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Storm surge due to hurricanes and tropical storms can result in significant loss of life, property damage,
and long-term damage to coastal ecosystems and landscapes. Computer modeling of storm surge can be
used for two primary purposes: forecasting of surge as storms approach land for emergency planning and
evacuation of coastal populations, and hindcasting of storms for determining risk, development of miti-
gation strategies, coastal restoration and sustainability.

Storm surge is modeled using the shallow water equations, coupled with wind forcing and in some
events, models of wave energy. In this paper, we will describe a depth-averaged (2D) model of circulation
in spherical coordinates. Tides, riverine forcing, atmospheric pressure, bottom friction, the Coriolis effect
and wind stress are all important for characterizing the inundation due to surge. The problem is inher-
ently multi-scale, both in space and time. To model these problems accurately requires significant invest-
ments in acquiring high-fidelity input (bathymetry, bottom friction characteristics, land cover data, river
flow rates, levees, raised roads and railways, etc.), accurate discretization of the computational domain
using unstructured finite element meshes, and numerical methods capable of capturing highly advective
flows, wetting and drying, and multi-scale features of the solution.

The discontinuous Galerkin (DG) method appears to allow for many of the features necessary to accu-
rately capture storm surge physics. The DG method was developed for modeling shocks and advection-
dominated flows on unstructured finite element meshes. It easily allows for adaptivity in both mesh (h)
and polynomial order (p) for capturing multi-scale spatial events. Mass conservative wetting and drying
algorithms can be formulated within the DG method.

In this paper, we will describe the application of the DG method to hurricane storm surge. We discuss
the general formulation, and new features which have been added to the model to better capture surge in
complex coastal environments. These features include modifications to the method to handle spherical
coordinates and maintain still flows, improvements in the stability post-processing (i.e. slope-limiting),
and the modeling of internal barriers for capturing overtopping of levees and other structures. We will
focus on applications of the model to recent events in the Gulf of Mexico, including Hurricane Ike.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction is driven inland often resulting in significant flooding, causing loss
In this paper we describe recent advances in the application of
discontinuous Galerkin (DG) methods to the modeling of shallow
water flow in coastal environments. This work builds upon
research of the authors and collaborators described in a number of
recent papers [1,18–20,5]. Here we focus specifically on the applica-
tion of DG methods to the modeling of coastal and inland flooding
due to, e.g., storm surge from hurricanes or other tropical events.

Storm surge is primarily a competition between wind forcing
and frictional resistance. As hurricanes approach the coast, water
ll rights reserved.
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of life and damage to property and coastal ecosystems. Predicting
and understanding the extent of surge is critical to emergency
managers in the event of an impending storm, and to longer-term
efforts to protect and sustain coastal environments. Computer
models of storm surge are central to these efforts.

Hurricanes induce significant mixing through the water column
in highly energetic storm events; therefore storm surge is modeled
in this work by the depth-averaged shallow water equations.
Boundary conditions on lateral boundaries of the 2D domain model
tides, the interaction of water with dry land, and river inflows. In
our model open ocean boundaries are extended out into the deeper
ocean so as to prevent spurious boundary effects [3,4]. Body forces
include wind stress, atmospheric pressure, bottom friction, Coriolis
and tidal potential. In complex coastal regions such as the Gulf
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Coast of the United States, channels, levees, raised roads and other
internal barriers must be included in the description of the domain,
as they either enhance or impede inland flow. The computational
domain is discretized using triangular elements, to better repre-
sent complex coastal features, barrier islands, and internal barriers,
and to allow for gradation of the mesh from the deeper ocean, the
continental shelf, into estuaries, marshes, channels and over low-
lying, potentially inundated coastal inlands.

Accurate modeling of storm surge requires numerical methods
capable of capturing highly advective flows, wetting and drying,
and multi-scale features of the solution. The DG method allows
for many of the features necessary to accurately capture storm
surge physics. The DG methodology we have adapted is based on
the Runge–Kutta Local DG (RKLDG) methods of Cockburn and
Shu [9] as modified by Cockburn and Dawson [8]; these methods
were developed for modeling advection-dominated advection–
diffusion equations on unstructured finite element meshes. In this
method a ‘‘local’’ DG scheme approximates the diffusion terms,
combined with a standard DG discretization for the advective
and source terms. The RKLDG approach allows for adaptivity in
both mesh (h) and polynomial order (p) for capturing multi-scale
spatial events. Mass conservative wetting and drying algorithms
can be formulated within the RKLDG method.

