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Generating functions

A generating function is a clothesline

on which we hang up a sequence of

numbers for display.—Herbert Wilf

Given a sequence of numbers a0, a1, a2, .... we
can form its generating function

f (t) =
∞∑

n=0

ant
n
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Rational Generating Functions
Using formulas like

∞∑

n=0

tn =
1

1− t
,

∞∑

n=0

(n + 1)tn =
1

(1− t)2

and
∞∑

n=0

(n + 1)(n + 2)

2
tn =

1

(1− t)3,

Some generating functions can be seen to be
rational functions of t!
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First Generating Function

Consider a prime number p and a polynomial

f (x) = f (x1, ..., xn) in n variables with
coefficients in Z and consider f with coefficients

reduced modulo p.
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First Generating Function

Consider a prime number p and a polynomial

f (x) = f (x1, ..., xn) in n variables with
coefficients in Z and consider f with coefficients

reduced modulo p.

Let

|Ne| = Card {x ∈ F
(n)
pe | f (x) = 0 in Fpe}.
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First Generating Function

Consider a prime number p and a polynomial

f (x) = f (x1, ..., xn) in n variables with
coefficients in Z and consider f with coefficients

reduced modulo p.

Let

|Ne| = Card {x ∈ F
(n)
pe | f (x) = 0 in Fpe}.

Define the Weil Poincaré Series as:

PWeil(t) =
∞∑

e=0

|Ne | t
e

with |N0| = 1 and |Ne | ≤ pne.
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Second Generating Function

Consider a prime number p and a polynomial
f (x) = f (x1, ..., xn) in n variables with

coefficients in Z and for x ∈ Z(n).
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Second Generating Function

Consider a prime number p and a polynomial
f (x) = f (x1, ..., xn) in n variables with

coefficients in Z and for x ∈ Z(n).

Let
|Nd | = Card {x mod pd | f (x) ≡ 0 mod pd}.
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Second Generating Function

Consider a prime number p and a polynomial
f (x) = f (x1, ..., xn) in n variables with

coefficients in Z and for x ∈ Z(n).

Let
|Nd | = Card {x mod pd | f (x) ≡ 0 mod pd}.

Define the Igusa Poincaré Series as:

PIgusa(t) =

∞∑

d=0

|Nd | t
d

with |N0| = 1 and |Nd | ≤ pnd .
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Both these generating functions are known to be

rational functions of t.
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Both these generating functions are known to be

rational functions of t.

Theorem (Dwork, 1959) PWeil(t) is a rational
function of t. |Ne | =

∑u
i=1 α

e
i −

∑v
i=1 β

e
i

(Special case of the first part of the Weil Conjectures 1949.)
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Both these generating functions are known to be

rational functions of t.

Theorem (Dwork, 1959) PWeil(t) is a rational
function of t. |Ne | =

∑u
i=1 α

e
i −

∑v
i=1 β

e
i

(Special case of the first part of the Weil Conjectures 1949.)

Theorem (Igusa, 1975) PIgusa(t) is a rational

function of t.

(Conjectured in exercises of the 1966 textbook by Borevich and
Shafarevich.)
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Example 1

Let

f (x) = x

Then

|Ne| = |Nd | = 1.

Hence,
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Example 1

Let

f (x) = x

Then

|Ne| = |Nd | = 1.

Hence,

PWeil(t) = PIgusa(t) =
∞∑

e=0

te =
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Example 1

Let

f (x) = x

Then

|Ne| = |Nd | = 1.

Hence,

PWeil(t) = PIgusa(t) =
∞∑

e=0

te =
1

(1− t)
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Example 2

Let

f (x , y) = xy

Then

|Ne| = 2pe − 1.

Hence,



Two Ways to

Count

Solutions to

Polynomial

Equations

Margaret

Robinson

Example 2

Let

f (x , y) = xy

Then

|Ne| = 2pe − 1.

