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Abstract

Storm surge due to hurricanes and tropical storms can result in significant
loss of life, property damage, and long-term damage to coastal ecosystems
and landscapes. Computer modeling of storm surge can be used for two
primary purposes: forecasting of surge as storms approach land for emergency
planning and evacuation of coastal populations, and hindcasting of storms
for determining risk, development of mitigation strategies, coastal restoration
and sustainability.

Storm surge is modeled using the shallow water equations, coupled with
wind forcing and in some events, models of wave energy. In this paper, we will
describe a depth-averaged (2D) model of circulation in spherical coordinates.
Tides, riverine forcing, atmospheric pressure, bottom friction, the Coriolis ef-
fect and wind stress are all important for characterizing the inundation due
to surge. The problem is inherently multi-scale, both in space and time.
To model these problems accurately requires significant investments in ac-
quiring high-fidelity input (bathymetry, bottom friction characteristics, land
cover data, river flow rates, levees, raised roads and railways, etc.), accurate
discretization of the computational domain using unstructured finite element
meshes, and numerical methods capable of capturing highly advective flows,
wetting and drying, and multi-scale features of the solution.

The discontinuous Galerkin (DG) method appears to allows for many of
the features necessary to accurately capture storm surge physics. The DG
method was developed for modeling shocks and advection-dominated flows
on unstructured finite element meshes. It easily allows for adaptivity in both

http://ees.elsevier.com/adwr/download.aspx?id=60495&guid=4dc2b385-bf66-4332-b706-a10702b74fc0&scheme=1
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mesh (h) and polynomial order (p) for capturing multi-scale spatial events.
Mass conservative wetting and drying algorithms can be formulated within
the DG method.

In this paper, we will describe the application of the DG method to
hurricane storm surge. We discuss the general formulation, and new features
which have been added to the model to better capture surge in complex
coastal environments. These features include modifications to the method to
handle spherical coordinates and maintain still flows, improvements in the
stability post-processing (i.e. slope-limiting), and the modeling of internal
barriers for capturing overtopping of levees and other structures. We will
focus on applications of the model to recent events in the Gulf of Mexico,
including Hurricane Ike.

Keywords: Discontinuous Galerkin methods, hurricane storm surge,
shallow water equations

1. Introduction

In this paper we describe recent advances in the application of discon-
tinuous Galerkin (DG) methods to the modeling of shallow water flow in
coastal environments. This work builds upon research of the authors and
collaborators described in a number of recent papers [1, 20, 18, 19, 5]. Here
we focus specifically on the application of DG methods to the modeling of
coastal and inland flooding due to, e.g., storm surge from hurricanes or other
tropical events.

Storm surge is primarily a competition between wind forcing and fric-
tional resistance. As hurricanes approach the coast, water is driven inland
often resulting in significant flooding, causing loss of life and damage to
property and coastal ecosystems. Predicting and understanding the extent
of surge is critical to emergency managers in the event of an impending storm,
and to longer-term efforts to protect and sustain coastal environments. Com-
puter models of storm surge are central to these efforts.

Hurricanes induce significant mixing through the water column in highly
energetic storm events; therefore storm surge is modeled in this work by
the depth-averaged shallow water equations. Boundary conditions on lateral
boundaries of the 2D domain model tides, the interaction of water with dry
land, and river inflows. In our model open ocean boundaries are extended
out into the deeper ocean so as to prevent spurious boundary effects [3, 4].
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Body forces include wind stress, atmospheric pressure, bottom friction, Cori-
olis and tidal potential. In complex coastal regions such as the Gulf Coast of
the United States, channels, levees, raised roads and other internal barriers
must be included in the description of the domain, as they either enhance
or impede inland flow. The computational domain is discretized using trian-
gular elements, to better represent complex coastal features, barrier islands,
and internal barriers, and to allow for gradation of the mesh from the deeper
ocean, the continental shelf, into estuaries, marshes, channels and over low-
lying, potentially inundated coastal inlands.

Accurate modeling of storm surge requires numerical methods capable of
capturing highly advective flows, wetting and drying, and multi-scale features
of the solution. The DG method allows for many of the features necessary
to accurately capture storm surge physics. The DG methodology we have
adapted is based on the Runge-Kutta Local DG (RKLDG) methods of Cock-
burn and Shu [9] as modified by Cockburn and Dawson [8]; these methods
were developed for modeling advection-dominated advection-diffusion equa-
tions on unstructured finite element meshes. In this method a “local” DG
scheme approximates the diffusion terms, combined with a standard DG dis-
cretization for the advective and source terms. The RKLDG approach allows
for adaptivity in both mesh (h) and polynomial order (p) for capturing multi-
scale spatial events. Mass conservative wetting and drying algorithms can
be formulated within the RKLDG method.