In this paper, we describe our initial efforts at applying the DG
method to modeling storm surge. We first discuss the DG formula-
tion in spherical coordinates, and then describe new features which
have been added to the model to accurately capture surge in com-
plex coastal environments. These features include improvements to
the stability post-processing algorithms used in the code, and the
modeling of internal ‘‘weir-type’’ barriers for capturing overtopping
of levees and other structures. Finally, we present results of the
model to a recent event in the Gulf of Mexico, Hurricane Ike. These
results include comparisons to a well-known storm surge model,
namely the Advanced Circulation (ADCIRC) model [21,22], which
has been validated against several recent Gulf storms [6,11,12].

2. DG formulation in spherical coordinates

Tracking hurricanes and their effects through large sections of the
ocean requires solving the shallow water equations on the sphere.
We use a standard cylindrical projection to transform these equa-
tions into an equivalent set of equations in Cartesian coordinates.

Applying the hydrostatic and Boussinesq approximations,
assuming the Earth’s radius is large relative to the depth of the
ocean, and averaging over the water depth H we arrive at the 2D
governing equations in spherical coordinates (k,/):

� Continuity
@f
@t
þ 1

R cos /
@ðUHÞ
@k

þ @ðVH cos /Þ
@/

� �
¼ 0: ð1Þ
� Horizontal momentum
dU
dt
¼ fV � 1

R cos /
@½gðf� agÞ þ ps=q0�
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q0H
� sbf U þmk;

ð2Þ
dV
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¼ �fU � 1

R
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q0H
� sbf V þm/: ð3Þ
Here

� t = time
� k, / = degrees longitude, latitude
� f = free surface elevation relative to the geoid
� U, V = depth-averaged horizontal velocity components
� R = mean radius of the earth (6.3782064 � 106 m)
� H = f + h = water depth
� h = bathymetric depth relative to the geoid
� g = gravitational acceleration
� f = Coriolis coefficient
� ps = atmospheric pressure at the free surface
� g = Newtonian equilibrium tide potential
� a = effective earth elasticity factor
� q0 = reference density of water
� ssk, ss/ = applied free-surface stress
� sbf = Cf[(U2 + V2)1/2/H] = bottom friction
� Cf = nonlinear bottom friction coefficient
� d

dt ¼ @
@t þ U
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@
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R
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@/
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� mT = depth-averaged horizontal eddy viscosity

Using a standard, orthogonal cylindrical projection centered at a
user-specified (k0,/0), we define

x ¼ Rðk� k0Þ cos /0; ð4Þ
y ¼ R/: ð5Þ

Using the chain rule we find

@

@k
¼ R cos /0

@

@x
;

@

@/
¼ R

@

@y
:

Replacing the derivatives in the spherical coordinate system with
those in the Cartesian (x,y) system we find the transformed set of
spherical equations
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where

Sp ¼
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is a spherical correction factor, the total derivative becomes
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Finally we note that, multiplying (7) and (8) by H, using the con-
tinuity Eq. (6) and manipulating the gravity terms, the entire sys-
tem can be written in divergence form:

@c
@t
þr � ðA� DrcÞ ¼ hðcÞ; ð9Þ

where
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f
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and

hðcÞ ¼

0
�sbf UH þ fVH þ gSpf

@h
@x þ H @½gag�ps=q0 �

@x þ ssk
q0

�sbf VH � fUH þ gf @h
@y þ H @½gag�ps=q0 �

@y þ ss/

q0

0BB@
1CCA:

The matrix D has a block structure where 0 is the 2 � 2 zero matrix
and I is the 2 � 2 identity matrix.

We note that the final set of Eq. (9) differs from the shallow
water equations in standard Cartesian coordinates only in the fac-
tor Sp which appears in front of all of the x-derivative terms. This
factor does depend on the latitude / and hence is a function of y;
therefore it is not constant, and we discuss the implications with
respect to the DG discretization below. We now solve these equa-
tions on an (x,y) spatial domain X with appropriate boundary and
initial conditions. For our purposes in this paper we only require
two types of boundary conditions, open ocean and land:

� Open ocean boundary condition
f ¼ ftidal; ð10Þ
mTrðUHÞ � n ¼ 0; ð11Þ
mTrðVHÞ � n ¼ 0: ð12Þ
� Land boundary
q � n ¼ 0; ð13Þ
where ftidal is a specified elevation typically determined by tides,
and n is the unit outward normal to the boundary of X.

The RKLDG formulation of the system (9) has been described in
several previous papers, most notably [1,20]. We briefly outline the
formulation as follows.