Hence,

PWeil(t) =
∞∑

e=0

(2pe−1)te =
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Example 2

Let

f (x , y) = xy

Then

|Ne| = 2pe − 1.

Hence,

PWeil(t) =
∞∑

e=0

(2pe−1)te =
1 + (p − 2)t

(1− t)(1− pt)
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Example 2 (continued)
Counting points solutions of f (x , y ) = xy mod pd for each
d , we see that |Nd | is more complicated but we find the
recursion relation:

|N0| = 1
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Example 2 (continued)
Counting points solutions of f (x , y ) = xy mod pd for each
d , we see that |Nd | is more complicated but we find the
recursion relation:

|N0| = 1

|N1| = 2p − 1
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Example 2 (continued)
Counting points solutions of f (x , y ) = xy mod pd for each
d , we see that |Nd | is more complicated but we find the
recursion relation:

|N0| = 1

|N1| = 2p − 1

|N2| = p(|N1| − 1) + p2|N0| = 3p2 − 2p
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Example 2 (continued)
Counting points solutions of f (x , y ) = xy mod pd for each
d , we see that |Nd | is more complicated but we find the
recursion relation:

|N0| = 1

|N1| = 2p − 1

|N2| = p(|N1| − 1) + p2|N0| = 3p2 − 2p

|Nd | = pd−1(|N1| − 1) + p2|Nd−2|

With careful counting and induction we get the closed form
expression:
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Example 2 (continued)
Counting points solutions of f (x , y ) = xy mod pd for each
d , we see that |Nd | is more complicated but we find the
recursion relation:

|N0| = 1

|N1| = 2p − 1

|N2| = p(|N1| − 1) + p2|N0| = 3p2 − 2p

|Nd | = pd−1(|N1| − 1) + p2|Nd−2|

With careful counting and induction we get the closed form
expression:

|Nd | = (d + 1)pd − dpd−1
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Example 2 (continued)
The Igusa Poincaré series for the polynomial f (x , y ) = xy

is:

PIgusa(t) =
∞∑

d=0

[(d + 1)pd − dpd−1]td
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Example 2 (continued)
The Igusa Poincaré series for the polynomial f (x , y ) = xy

is:

PIgusa(t) =
∞∑

d=0

[(d + 1)pd − dpd−1]td

= 1 +

∞∑

d=1

(d + 1)(pt)d − dp−1(pt)d
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Example 2 (continued)
The Igusa Poincaré series for the polynomial f (x , y ) = xy

is:

PIgusa(t) =
∞∑

d=0

[(d + 1)pd − dpd−1]td

= 1 +

∞∑

d=1

(d + 1)(pt)d − dp−1(pt)d

= 1 +

∞∑

d=1

d(1− p−1)(pt)d +

∞∑

d=1

(pt)d
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Example 2 (continued)
The Igusa Poincaré series for the polynomial f (x , y ) = xy

is:

PIgusa(t) =
∞∑

d=0

[(d + 1)pd − dpd−1]td

= 1 +

∞∑

d=1

(d + 1)(pt)d − dp−1(pt)d

= 1 +

∞∑

d=1

d(1− p−1)(pt)d +

∞∑

d=1

(pt)d

= 1 +
(1− p−1)(pt)

(1− pt)2
+

pt

(1− pt)
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Example 2 (continued)
The Igusa Poincaré series for the polynomial f (x , y ) = xy

is:

PIgusa(t) =
∞∑

d=0

[(d + 1)pd − dpd−1]td

= 1 +

∞∑

d=1

(d + 1)(pt)d − dp−1(pt)d

= 1 +

∞∑

d=1

d(1− p−1)(pt)d +

∞∑

d=1

(pt)d

= 1 +
(1− p−1)(pt)

(1− pt)2
+

pt

(1− pt)