In this paper, we describe our initial efforts at applying the DG method
to modeling storm surge. We first discuss the DG formulation in spherical
coordinates, and then describe new features which have been added to the
model to accurately capture surge in complex coastal environments. These
features include improvements to the stabilty post-processing algorithms used
in the code, and the modeling of internal “weir-type” barriers for capturing
overtopping of levees and other structures. Finally, we present results of
the model to a recent event in the Gulf of Mexico, Hurricane Ike. These
results include comparisons to a well-known storm surge model, namely the
Advanced Circulation (ADCIRC) model [21, 22], which has been validated
against several recent Gulf storms [6, 11, 12].

2. DG Formulation in Spherical Coordinates

Tracking hurricanes and their effects through large sections of the ocean
requires solving the shallow water equations on the sphere. We use a standard
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cylindrical projection to transform these equations into an equivalent set of
equations in Cartesian coordiantes.

Applying the hydrostatic and Boussinesq approximations, assuming the
Earth’s radius is large relative to the depth of the ocean, and averaging over
the water depth H we arrive at the 2D governing equations in spherical
coordinates (λ, φ):

� Continuity

∂ζ

∂t
+

1

R cosφ

(
∂(UH)

∂λ
+
∂(V H cosφ)

∂φ

)
= 0. (1)

� Horizontal momentum

dU

dt
= fV − 1

R cosφ

∂[g(ζ − αη) + ps/ρ0]

∂λ
+

τsλ
ρ0H

− τbfU +mλ (2)

dV

dt
= −fU − 1

R

∂[g(ζ − αη) + ps/ρ0]

∂φ
+

τsφ
ρ0H

− τbfV +mφ (3)

Here

� t = time

� λ, φ = degrees longitude, latitude

� ζ = free surface elevation relative to the geoid

� U, V= depth-averaged horizontal velocity components

� R = mean radius of the earth (6.3782064× 106 m).

� H = ζ + h = water depth

� h = bathymetric depth relative to the geoid

� g = gravitational acceleration

� f = Coriolis coefficient
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� ps = atmospheric pressure at the free surface

� η = Newtonian equilibrium tide potential

� α = effective earth elasticity factor

� ρ0 = reference density of water

� τsλ, τsφ = applied free-surface stress

� τbf = Cf
[
(U2 + V 2)1/2/H

]
= bottom friction

� Cf = nonlinear bottom friction coefficient.

�
d
dt

= ∂
∂t

+ U
R cosφ

∂
∂λ

+ V
R

∂
∂φ

� mλ,mφ = νT
H

[
∂
∂λ

(
∂UH
∂λ

)
+ ∂

∂φ

(
∂UH
∂φ

)]
, νT
H

[
∂
∂λ

(
∂V H
∂λ

)
+ ∂

∂φ

(
∂V H
∂φ

)]
,

� νT = depth-averaged horizontal eddy viscosity

Using a standard, orthogonal cylindrical projection centered at a user-
specified (λ0, φ0), we define

x = R(λ− λ0) cosφ0, (4)

y = Rφ. (5)

Using the chain rule we find

∂

∂λ
= R cosφ0

∂

∂x
,

∂

∂φ
= R

∂

∂y
.

Replacing the derivatives in the spherical coordinate system with those in the
Cartesian (x, y) system we find the transformed set of spherical equations

∂ζ

∂t
+ Sp

∂(UH)

∂x
+
∂(V H)

∂y
= 0. (6)

dU

dt
= fV − Sp

∂[g(ζ − αη) + ps/ρ0]

∂x
+

τsλ
ρ0H

− τbfU +mx (7)
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dV

dt
= −fU − ∂[g(ζ − αη) + ps/ρ0]

∂y
+

τsφ
ρ0H

− τbfV +my (8)

where

Sp =
cosφ0

cosφ

is a spherical correction factor, the total derivative becomes

d

dt
=

∂

∂t
+ Sp

∂

∂x
+

∂

∂y
,

and

mx,my =
νT
H

[
Sp

∂

∂x

(
∂UH

∂x

)
+

∂

∂y

(
∂UH

∂y

)]
,
νT
H

[
Sp

∂

∂x

(
∂V H

∂x

)
+

∂

∂y

(
∂V H

∂y

)]
.

Finally we note that, multiplying (7) and (8) by H, using the continuity
equation (6) and manipulating the gravity terms, the entire system can be
written in divergence form:

∂c

∂t
+∇ · (A−D∇c) = h(c), (9)

where

c =

 ζ
UH
V H

 , A =

 SpUH VH
Sp[U

2H + g(ζ2/2 + ζh)] UV H
SpUV H V 2H + g (ζ2/2 + ζh)

 ,

D =

 0 0 0
0 νT I 0
0 0 νT I

 ,
and

h(c) =

 0

−τbfUH + fV H + gSpζ
∂h
∂x

+H ∂[gαη−ps/ρ0]
∂x

+ τsλ
ρ0

−τbfV H − fUH + gζ ∂h
∂y

+H ∂[gαη−ps/ρ0]
∂y

+
τsφ
ρ0

 .

