes in W. Now $\left.W^{\prime}=\{(x, y: u, v) \mid y \neq 0\}=\left\{x, y: \frac{x}{y}\right)\right\}$. We can take coordinates $\xi_{1}=y$ and $\eta_{1}=\frac{x}{y}$ for our axes in W^{\prime}.
0.1. Computation of the Igusa local zeta for $f(x, y)=x^{3}+y^{2}$ using resolution of singularities. Resolve $f(x, y)=x^{3}+y^{2}$ to find the Igusa local zeta function.

$$
Z(t)=\int_{\mathbb{Z}_{p} \times \mathbb{Z}_{p}}|f(x, y)|^{s} d x d y=\sum_{i=1}^{4} \int_{D_{i}}|f \circ h|^{s}\left|h^{*}(d x d y)\right|
$$

Where h^{*} is the change in measure and $h^{-1}\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p}\right)=D_{1} \cup D_{2} \cup D_{3} \cup D_{4}$.
Step 1:
Let $h: W \rightarrow \mathbb{Z}_{p}^{2}$ such that $\left(x_{1}, y_{1}\right)=\left(x, \frac{y}{x}\right)$ and $h: W^{\prime} \rightarrow \mathbb{Z}_{p}^{2}$ such that $\left(\xi_{1}, \eta_{1}\right)=\left(y, \frac{x}{y}\right)$. Therefore,

$$
(x, y)= \begin{cases}\left(x_{1}, x_{1} y_{1}\right) & \text { in } W \\ \left(\xi_{1} \eta_{1}, \xi_{1}\right) & \text { in } W^{\prime}\end{cases}
$$

So,

$$
f(x, y)=\left\{\begin{array}{l}
x_{1}^{2}\left(x_{1}+y_{1}^{2}\right) \text { in } W \\
\xi_{1}^{2}\left(1+\xi_{1} \eta_{1}^{3}\right) \text { in } W^{\prime}
\end{array}\right.
$$

Now looking at f we see that in W^{\prime} the curve $f=0$ is resolved because $1+\xi_{1} \eta_{1}^{3}$ does not intersect the ξ_{1} or η_{1} axes. However, $f=0$ in W is still singular at $\left(x_{1}, y_{1}\right)=(0,0)$ so we must blow up the point $(0,0)$ in W.

Since x and y are in $\mathbb{Z}_{p},|x|_{p} \leq 1,|y|_{p} \leq 1$, so either $\left|\frac{x}{y}\right|_{p} \leq 1$ or $\left|\frac{y}{x}\right|_{p}<1$. Therefore, we can assume that $\left|x_{1}\right| \leq 1,\left|y_{1}\right| \leq 1$ and $\left|\xi_{1}\right| \leq$ $1,\left|\eta_{1}\right|<1$. This means that $\left(x_{1}, y_{1}\right) \in \mathbb{Z}_{p}^{2}$ and $\left(\xi_{1}, \eta_{1}\right) \in \mathbb{Z}_{p} \times p \mathbb{Z}_{p}=D_{1}$.

Step 2:

Now we resolve $f(x, y)=x_{1}^{2}\left(x_{1}+y_{1}^{2}\right)$ in W.

$$
\begin{aligned}
& \left(x_{2}, y_{2}\right)=\left(y_{1}, \frac{x_{1}}{y_{1}}\right) \\
& \left(\xi_{2}, \eta_{2}\right)=\left(x_{1}, \frac{y_{1}}{x_{1}}\right)
\end{aligned}
$$

Therefore,

$$
\left(x_{1}, y_{1}\right)=\left\{\begin{array}{l}
\left(x_{2} y_{2}, x_{2}\right) \text { in } W_{1} \\
\left(\xi_{2}, \xi_{2} \eta_{2}\right) \text { in } W_{1}^{\prime}
\end{array}\right.
$$

So,

$$
f(x, y)=\left\{\begin{array}{l}
x_{2}^{3} y_{2}^{2}\left(x_{2}+y_{2}\right) \text { in } W_{1} \\
\xi_{2}^{3}\left(1+\xi_{2} \eta_{2}^{2}\right) \text { in } W_{1}^{\prime}
\end{array}\right.
$$

Now looking at f we see that in W_{1}^{\prime} the curve $f=0$ is resolved because $1+\xi_{2} \eta_{2}^{2}$ does not intersect the ξ_{2} or η_{2} axes. However, the $f=0$ in W_{1} is still singular at $\left(x_{2}, y_{2}\right)=(0,0)$ so we must blow up the point $(0,0)$ in W_{1}.