Before describing the spatial discretization of (9) we define
some notation. On any spatial domain R let (�, �)R denote the L2(R)
inner product. To distinguish integration over domains R 2 Rd�1

(e.g., surfaces or lines), we will use the notation h�, �iR. Let fT hgh>0

denote a family of finite element partitions of X such that no
element Xe crosses the boundary of X, where h is the maximal
element diameter. Let

Wh;e ¼ fv : each component of v is a polynomial of degree

6 ke on Xe 2 T hg:

We do not specify here the number of components in v and below it
may vary depending on the variable being approximated. Note that
the degree ke could vary from one element to the next. Let ne denote
the unit outward normal to oXe. Then, for x 2 oXe we define

vintðxÞ ¼ lim
s!0�

vðxþ sneÞ

and

vextðxÞ ¼ lim
s!0þ

vðxþ sneÞ:

That is, vint is the value of v from the interior of Xe, and vext is the
value of v from the exterior of Xe. We also define

�v ¼ ðvint þ vextÞ=2: ð14Þ

The LDG method is based on the following mixed form of (9).
Define

~z ¼ �rc ð15Þ

and

z ¼ D~z: ð16Þ

Then, substituting z into (9), multiplying by a sufficiently smooth
test function w, and integrating over an element Xe, we obtain
@c
@t
;w

� �
Xe

� ðAþ z;r �wÞXe
þ hðAþ zÞ � ne;winti@Xe

¼ ðhðcÞ;wÞXe
:

ð17Þ

Multiplying (15) by a suitable test function ~v and integrating we
find

ð~z; ~vÞXe
� ðc;r � ~vÞXe

þ hc; ~vint � nei@Xe
¼ 0 ð18Þ

and multiplying (16) by a test function v and integrating we obtain

ðz;vÞXe
� ðD~z;vÞXe

¼ 0: ð19Þ

We approximate c, ~z and z by functions C, eZ and Z in Wh,e. We
also approximate A�ne on oXe by a numerical flux bAðCint;Cext; neÞ,
which we discuss below. All other boundary terms are approxi-
mated by averaging. Thus, the DG method is given by

@C
@t
;w

� �
Xe

� ðAðCÞ þ Z;r �wÞXe

þ bAðCint ;Cext; neÞ þ Z � ne;wint
D E

@Xe

¼ ðhðCÞ;wÞXe
; w 2Wh;e; ð20Þ

ðeZ; ~vÞXe
� ðC;r � ~vÞXe

þ hC; ~vint � nei@Xe
¼ 0; ~v 2Wh;e; ð21Þ

ðZ;vÞXe
� ðDeZ;vÞXe

¼ 0; v 2Wh;e: ð22Þ

Remarks:

� The numerical flux bA can be any consistent, locally Lipschitz,
conservative entropy flux. In the numerical results in this paper,
we used the Local Lax–Friedrichs (LLF) flux, given by
bAðC�;Cþ; nÞ ¼ 1
2
½AðC�Þnþ AðCþÞnþ jKjðC� � CþÞ�; ð23Þ

where K is an estimate of the largest eigenvalue of the Jacobian
matrix of the flux A in the interval between C� and C+, and n is
the normal to the edge which points from ‘‘minus’’ to ‘‘plus.’’
� The Eqs. (20)–(22) represent a system of ODE’s. These ODE’s are

integrated in time using explicit Runge–Kutta methods [1].
� Our implementation of the DG method has been restricted to

triangular elements. An orthogonal (Dubiner) basis is used as
described in [20]. In the numerical results described below,
we focus only on piecewise linear ke = 1 approximations. We
perform stability post-processing or slope limiting, described
in Section 3. In this case the degree ke may vary from 0 to 1
dynamically, depending on the action of the slope limiter.
� It is possible during a simulation that an element Xe can be wet

(H > 0 throughout Xe), dry (H = 0), or partially wet (H P 0). The
algorithm for handling wetting and drying is described in detail
in [5].
� The boundary of an element may be part of an internal barrier;

i.e., a levee, raised road, railway, etc. Internal barriers may start
out as dry and be over-topped during the storm. Special formu-
las are used to handle the fluxes through these boundaries, as
described in Section 4.