The matrix D has a block structure where 0 is the 2x2 zero matrix and I is
the 2x2 identity matrix.
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We note that the final set of equations (9) differs from the shallow wa-
ter equations in standard Cartesian coordinates only in the factor Sp which
appears in front of all of the x-derivative terms. This factor does depend
on the latitude φ and hence is a function of y; therefore it is not constant,
and we discuss the implications with respect to the DG discretization below.
We now solve these equations on an (x, y) spatial domain Ω with appropri-
ate boundary and initial conditions. For our purposes in this paper we only
require two types of boundary conditions, open ocean and land:

� Open ocean boundary condition

ζ = ζtidal, (10)

νT∇(UH) · n = 0, (11)

νT∇(V H) · n = 0; (12)

� Land boundary

q · n = 0, (13)

where ζtidal is a specified elevation typically determined by tides, and n is
the unit outward normal to the boundary of Ω.

The RKLDG formulation of the system (9) has been described in several
previous papers, most notably [1] and [20]. We briefly outline the formulation
as follows.

Before describing the spatial discretization of (9) we define some notation.
On any spatial domain R let (·, ·)R denote the L2(R) inner product. To
distinguish integration over domains R ∈ IRd−1 (e.g., surfaces or lines), we
will use the notation 〈·, ·〉R. Let {Th}h>0 denote a family of finite element
partitions of Ω such that no element Ωe crosses the boundary of Ω, where h
is the maximal element diameter. Let

Wh,e = {w : each component of w is a polynomial of degree ≤ ke on Ωe ∈ Th}.

We do not specify here the number of components in w and below it may
vary depending on the variable being approximated. Note that the degree
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ke could vary from one element to the next. Let ne denote the unit outward
normal to ∂Ωe. Then, for x ∈ ∂Ωe we define

wint(x) = lim
s→0−

w(x + sne),

and
wext(x) = lim

s→0+
w(x + sne).

That is, wint is the value of w from the interior of Ωe, and wext is the value
of w from the exterior of Ωe. We also define

w = (wint + wext)/2. (14)

The LDG method is based on the following mixed form of (9). Define

z̃ = −∇c, (15)

and

z = Dz̃. (16)

Then, substituting z into (9), multiplying by a sufficiently smooth test func-
tion w, and integrating over an element Ωe, we obtain(
∂c

∂t
,w

)
Ωe

− (A + z,∇ ·w)Ωe
+ 〈(A + z) · ne,wint〉∂Ωe = (h(c),w)Ωe

. (17)

Multiplying (15) by a suitable test function ṽ and integrating we find

(z̃, ṽ)Ωe − (c,∇ · ṽ)Ωe + 〈c, ṽint · ne〉∂Ωe = 0, (18)

and multiplying (16) by a test function v and integrating we obtain

(z,v)Ωe − (Dz̃,v)Ωe = 0. (19)

We approximate c, z̃ and z by functions C, Z̃ and Z in Wh,e. We also

approximate A · ne on ∂Ωe by a numerical flux Â(Cint,Cext; ne), which we
discuss below. All other boundary terms are approximated by averaging.
Thus, the DG method is given by(

∂C

∂t
,w

)
Ωe

− (A(C) + Z,∇ ·w)Ωe

+〈Â(Cint,Cext; ne) + Z · ne,wint〉∂Ωe = (h(C),w)Ωe
, w ∈ Wh,e,(20)
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(Z̃, ṽ)Ωe − (C,∇ · ṽ)Ωe + 〈C, ṽint · ne〉∂Ωe = 0, ṽ ∈ Wh,e, (21)

(Z,v)Ωe − (DZ̃,v)Ωe = 0, v ∈ Wh,e. (22)

Remarks:

� The numerical flux Â can be any consistent, locally Lipschitz, conser-
vative entropy flux. In the numerical results in this paper, we used the
Local Lax-Friedrichs (LLF) flux, given by

Â(C−, C+; n) =
1

2

[
A(C−)n + A(C+)n + |Λ|(C− − C+)

]
(23)

where Λ is an estimate of the largest eigenvalue of the Jacobian matrix
of the flux A in the interval between C− and C+, and n is the normal
to the edge which points from “minus” to “plus.”

� The equations (20)-(22) represents a system of ODE’s. These ODE’s
are integrated in time using explicit Runge-Kutta methods [1].

� Our implementation of the DG method has been restricted to triangular
elements. An orthogonal (Dubiner) basis is used as described in [20].
In the numerical results described below, we focus only on piecewise
linear ke = 1 approximations. We perform stability post-processing or
slope limiting, described in Section 3. In this case the degree ke may
vary from 0 to 1 dynamically, depending on the action of the slope
limiter.

� It is possible during a simulation that an element Ωe can be wet (H > 0
throughout Ωe), dry (H = 0), or partially wet (H ≥ 0) . The algorithm
for handling wetting and drying is described in detail in [5].