=
1− t

(1− pt)2
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Example 3

Let
f (x , y) = y 2 − x3

PIgusa(p
−2t) =

∞∑

d=0

|Nd | (p
−2t)d
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Example 3

Let
f (x , y) = y 2 − x3

PIgusa(p
−2t) =

∞∑

d=0

|Nd | (p
−2t)d

=
(1 + p−2t2 − p−3t2 − p−6t6)

(1− p−1t)(1− p−5t6)
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Example 3 (continued)
From the Igusa Poincaré series for

f (x , y) = y 2 − x3, we get a recursion relation of
the form:

|N0| = 1
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Example 3 (continued)
From the Igusa Poincaré series for

f (x , y) = y 2 − x3, we get a recursion relation of
the form:

|N0| = 1

|N1| = p
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Example 3 (continued)
From the Igusa Poincaré series for

f (x , y) = y 2 − x3, we get a recursion relation of
the form:

|N0| = 1

|N1| = p

|Nd | = (2p − 1)pd−1
for d = 2, 3, 4, 5
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Example 3 (continued)
From the Igusa Poincaré series for

f (x , y) = y 2 − x3, we get a recursion relation of
the form:

|N0| = 1

|N1| = p

|Nd | = (2p − 1)pd−1
for d = 2, 3, 4, 5

|Nd | = pd−1(p − 1) + |Nd−6|p
7
for d > 5
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Example 3 (continued)
Using partial fractions on PIgusa(t), we get the

following closed form formulas for the |Nd |:

|N0| = 1 for k ≥ 0
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Example 3 (continued)
Using partial fractions on PIgusa(t), we get the

following closed form formulas for the |Nd |:

|N0| = 1 for k ≥ 0

|N6k | = (pk+1 + pk − 1)p6k−1

|N6k+1| = (pk+1 + pk − 1)p6k

|N6k+2| = (2pk+1 − 1)p6k+1

|N6k+3| = (2pk+1 − 1)p6k+2

|N6k+4| = (2pk+1 − 1)p6k+3

|N6k+5| = (2pk+1 − 1)p6k+4
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Bernstein’s Theorem
Bernstein’s theorem states that for f (x) a

non-zero polynomial in Q[x1, . . . , xn], there exists
a differential operator P in

Q[s, x1, . . . , xn, ∂/∂x1, . . . , ∂/∂xn] and a unique,
monic polynomial of smallest degree b(s) in Q[s]

such that

P · f (x)s+1 = b(s)f (x)s

for s in Z.
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Bernstein’s Theorem
Bernstein’s theorem states that for f (x) a

non-zero polynomial in Q[x1, . . . , xn], there exists
a differential operator P in

Q[s, x1, . . . , xn, ∂/∂x1, . . . , ∂/∂xn] and a unique,
monic polynomial of smallest degree b(s) in Q[s]

such that

P · f (x)s+1 = b(s)f (x)s

for s in Z. Conjecture: Zeros of the Bernstein
polynomial are related to poles of PIgusa(p

−nt)
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Example 1
When f (x) = x the differential operator is

P = ∂

∂x
and the Bernstein polynomial is

b(s) = (s + 1)

since we have that

P · x s+1 = (s + 1)x s.



Two Ways to

Count

Solutions to

Polynomial

Equations

Margaret

Robinson

Example 1
When f (x) = x the differential operator is

P = ∂

∂x
and the Bernstein polynomial is

b(s) = (s + 1)

since we have that

P · x s+1 = (s + 1)x s.

Note that s = −1 is the zero of the Bernstein
polynomial.
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Example 2
When f (x , y) = xy the differential operator is

P =
∂

∂x
(
∂

∂y
)

and the Bernstein polynomial is

b(s) = (s + 1)2

since we have that

P · (xy)s+1 = (s + 1)2(xy)s.
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Example 2
When f (x , y) = xy the differential operator is

P =
∂

∂x
(
∂

∂y
)

and the Bernstein polynomial is

b(s) = (s + 1)2

since we have that

P · (xy)s+1 = (s + 1)2(xy)s.