Since x_{1} and y_{1} are in $\mathbb{Z}_{p},\left|x_{1}\right|_{p} \leq 1,\left|y_{1}\right|_{p} \leq 1$, so either $\left|\frac{x_{1}}{y_{1}}\right|_{p} \leq 1$ or $\left|\frac{y_{1}}{x_{1}}\right|_{p}<1$. Therefore, we can assume that $\left|x_{2}\right| \leq 1,\left|y_{2}\right| \leq 1$ and $\left|\xi_{2}\right| \leq$ $1,\left|\eta_{2}\right|<1$. This means that $\left(x_{2}, y_{2}\right) \in \mathbb{Z}_{p}^{2}$ and $\left(\xi_{2}, \eta_{2}\right) \in \mathbb{Z}_{p} \times p \mathbb{Z}_{p}=D_{2}$.

Step 3:

Now, we resolve $f(x, y)=x_{2}^{3} y_{2}^{2}\left(x_{2}+y_{2}\right)$.

$$
\begin{aligned}
& \left(x_{3}, y_{3}\right)=\left(x_{2}, \frac{y_{2}}{x_{2}}\right) \\
& \left(\xi_{3}, \eta_{3}\right)=\left(y_{2}, \frac{x_{2}}{y_{2}}\right)
\end{aligned}
$$

Therefore,

$$
\left(x_{2}, y_{2}\right)=\left\{\begin{array}{l}
\left(x_{3}, x_{3} y_{3}\right) \text { in } W_{2} \\
\left(\xi_{3} \eta_{3}, \xi_{3}\right) \text { in } W_{2}^{\prime}
\end{array}\right.
$$

Therefore,

$$
f(x, y)=\left\{\begin{array}{l}
x_{3}^{6} y_{3}^{2}\left(1+y_{3}\right) \text { in } W_{2} \\
\xi_{3}^{6} \eta_{3}^{3}\left(1+\eta_{3}\right) \text { in } W_{2}^{\prime}
\end{array}\right.
$$

Both of these curves are non singular with transverse intersections. Now we must find D_{3} and D_{4}. Since x_{2} and y_{2} are in $\mathbb{Z}_{p},\left|x_{2}\right|_{p} \leq$ $1,\left|y_{2}\right|_{p} \leq 1$, so either $\left|\frac{x_{2}}{y_{2}}\right|_{p} \leq 1$ or $\left|\frac{y_{2}}{x_{2}}\right|_{p}<1$. Therefore $\left|x_{3}\right| \leq 1,\left|y_{3}\right| \leq 1$ and $\left|\xi_{3}\right| \leq 1,\left|\eta_{3}\right|<1$. This means that $\left(x_{3}, y_{3}\right) \in \mathbb{Z}_{p}^{2}=D_{4}$ and $\left(\xi_{3}, \eta_{3}\right) \in \mathbb{Z}_{p} \times p \mathbb{Z}_{p}=D_{3}$. Therefore, $D_{1}=D_{2}=D_{3}=\mathbb{Z}_{p} \times p \mathbb{Z}_{p}$ while $D_{4}=\mathbb{Z}_{p}^{2}$.

Next we calculate the change in measure due to the change of variables in D_{1}. Here I am using differential form but I could also us the Jacobian to calculate the change in measure.

$$
\begin{aligned}
d x \wedge d y & =d\left(\xi_{1}, \eta_{1}\right) \wedge d \xi_{1} \\
& =\xi_{1} d \eta_{1} \wedge d \xi_{1} \\
& =-\xi_{1} d \xi_{1} \wedge d \eta_{1}
\end{aligned}
$$

Now, we calculate the first partial integral for the zeta function over D_{1}.

$$
\begin{aligned}
Z_{1}(t) & =\int_{\mathbb{Z}_{p} \times p \mathbb{Z}_{p}}\left|\xi_{1}^{2}\left(1+\xi_{1} \eta_{1}^{3}\right)\right|^{s}\left|\xi_{1}\right| d \xi_{1} d \eta_{1} \\
& =\int_{\mathbb{Z}_{p} \times p \mathbb{Z}_{p}}\left|\xi_{1}\right|^{2 s+1} d \xi_{1} d \eta_{1} \\
& =p^{-1} \int_{\mathbb{Z}_{p}}\left|\xi_{1}\right|^{2 s+1} d \xi_{1} \\
& =p^{-1} \frac{1-p^{-1}}{1-p^{-2} t^{2}}
\end{aligned}
$$

Next we calculate the change in measure due to the change of variables in D_{2}.