� The boundary of an element may be part of an internal barrier; i.e.,
a levee, raised road, railway, etc. Internal barriers may start out as
dry and be over-topped during the storm. Special formulas are used to
handle the fluxes through these boundaries, as described in Section 4.
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2.1. Preserving still flow

One question that arises in DG and other methods based on writing the
shallow water equations in conservative form, is whether or not the method
can preserve still flow. That is, if there are no forcing terms, and initially
U = V = 0 and ζ is a constant, then ζ should remain constant for all
time and U and V should remain zero. This can be especially tricky if the
bathymetry h has discontinuities in it; however, we refer the reader to [24] for
an elegant method for handling this case within the DG framework. In our
numerical results described below, the bathymetry is given at the vertices of
each triangular element, and interpolated by a piecewise linear, continuous
function. Therefore, ∇h is constant on each element.

First, note that if C is constant, then Z̃ and Z are zero by (21) and (22).
In the presence of no forcing, the scheme is well-balanced if

− (A(C),∇ ·w)Ωe
+ 〈Â(Cint,Cext; ne),w

int〉∂Ωe = (h(C),w)Ωe
, w ∈ Wh,e,

where h now only contains the gravity terms,

h = (0, gSpζ
∂h

∂x
, g
∂h

∂y
).

It can be shown that in standard Cartesian coordinates (when Sp ≡ 1) the
scheme is well-balanced since h is continuous and piecewise linear. For spher-
ical coordinates we must account for the fact that Sp is spatially dependent,
in particular Sp = Sp(y). Therefore, focusing on the x-momentum equation,
noting that U = V = 0, we require

−
(
Sp(ζ

2/2 + ζh),
∂w

∂x

)
Ωe

+ 〈(ζ2/2 + ζh)Spnx, w
int〉∂Ωe =

(
Spζ

∂h

∂x
, w

)
Ωe

,(24)

where ζ is now assumed constant everywhere. The factor Sp enters both
the element and edge calculations. Recall that Sp = cos(φ0)/ cos(φ) =
cos(φ0)/ cos(y/R). One could use this analytic form of Sp, but in order
to maintain zero velocity we would have to integrate all terms involving Sp
accurately over each element and edge. Instead we approximate Sp as follows.

On each edge we assume Sp ≈ Ŝp, which is obtained by evaluating Sp at
the midpoint of the edge. In addition, we compute an approximation to Sp
on each element which is consistent with Ŝp. In the case where ke = 0, Sp is
approximated by a constant over each element, computed so that(

Sp,
∂ψ

∂x

)
Ωe

= 〈Ŝpnx, 1/2 + ψ〉∂Ωe , (25)
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where

ψ =

{
h, if ∂h

∂x
6= 0 on Ωe,

x, otherwise.
(26)

This is consistent with (24) where w = 1 and ζ = 1. In the case that ke = 1,
we approximate Sp ≈ Sp,e which is in the linear Dubiner basis, by enforcing
a type of Divergence Theorem:

(Sp,e(1/2 + ψ),
∂w

∂x
)Ωe + (Sp,e

∂ψ

∂x
, w)Ωe = 〈Ŝp(1/2 + ψ)nx, w〉∂Ωe , (27)

for w linear on the element Ωe.

3. Slope limiting for linear approximations

In the case where ke = 1, we often need to apply a limiter or stability
post-processing algorithm to prevent the solution from oscillating and even-
tually blowing-up. A number of limiters have been proposed in the literature,
and an exhaustive study of all possible limiters is beyond the scope of this
paper. We have implemented and tested three limiters specifically suited to
triangular elements. The first limiter is based on a reconstruction scheme
due to [14], and the second limiter is due to [10]. Both of these limiters are
“edge-based,” that is, on a given cell, one computes linear interpolants of
the cell averages of the given cell and each of its neighboring elements which
share an edge, taken two at a time. Thus, if a cell has three neighbors, one
computes three linear interpolants, and compares these interpolants to the
DG approximation. In the limiter in [14], the interpolant with the minimum
gradient is chosen as the post-processed solution. The limiter in [10] is more
complicated, it involves limiting in characteristic variables, but the basic idea
is the same in that in involves neighbors which share an edge. In our expe-
rience, these limiters have performed well in some cases and not so well in
others, as we will illustrate in the numerical results below.