2.1. Preserving still flow

One question that arises in DG and other methods based on
writing the shallow water equations in conservative form, is
whether or not the method can preserve still flow. That is, if there
are no forcing terms, and initially U = V = 0 and f is a constant, then
f should remain constant for all time and U and V should remain
zero. This can be especially tricky if the bathymetry h has discon-
tinuities in it; however, we refer the reader to [24] for an elegant
method for handling this case within the DG framework. In our



Fig. 1. An internal barrier and surrounding elements in a domain. Edge pairs on
either side of the barrier are identified as barrier segments.
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numerical results described below, the bathymetry is given at the
vertices of each triangular element, and interpolated by a piece-
wise linear, continuous function. Therefore,rh is constant on each
element.

First, note that if C is constant, then eZ and Z are zero by (21) and
(22). In the presence of no forcing, the scheme is well-balanced if

�ðAðCÞ;r �wÞXe
þ hbAðCint;Cext ; neÞ;winti@Xe

¼ ðhðCÞ;wÞXe
; w 2Wh;e;

where h now only contains the gravity terms,

h ¼ 0; gSpf
@h
@x
; g
@h
@y

� �
:

It can be shown that in standard Cartesian coordinates (when
Sp � 1) the scheme is well-balanced since h is continuous and piece-
wise linear. For spherical coordinates we must account for the fact
that Sp is spatially dependent, in particular Sp = Sp(y). Therefore,
focusing on the x-momentum equation, noting that U = V = 0, we
require

� Spðf2=2þ fhÞ; @w
@x

� �
Xe

þ ðf2=2þ fhÞSpnx;wint

 �

@Xe

¼ Spf
@h
@x
;w

� �
Xe

; ð24Þ

where f is now assumed constant everywhere. The factor Sp enters
both the element and edge calculations. Recall that Sp = cos(/0)/
cos(/) = cos(/0)/cos(y/R). One could use this analytic form of Sp,
but in order to maintain zero velocity we would have to integrate
all terms involving Sp accurately over each element and edge.
Instead we approximate Sp as follows.

On each edge we assume Sp � bSp, which is obtained by evaluat-
ing Sp at the midpoint of the edge. In addition, we compute an
approximation to Sp on each element which is consistent with bSp.
In the case where ke = 0, Sp is approximated by a constant over each
element, computed so that

Sp;
@w
@x

� �
Xe

¼ hbSpnx;1=2þ wi@Xe
; ð25Þ

where

w ¼ h; if @h
@x –0 on Xe;

x; otherwise:

(
ð26Þ

This is consistent with (24) where w = 1 and f = 1. In the case that
ke = 1, we approximate Sp � Sp,e which is in the linear Dubiner basis,
by enforcing a type of Divergence Theorem:

Sp;eð1=2þ wÞ; @w
@x

� �
Xe

þ Sp;e
@w
@x

;w
� �

Xe

¼ bSpð1=2þ wÞnx;w
D E

@Xe

ð27Þ

for w linear on the element Xe.

3. Slope limiting for linear approximations

In the case where ke = 1, we often need to apply a limiter or sta-
bility post-processing algorithm to prevent the solution from oscil-
lating and eventually blowing-up. A number of limiters have been
proposed in the literature, and an exhaustive study of all possible
limiters is beyond the scope of this paper. We have implemented
and tested three limiters specifically suited to triangular elements.
The first limiter is based on a reconstruction scheme due to [14],
and the second limiter is due to [10]. Both of these limiters are
‘‘edge-based,’’ that is, on a given cell, one computes linear
interpolants of the cell averages of the given cell and each of its
neighboring elements which share an edge, taken two at a time.
Thus, if a cell has three neighbors, one computes three linear inter-
polants, and compares these interpolants to the DG approximation.
In the limiter in [14], the interpolant with the minimum gradient is
chosen as the post-processed solution. The limiter in [10] is more
complicated, it involves limiting in characteristic variables, but
the basic idea is the same in that in involves neighbors which share
an edge. In our experience, these limiters have performed well in
some cases and not so well in others, as we will illustrate in the
numerical results below.

Another limiter which we have implemented dates back to an
idea first proposed in [2]. This limiter is ‘‘vertex-based.’’ In this
algorithm, we evaluate the linear DG solution at the vertex of each
triangle. The basic idea then is to find the ‘‘closest’’ linear function
to the DG solution which satisfies certain inequality constraints at
the vertices. Let Xe be an element, and w a piecewise linear func-
tion defined on each element. At a vertex j of Xe, with coordinates
(xj,yj), let w�j ;w