$$
\begin{array}{rlr}
d x \wedge d y & =d x_{1} \wedge d\left(x_{1} y_{1}\right) \\
& =x_{1} d x_{1} \wedge d y_{1} \\
d x \wedge d y & =\xi_{2} d \xi_{2} \wedge d\left(\xi_{2} \eta_{2}\right) \text { or } x_{2} y_{2} d\left(x_{2} y_{2}\right) \wedge d x_{2} \\
& =\xi_{2}^{2} d \xi_{2} \wedge d \eta_{2} \quad & -x_{2}^{2} y_{2} d x_{2} \wedge d y_{2}
\end{array}
$$

Now, calculate the second partial integral in the zeta function over D_{2}.

$$
\begin{aligned}
Z_{2}(t) & =\int_{\mathbb{Z}_{p} \times p \mathbb{Z}_{p}}\left|\xi_{2}^{3}\left(1+\xi_{2} \eta_{2}^{2}\right)\right|^{s}\left|\xi_{2}\right|^{2} d \xi_{2} d \eta_{2} \\
& =\int_{\mathbb{Z}_{p} \times p \mathbb{Z}_{p}}\left|\xi_{2}\right|^{3 s+2} d \xi_{2} d \eta_{2} \\
& =p^{-1} \frac{1-p^{-1}}{1-p-3 t^{3}}
\end{aligned}
$$

Next we calculate the change in measure due to the change of variables in D_{3} and in D_{4}.

$$
\begin{aligned}
d x \wedge d y & =-\left(\xi_{3} \eta_{3}\right)^{2} \xi_{3} d\left(\xi_{3} \eta_{3}\right) \wedge d \xi_{3}-x_{3}^{2} x_{3} y_{3} d x_{3} \wedge d\left(x_{3} y_{3}\right) \\
& =\xi_{3}^{4} \eta_{3}^{2} d \xi_{3} \wedge d \eta_{3} \quad-x_{3}^{4} y_{3} d x_{3} \wedge d y_{3}
\end{aligned}
$$

Now, calculate the third and fourth partial integral of the zeta function over D_{3} and D_{4}.

$$
\begin{gathered}
Z_{3}(t)=\int_{\mathbb{Z}_{p} \times p \mathbb{Z}_{p}}\left|\xi_{3}^{6} \eta_{3}^{3}\left(1+\eta_{3}\right)\right|^{s}\left|\xi_{3}\right|^{4}\left|\eta_{3}\right|^{2} d \xi_{3} d \eta_{3} \\
=\int_{\mathbb{Z}_{p}}\left|\xi_{3}\right|^{6 s+4} d \xi_{3} \int_{p \mathbb{Z}_{p}}\left|\eta_{3}\right|^{3 s+2} d \eta_{3} \\
=p^{-3} t^{3}\left(\frac{1-p^{-1}}{1-p^{-5} t^{6}}\right)\left(\frac{1-p^{-1}}{1-p^{-3} t^{3}}\right) \\
Z_{4}(t)=\int_{\mathbb{Z}_{p}^{2}}\left|x_{3}^{6} y_{3}^{2}\left(1+y_{3}\right)\right|^{s}\left|x_{3}\right|^{4}\left|y_{3}\right| d x_{3} d y_{3} \\
=\int_{\mathbb{Z}_{p}}\left|x_{3}\right|^{6 s+4} d x_{3} \int_{\mathbb{Z}_{p}}\left|y_{3}\right|^{2 s+1}\left|y_{3}+1\right|^{s} d y_{3} \\
= \\
\frac{1-p^{-1}}{1-p^{-5} t^{6}} \sum_{a m o d p} \int_{a+p \mathbb{Z}_{p}}\left|y_{3}\right|^{2 s+1}\left|y_{3}+1\right|^{s} d y_{3} \\
= \\
\left(\frac{1-p^{-1}}{1-p^{-5} t^{6}}\right)\left((p-2) p^{-1}+\int_{p \mathbb{Z}_{p}}\left|y_{3}\right|^{2 s+1} d y_{3}+\int_{-1+p \mathbb{Z}_{p}}\left|y_{3}+1\right|^{s} d y_{3}\right) \\
= \\
\frac{1-p^{-1}}{1-p^{-5} t^{6}}\left((p-2) p^{-1}+p^{-2} t^{2} \frac{1-p^{-1}}{1-p^{-2} t^{2}}+p^{-1} t \frac{1-p^{-1}}{1-p^{-1} t}\right)
\end{gathered}
$$

The Igusa local zeta function, $Z(t)=Z_{1}(t)+Z_{2}(t)+Z_{3}(t)+Z_{4}(t)$, or

$$
Z(t)=\frac{\left(1-p^{-1}\right)\left(1-p^{-2} t+p^{-2} t^{2}-p^{-5} t^{5}\right)}{\left(1-p^{-1} t\right)\left(1-p^{-5} t^{6}\right)}
$$