Another limiter which we have implemented dates back to an idea first
proposed in [2]. This limiter is “vertex-based.” In this algorithm, we evaluate
the linear DG solution at the vertex of each triangle. The basic idea then
is to find the “closest” linear function to the DG solution which satisfies
certain inequality constraints at the vertices. Let Ωe be an element, and w
a piecewise linear function defined on each element. At a vertex j of Ωe,
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with coordinates (xj, yj), let w−j , w+
j denote the minimum and maximum

cell average of w over all elements which share vertex j; i.e.,

w−j = min
Ωl∈Kj

w(xl, yl)

where Kj is the set of all elements sharing vertex j and (xl, yl) is the barycen-
ter of Ωl. A similar definition holds for w+

j with minimum replaced by max-
imum. We then check to see whether

w−j ≤ we(xj, yj) ≤ w+
j (28)

where we represents w evaluated on Ωe.
If (28) is violated, then we adjust the vertex values using a fairly simple

heuristic. If the constraint is violated at a particular vertex, we adjust that
vertex value just enough so that the inequality constraints are satisfied, how-
ever, we also want to preserve the cell average over Ωe. The next step then
is to distribute the excess (deficit) among the other vertices. The approach
we use is to equidistribute the excess (deficit) among all of the other vertices
subject to not causing any value to violate its inequality constraints. This
can be done in a simple manner by making several passes over the vertices
for equidistributing the values. We also note that it is always possible to
satisfy (28) by setting the slope to zero in Ωe, thus this is the default result
if the equidistribution algorithm fails for some reason.

4. Modeling of internal barriers

Features within the domain such as levees, weirs, and raised roadways
are treated as sub-grid scale internal barriers. Specifically, element edges are
aligned with these features, which have some finite thickness, and their effects
on the flow are incorporated into the model through the numerical flux terms
computed in the evaluation of the boundary integral terms. To illustrate this
procedure in more detail, consider the incorporation of the internal barrier
shown in Figure 1, which may represent, for example, a levee within the
model domain. First, internal barrier segments are identified as pairs of
edges that are “across” from one another, with one side arbitrarily labeled
the “front” and the other labeled the “back”. As outlined in Section 2, the
numerical flux calculations make use of both interior (int) and exterior (ext)
values of the variables w. The exterior values of the variables on barrier

12



  

Figure 1: An internal barrier and surrounding elements in a domain. Edge pairs on either
side of the barrier are identified as barrier segments.

segments are specified to enforce one of four main types of flow that may
occur along the barrier based on the height of the free surface relative to the
barrier height:

� Case 1: The free surface is below the height of the barrier on both
the front and back sides of the segment. In this case, the internal
barrier simply acts a solid wall, or no-normal flow, boundary; that is,
the external variables on both sides are specified such that q · n = 0 is
enforced; see [1] and [20] for details.

� Case 2: The free surface is above the barrier segment on both sides
and at the same height (within a specified tolerance). As in the case
above, the external variables on both sides of the barrier segement are
specified such that the condition q · n = 0 is enforced.

� Case 3: The free surface on the front side of the barrier is greater
than both the barrier height and the height of the free surface on the
back side. In this case, overtopping of the barrier occurs with flow
from the front to the back side of the barrier segment. Flow in this
case will be one of two subcases based on flow conditions: subcritical
or supercritical. Flow rates over the barrier qweir are computed using
standard weir formula; see, for example, [7]. The exterior values of q for
both the front and back edges of the segment are then set accordingly
so the numerical flux produces q̂ = qweir.

13



  

� Case 4: The same as case 3 above but with overtopping of the barrier
occurring from the back to the front side. Again, standard weir formula
are used to compute the overtopping flow rate and exterior values of w
are set such that q̂ = qweir.

5. Numerical Results

The main focus of this section is to give results of the DG method de-
scribed above for Hurricane Ike, with comparisons to the ADCIRC (Advanced
Circulation) model, which is a quasi-operational model that has been used
to study many hurricanes in the Gulf of Mexico. In these studies, large do-
mains which include the western North Atlantic Ocean are used, as seen in
Figure 2, discretized using graded triangular meshes which are highly refined
in the area of interest, for example, Texas or Louisiana. The mesh diameters
vary from kilometers in the deeper parts of the ocean, to hundreds of meters
along the continental shelf and down to approximately fifty meters in the
bays, estuaries, channels and inland regions impacted by the storm [6].

The track of Ike is shown in Figure 3, the storm’s primary impact oc-
curred from Galveston Island eastward to Sabine Pass, which is on the Texas-
Louisiana border. The effects of the storm on the areas around Galveston
Bay are of particular interest, since this area is heavily populated, is home
to the Port of Houston and is vital to the U.S. economy. Our numerical
results focus primarily on computed maximum surge levels and hydrographs
at various points around this region.

5.1. A comparison of slope limiters

Propagation of surge through narrow inland channels is a challenging
but important problem. An example of such a regime is the Houston Ship
Channel, which connects the Port of Houston to the Gulf of Mexico through
Galveston Bay. The channel is currently 160 m wide, 14 m deep, and 80 m
long. The water depth in the surrounding bay averages around 2 m. The
bathymetry in the bay is pictured in Figure 4.