Note that s = −1 is a double root of b(s).
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Example 3
When f (x , y) = y 2 − x3 the differential operator

is
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Example 3
When f (x , y) = y 2 − x3 the differential operator

is

P = 1/27 ∂3/∂x3 + 1/6 x ∂3/∂x∂y 2

+ 1/8 y ∂3/∂y 3 + 3/8 ∂2/∂y 2

and the Bernstein polynomial is
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Example 3
When f (x , y) = y 2 − x3 the differential operator

is

P = 1/27 ∂3/∂x3 + 1/6 x ∂3/∂x∂y 2

+ 1/8 y ∂3/∂y 3 + 3/8 ∂2/∂y 2

and the Bernstein polynomial is

b(s) = (s + 1)(s + 5/6)(s + 7/6)
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Example 3
When f (x , y) = y 2 − x3 the differential operator

is

P = 1/27 ∂3/∂x3 + 1/6 x ∂3/∂x∂y 2

+ 1/8 y ∂3/∂y 3 + 3/8 ∂2/∂y 2

and the Bernstein polynomial is

b(s) = (s + 1)(s + 5/6)(s + 7/6)

Note that s = −1, −5/6, and −7/6 are roots of
b(s).
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Mystery

Consider the Igusa Poincaré Series for our three
examples:
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Mystery

Consider the Igusa Poincaré Series for our three
examples:

PIgusa(p
−1t) =

1

(1− p−1t)
for f (x) = x
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Mystery

Consider the Igusa Poincaré Series for our three
examples:

PIgusa(p
−1t) =

1

(1− p−1t)
for f (x) = x

PIgusa(p
−2t) =

1− p−2t

(1− p−1t)2
for f (x , y) = xy
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Mystery

Consider the Igusa Poincaré Series for our three
examples:

PIgusa(p
−1t) =

1

(1− p−1t)
for f (x) = x

PIgusa(p
−2t) =

1− p−2t

(1− p−1t)2
for f (x , y) = xy

PIgusa(p
−2t) =

(1 + p−2t2 − p−3t2 − p−6t6)

(1− p−1t)(1− p−5t6)

for f (x , y) = y 2 − x3
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Mystery (continued)
Let t = p−s
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Mystery (continued)
Let t = p−s

PIgusa(p
−1−s) =

1

(1− p−1−s)
for f (x) = x



Two Ways to

Count

Solutions to

Polynomial

Equations

Margaret

Robinson

Mystery (continued)
Let t = p−s

PIgusa(p
−1−s) =

1

(1− p−1−s)
for f (x) = x

PIgusa(p
−2−s) =

1− p−2−s

(1− p−1−s)2
for f (x , y) = xy
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Mystery (continued)
Let t = p−s

PIgusa(p
−1−s) =

1

(1− p−1−s)
for f (x) = x

PIgusa(p
−2−s) =

1− p−2−s

(1− p−1−s)2
for f (x , y) = xy

PIgusa(p
−2−s) =

(1 + p−2−2s − p−3−2s − p−6−6s)

(1− p−1−s)(1− p−5−6s)

for f (x , y) = y 2 − x3
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Mystery (continued)
Let t = p−s

PIgusa(p
−1−s) =

1

(1− p−1−s)
for f (x) = x

PIgusa(p
−2−s) =

1− p−2−s

(1− p−1−s)2
for f (x , y) = xy

PIgusa(p
−2−s) =

(1 + p−2−2s − p−3−2s − p−6−6s)

(1− p−1−s)(1− p−5−6s)

for f (x , y) = y 2 − x3

Conjecture: Real poles of the Poincaré series are
all zeros of the Bernstein polynomial. Why??
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THANK YOU
I hope there is someone here who gets interested
in these questions.

My email: robinson@mtholyoke.edu