þ
j denote the minimum and maximum cell average

of w over all elements which share vertex j; i.e.,

w�j ¼min
Xl2Kj

wðxl; ylÞ;

where Kj is the set of all elements sharing vertex j and (xl,yl) is the
barycenter of Xl. A similar definition holds for wþj with minimum
replaced by maximum. We then check to see whether

w�j 6 weðxj; yjÞ 6 wþj ; ð28Þ

where we represents w evaluated on Xe.
If (28) is violated, then we adjust the vertex values using a fairly

simple heuristic. If the constraint is violated at a particular vertex,
we adjust that vertex value just enough so that the inequality con-
straints are satisfied, however, we also want to preserve the cell
average over Xe. The next step then is to distribute the excess (def-
icit) among the other vertices. The approach we use is to equidis-
tribute the excess (deficit) among all of the other vertices subject
to not causing any value to violate its inequality constraints. This
can be done in a simple manner by making several passes over
the vertices for equidistributing the values. We also note that it
is always possible to satisfy (28) by setting the slope to zero in
Xe, thus this is the default result if the equidistribution algorithm
fails for some reason.

4. Modeling of internal barriers

Features within the domain such as levees, weirs, and raised
roadways are treated as sub-grid scale internal barriers. Specifi-
cally, element edges are aligned with these features, which have



Fig. 2. Western North Atlantic domain and bathymetry in meters.

Fig. 3. Track of Hurricane Ike (http://www.wunderground.com).
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Fig. 5. Model channel domain. Bathymetry is in meters.

Table 1
Run parameters for model channel problem.

Length of simulation 1 day
Gravitational constant g 9.81 m/s2

Bottom friction Cf .0025
Coriolis f .000070706 s�1

Eddy viscosity mT 0
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some finite thickness, and their effects on the flow are incorporated
into the model through the numerical flux terms computed in the
evaluation of the boundary integral terms. To illustrate this proce-
dure in more detail, consider the incorporation of the internal bar-
rier shown in Fig. 1, which may represent, for example, a levee
within the model domain. First, internal barrier segments are iden-
tified as pairs of edges that are ‘‘across’’ from one another, with one
side arbitrarily labeled the ‘‘front’’ and the other labeled the ‘‘back’’.
As outlined in Section 2, the numerical flux calculations make use
of both interior (int) and exterior (ext) values of the variables w.
The exterior values of the variables on barrier segments are speci-
fied to enforce one of four main types of flow that may occur along
the barrier based on the height of the free surface relative to the
barrier height:

� Case 1: The free surface is below the height of the barrier on
both the front and back sides of the segment. In this case, the
internal barrier simply acts a solid wall, or no-normal flow,
boundary; that is, the external variables on both sides are spec-
ified such that q�n = 0 is enforced; see [1,20] for details.
� Case 2: The free surface is above the barrier segment on both

sides and at the same height (within a specified tolerance). As
in the case above, the external variables on both sides of the
barrier segment are specified such that the condition q�n = 0
is enforced.
� Case 3: The free surface on the front side of the barrier is greater

than both the barrier height and the height of the free surface
on the back side. In this case, overtopping of the barrier occurs
with flow from the front to the back side of the barrier segment.
Flow in this case will be one of two subcases based on flow con-
ditions: subcritical or supercritical. Flow rates over the barrier
qweir are computed using standard weir formula; see, for exam-
ple, [7]. The exterior values of q for both the front and back
edges of the segment are then set accordingly so the numerical
flux produces q̂ ¼ qweir .
� Case 4: The same as case 3 above but with overtopping of the

barrier occurring from the back to the front side. Again,
standard weir formula are used to compute the overtopping
flow rate and exterior values of w are set such that q̂ ¼ qweir .
Fig. 4. Bathymetry (m) in Galveston Bay and the surrounding area. The Houston
Ship Channel is the narrow line that runs through Galveston Bay from Galveston to
Houston. Numbers indicate locations of hydrographs for Hurricane Ike simulations.
5. Numerical results

The main focus of this section is to give results of the DG
method described above for Hurricane Ike, with comparisons to
the ADCIRC (Advanced Circulation) model, which is a quasi-
operational model that has been used to study many hurricanes
in the Gulf of Mexico. In these studies, large domains which
include the western North Atlantic Ocean are used, as seen in
Fig. 2, discretized using graded triangular meshes which are highly
refined in the area of interest, for example, Texas or Louisiana. The
mesh diameters vary from kilometers in the deeper parts of the
ocean, to hundreds of meters along the continental shelf and down
to approximately fifty meters in the bays, estuaries, channels and
inland regions impacted by the storm [6].