In order to test the ability of the DG method to propagate waves up a
narrow channel, we developed a simple channel model with characteristics
similar to the Houston Ship Channel, and simulated tidal flow through this
channel. The model domain and bathymetry are shown in Figure 5. The
domain consists of an area of constant bathymetry between −94.8 and −94.5
degrees longitude, connecting to a narrow channel of length approximately
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Figure 2: Western North Atlantic domain and bathymetry in meters.
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Figure 3: Track of Hurricane Ike (http://www.wunderground.com)
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Figure 4: Bathymetry (m) in Galveston Bay and the surrounding area. The Houston Ship
Channel is the narrow line that runs through Galveston Bay from Galveston to Houston.
Numbers indicate locations of hydrographs for Hurricane Ike simulations.
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80 km. The bathymetry is tapered to zero on the sides of the channel and
towards the left end of the channel. The boundaries consist of an open ocean
boundary on the right at x = −95.5 degrees, and all other boundaries are
land boundaries. An M2 tide is specified with magnitude .5 m:

ζtidal(t) = .5 cos(.0001405189025 ∗ t),

where t is in seconds. The initial condition is a cold start; i.e., ζ = U = V =
0. The tide is then ramped up over a period of .1 days. The friction law used
is given by the Chezy formula

τbf = Cf
√
U2 + V 2/H

with Cf given in Table 1. No atmospheric forcings are assumed. All other
parameters are given in Table 1.

Length of simuation 1 day
Gravitational constant g 9.81 m/s2

Bottom friction Cf .0025
Coriolis f .000070706 s−1

Eddy viscosity νT 0
Slope limiter 1 Durlofsky-Engquist-Osher
Slope limiter 2 Cockburn and Shu
Slope limiter 3 Vertex

∆t .5 s

Table 1: Run parameters for model channel problem.

We computed DG solutions for orders ke = 1 and for the three slope
limiters mentioned in Section 3. Slope limiter 1 is the Durlofsky-Engquist-
Osher reconstruction method, slope limiter 2 is the Cockburn-Shu limiter,
and slope limiter 3 is the vertex-based limiter. We compare solutions by
computing hydrographs at five locations in the domain, given in Table 2.
The finite element mesh used in these comparisons is given in Figure 6 and
consists of 4000 elements and 2121 nodes (Grid 1).

In Figure 7(a)-7(e), we compare solutions with no slope limiting and
slope limiters 1, 2 and 3. First, we remark that slope limiter 1 proved to be
unstable, in fact, the solution blew up around t = .44 days. Reducing the
time step did not resolve the problem, therefore we only show this solution
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up to t = .44 days. We note that the solutions with no limiting and using
slope limiter 3 are virtually identical at all five measurement locations. The
solutions at location 1 are virtually identical, as we move into the channel the
solutions begin to differ. In particular, slope limiter 2 is much too diffusive,
as we progress up the channel, by the time we reach measurement locations
4 and 5, the solution using this limiter has lost essentially all of the tidal
signal.

Finally, as a check on the accuracy of the solution for slope limiter 3, we
also solved the problem on two refined grids, one with 20000 elements and
10201 nodes (grid 2), and a second with 80000 elements and 40401 nodes
(grid 3). For grid 2 the time step was ∆t = .125 s and for grid 3, ∆t = .0625
s. In Figure 7(f), we compare solutions for all three grids at measurement
location 4 using slope limiter 3. As seen in the figure, the solutions are
comparable and appear to be converging, the grid 1 solution gives slightly
higher peaks and troughs of the tidal wave. The solutions for grids 2 and 3
are virtually identical. We remark that we attempted to run the two finer
grids with no slope limiting, and the DG solution blew up, even for very
small time steps. Slope limiter 3 was able to compute stable solutions on all
grids without being overly diffusive. Therefore, this limiter seems to provide
the best combination of accuracy and stability of those we have tested to
date.

Number Coordinates (lon/lat)
1 ( -94.6, 29)
2 (-94.8, 29)
3 (-95.0, 29)
4 (-95.2,29)
5 (-95.4,29)

Table 2: Hydrograph locations for model channel test case.

5.2. Hurricane Ike

In this section, we present results from a hindcast study of Hurricane
Ike. In this study, we simulate ten days of the storm, starting from Septem-
ber 5, 2008 at 12:00 UTC. The storm made landfall at Galveston, Texas
approximately 8 days later on September 13. For these simulations we com-
pare results between the DG code and the ADCIRC code. The ADCIRC
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Figure 5: Model channel domain. Bathymetry is in meters.

20



  

Figure 6: Model channel grid.
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(a) Location 1 (b) Location 2

(c) Location 3 (d) Location 4

(e) Location 5 (f) Location 4: Slope limiter 3 convergence

Figure 7: Hydrographs of DG solutions with no limiting and slope limiters 1,2 and 3 at
measurement locations 1-5 (a-e); grid refinement study at location 4 for slope limiter 3
(f).
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code has been used extensively for studying Ike and many previous storms
in the Gulf of Mexico, and excellent matches have been observed between
ADCIRC model results, gauge data and high-water marks collected during
these events. A complete description of the Hurricane Ike ADCIRC studies
will be available in a forthcoming paper by some of the authors and several
collaborators [16]. In short, ADCIRC has been validated for Ike and the
purpose of this section is to see how the DG method compares to ADCIRC
when using the exact same data from the storm.

