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Many difficult problems in machine learning are victims of the curse of singularities. As the big data becomes more 
important, the key mathematical issues need to be analyzed at a deeper level. In this course, we give a brief 
introduction to singular learning theory, a powerful geometric approach recently developed by Sumio Watanabe. 
No prior knowledge of statistics is required.  
  
Day 1: Statistical Learning Theory 
 

* Random Variables 
  - Discrete Variables 
  - Gaussian Variables 
 

* Statistical Models 
  - Likelihood Function 
  - Maximum Likelihood 
  - Kullback-Liebler Function 
  - Mixture Models 
 

* Bayesian Statistics 
  - Likelihood Integral 
  - Laplace Approximation 
  - Bayesian Information Criterion 
 

* Linear Regression 
  - Least squares 
  - Sparsity penalty 

 
Day 2: Real Log Canonical Thresholds 
 

* Integral Asymptotics 
* Resolution of Singularities 
* Real Log Canonical Thresholds 
* Fiber Ideals 
* Newton Polyhedra 

 
Day 3: Singularities in Graphical Models 
 

* Graphical Models 
  - Causality vs Correlation 
  - Directed vs Undirected 
  - Discrete vs Gaussian 
 

* Directed Discrete Tree Models 
  - Binary Tree Cumulants 
 

* Undirected Gaussian Models 
  - Partial Correlation Hypersurfaces 
 

* Neural Networks 
  - Restricted Boltzmann Machines 
  - Tropical Geometry of RBMs 
  - Deep Learning 
  - Sensor Networks 