The domain used for these studies is the Western North Atlantic model
in Figure 2. The finite element mesh consists of 6,615,381 elements and
3,322,439 nodes. A hybrid friction formula is used [6], with a spatially varying
Mannings-n factor:

Cf = g
n2

H1/3

[
1 +

(
Hbreak
H

)θf]γf/θf
(29)

where n is Mannings-n, and the parameters Hbreak = 2 m, θf = 10 and
γf = 4/3. The wind field and atmospheric pressure used in this study are
from a data-assimilated hindcast wind model developed by Ocean Weather,
Inc. The wind surface stress is computed by a standard quadratic drag law.
Define

τ̂sx
ρ0

= Cd
ρair
ρ0

|W|Wx, (30)

τ̂sy
ρ0

= Cd
ρair
ρ0

|W|Wy. (31)

Here W = (Wx,Wy) is the wind speed sampled at a 10-m height over a 15
minute time period and ρair is the air density. The wind speed is adjusted
to account for local roughness directionally, for the level of local inundation,
and for forested canopies as described in [6]. The drag coefficient is defined
by Garratt’s drag formula [15]:

Cd = (.75 + .06|W|) ∗ 10−3. (32)

We also remark that the wind surface stress is capped at .002, thus

|τsx| = min(.002, |τ̂sx|), |τsy| = min(.002, |τ̂sy|). (33)

We also use a spatially varying eddy viscosity parameter νT which is non-zero
throughout the domain. Further details on the parameters used in the model
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can be found in [16]. The simulation was cold-started and no tidal forcing was
used. Therefore the model is forced by wind, atmospheric pressure, bottom
friction and Coriolis.

For these runs, we used a time step of ∆t = .5 seconds in both the DG
and ADCIRC codes. The DG code results were generated using piecewise
linear approximations with slope limiter 3.

In Figure 8, we compare the maximum water elevations computed over
the duration of the storm for ADCIRC and the DG method. That is, we plot

max
0<t≤T

ζ(·, t). (34)

The figures focus only on the region of maximum inundation, which includes
the Houston-Galveston metropolitan area and points eastward. The maxi-
mum storm surge occurred in an area east of Galveston Bay in Chambers
County, Texas. As observed in these figures, the results agree qualitatively
over most regions of the domain; however, significant disagreement in the
results can be seen in the western and northwestern channels of Galveston
Bay and in the upper reaches of the Houston Ship Channel. The DG solution
shows higher surge along the Bolivar Peninsula, while the ADCIRC solution
shows greater inland penetration to the north of Bolivar Peninsula and in
the northeastern parts of Galveston Bay, possibly due to differences in the
wetting and drying algorithms used in the two models.

Probing further, we compare hydrographs at several near-shore locations
along the Texas coast, in Galveston Bay, and upward through the Houston
Ship Channel. The descriptions of these locations are given in Table 3 and
their physical locations can be seen in Figure 4.

The comparisons are given in Figures 9(a)-10(d). The two codes show
agreement in areas off-shore near Galveston Island and the Bolivar peninsula,
and in the lower and central parts of Galveston Bay. There is however a major
discrepancy at location 9, which is near the community of Manchester at the
farthest end of the Houston Ship Channel. The actual measured maximum
surge level at location 9 matches well with the ADCIRC result, as seen in
Figure 11. We note that the numerical result in this figure was computed
using a coupled wave-current model ADCIRC+SWAN (Simulating Waves
Nearshore) [13]. Therefore, additional forcing due to wave radiation stresses
are included; however the maximum surge is close to that observed in Figure
10(c). If we look at the results at nearby locations 5 and 6 we begin to observe
differences between the codes; in particular, the maximum surge levels in the
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(a) ADCIRC

(b) DG

Figure 8: Maximum water levels for ADCIRC (a) and DG (b) solutions during Hurricane
Ike. Water elevation is in meters relative to the North American Vertical Datum of 1988
(NAVD88). The solution is plotted in the region between -93.5 to -95.5 degrees longitude
and 29 to 30 degrees latitude.
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(a) Location 1 (b) Location 2

(c) Location 3 (d) Location 4

(e) Location 5 (f) Location 6

Figure 9: Hydrographs of ADCIRC and DG solutions locations 1-6 for Hurricane Ike.
Water levels are in meters relative to NAVD88.
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(a) Location 7 (b) Location 8

(c) Location 9 (d) Location 10

Figure 10: Hydrographs of ADCIRC and DG solutions locations 7-10 for Hurricane Ike.
Water levels are in meters relative to NAVD88.
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Number Coord. (lon/lat) Description
1 ( -95.04, 29.07) Off-shore Galveston Island
2 (-94.71, 29.28) Off-shore Galveston Island
3 (-94.39, 29.49) Off-shore Bolivar Peninsula
4 (-94.13, 29.58) Off-shore Bolivar Peninsula
5 (-95.00,29.70) Houston Ship Channel at SH 146 bridge
6 (-95.14,29.74) Houston Ship Channel at Port of Houston
7 (-95.08,29.55) Galveston Bay: Clear Creek entrance
8 (-94.75,29.76) Galveston Bay: Upper Trinity Bay
9 (-95.27,29.72) Manchester: Houston Ship Channel

10 (-94.51,29.52) Bolivar Peninsula: Rollover Pass

Table 3: Hydrograph locations for Hurricane Ike simulation.

DG solution are not as high as those produced by ADCIRC and diminish
as one moves up the channel. One possible cause of this discrepancy can
be explained by inspection of the ship channel and how it is discretized. In
Figure 12, we show the upper part of the Houston Ship Channel and the
relative positions of measurement locations 5, 6 and 9. We observe that
the channel narrows past the Port of Houston towards Manchester. In this
region, there are several locations where a string of nodes has been placed
to follow the deepest part of the channel, with the channel itself straddling
two elements, as seen in Figure 13. This type of mesh is well-suited for a
continuous Galerkin (nodal-based) discretization, as the degrees of freedom
for elevation and velocity are defined at the nodes, and the flow up the
channel essentially reduces to a quasi-1D solution along the nodes lying in
the channel. This mesh is less suited for a DG method, which is not nodal
but element and edge-based; a more suitable mesh would have at least one
element across the width of the channel. While this is a plausible explanation
for the discrepancy between the codes, it may not be the only cause, and
deserves further examination.

6. Conclusions

The numerical simulation of Hurricane Ike given above indicates the com-
plexities inherent in storm surge modeling: extreme wind forcings, highly
varying bathymetry, complex coastal geometries with internal barriers, in-
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Figure 11: Comparison of ADCIRC+SWAN computed water levels with NOAA gauge
data at location 9 (Manchester, Houston, Texas).

29



  

Figure 12: Closer view of the upper reaches of the Houston Ship Channel, which shows
measurement locations 5 (SH 146 bridge), 6 (Port of Houston) and 9 (Manchester). Colors
represent bathymetric depth.
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Figure 13: Bathymetry with finite element mesh overlaid along a stretch of the Houston
Ship Channel near Manchester. Bathymetry (b) is in meters. Note that a string of nodes
follows the deepest part of the channel and in some places the channel is split across two
elements.
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lets and narrow channels, highly nonlinear bottom friction, and wetting and
drying. In this paper, we have demonstrated that the DG method with piece-
wise linear approximations is generally competitive with the highly-tuned and
quasi-operational ADCIRC model. The drawbacks of the ADCIRC model
going forward are that it is restricted to linear polynomials on conforming
meshes, has difficulty handling strong advection (in fact, advection terms
have been turned off in ADCIRC for the Hurricane Ike simulations), and
requires tuning the so-called “τ0” parameter in the generalized wave con-
tinuity formulation [23, 17]. The ADCIRC model is also not locally mass
conservative, though this is not a critical issue for storm surge modeling at
present.

In this paper, we have developed and implemented a new slope limiter
which improves the performance of the DG method in inlets and narrow
channels. Unfortunately, in our Hurricane Ike simulations, we still see what
appears to be over-damping of the surge in the furthest reaches of the Hous-
ton Ship Channel, and further research is required to develop DG methods
which are both accurate and stable for these complex situations. Approaches
currently under investigation include the use of dynamic p and h adaptivity.
In future work, we will examine more closely p adaptivity within the DG
method and the stability of these methods for complex flow scenarios. We
are also investigating the use of more general meshes, including the use of
hybrid meshes based on mixing quadrilateral and triangular elements. We
note that the mesh used in our Hurricane Ike simulations was constructed for
ADCIRC simulations and thus may be more suitable for a continuous, nodal-
based finite element method than an element and edge-based DG method.
The sensitivity of the DG method to various kind of meshes, especially in
narrow channels, is also an area of current research.

We conclude with some comments on the computational performance
of the DG method. One criticism of DG methods is their cost relative to
continuous Galerkin methods, and this criticism is warranted in many cases.
The DG storm surge calculations performed here were done on the Ranger
supercomputer at the Texas Advanced Computing Center (TACC), as were
the ADCIRC simulations. Presently, using the same finite element mesh,
time step, and number of CPUs, the ADCIRC code is on average about 4
times faster than the DG code. Studies comparing the ADCIRC and DG
codes for both efficiency and accuracy for some simple model problems can
be found in [19]. These studies showed that the DG method was competitive
with and in some cases superior to ADCIRC when measuring accuracy vs.
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parallel efficiency. Improving the overall performance of the DG method,
through the use of adaptivity, more sophisticated time-stepping (including
local time-stepping), the use of quadrature-free methods, and by using better
software practices, is also the subject of future research.
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