The track of Ike is shown in Fig. 3, the storm’s primary impact
occurred from Galveston Island eastward to Sabine Pass, which is
on the Texas–Louisiana border. The effects of the storm on the
areas around Galveston Bay are of particular interest, since this
Slope limiter 1 Durlofsky–Engquist–Osher
Slope limiter 2 Cockburn and Shu
Slope limiter 3 Vertex
Dt .5 s

Table 2
Hydrograph locations for model channel test case.

Number Coordinates (lon/lat)

1 (�94.6,29)
2 (�94.8,29)
3 (�95.0,29)
4 (�95.2,29)
5 (�95.4,29)

Fig. 6. Model channel grid.
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area is heavily populated, is home to the Port of Houston and is
vital to the US economy. Our numerical results focus primarily
on computed maximum surge levels and hydrographs at various
points around this region.
Fig. 7. Hydrographs of DG solutions with no limiting and slope limiters 1, 2 and 3 at mea
(f).
5.1. A comparison of slope limiters

Propagation of surge through narrow inland channels is a chal-
lenging but important problem. An example of such a regime is the
surement locations 1–5 (a–e); grid refinement study at location 4 for slope limiter 3



Fig. 8. Maximum water levels for ADCIRC (a) and DG (b) solutions during Hurricane
Ike. Water elevation is in meters relative to the North American Vertical Datum of
1988 (NAVD88). The solution is plotted in the region between �93.5 and �95.5�
longitude and 29 and 30� latitude.

Table 3
Hydrograph locations for Hurricane Ike simulation.

Number Coord. (lon/lat) Description

1 (�95.04,29.07) Off-shore Galveston Island
2 (�94.71,29.28) Off-shore Galveston Island
3 (�94.39,29.49) Off-shore Bolivar Peninsula
4 (�94.13,29.58) Off-shore Bolivar Peninsula
5 (�95.00,29.70) Houston Ship Channel at SH 146 bridge
6 (�95.14,29.74) Houston Ship Channel at Port of Houston
7 (�95.08,29.55) Galveston Bay: Clear Creek entrance
8 (�94.75,29.76) Galveston Bay: Upper Trinity Bay
9 (�95.27,29.72) Manchester: Houston Ship Channel

10 (�94.51,29.52) Bolivar Peninsula: Rollover Pass
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Houston Ship Channel, which connects the Port of Houston to the
Gulf of Mexico through Galveston Bay. The channel is currently
160 m wide, 14 m deep, and 80 m long. The water depth in the sur-
rounding bay averages around 2 m. The bathymetry in the bay is
pictured in Fig. 4.

In order to test the ability of the DG method to propagate waves
up a narrow channel, we developed a simple channel model with
characteristics similar to the Houston Ship Channel, and simulated
tidal flow through this channel. The model domain and bathymetry
are shown in Fig. 5. The domain consists of an area of constant
bathymetry between �94.8� and �94.5� longitude, connecting to
a narrow channel of length approximately 80 km. The bathymetry
is tapered to zero on the sides of the channel and towards the left
end of the channel. The boundaries consist of an open ocean
boundary on the right at x = �95.5�, and all other boundaries are
land boundaries. An M2 tide is specified with magnitude .5 m:

ftidalðtÞ ¼ :5 cosð:0001405189025 	 tÞ;

where t is in seconds. The initial condition is a cold start; i.e.,
f = U = V = 0. The tide is then ramped up over a period of .1 days.
The friction law used is given by the Chezy formula

sbf ¼ Cf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ V2

q
=H;

with Cf given in Table 1. No atmospheric forcings are assumed. All
other parameters are given in Table 1.

We computed DG solutions for orders ke = 1 and for the three
slope limiters mentioned in Section 3. Slope limiter 1 is the Durlof-
sky–Engquist–Osher reconstruction method, slope limiter 2 is the
Cockburn–Shu limiter, and slope limiter 3 is the vertex-based lim-
iter. We compare solutions by computing hydrographs at five loca-
tions in the domain, given in Table 2. The finite element mesh used
in these comparisons is given in Fig. 6 and consists of 4000 ele-
ments and 2121 nodes (Grid 1).

In Fig. 7(a)–(e), we compare solutions with no slope limiting
and slope limiters 1, 2 and 3. First, we remark that slope limiter
1 proved to be unstable, in fact, the solution blew up around
t = .44 days. Reducing the time step did not resolve the problem,
therefore we only show this solution up to t = .44 days. We note
that the solutions with no limiting and using slope limiter 3 are
virtually identical at all five measurement locations. The solutions
at location 1 are virtually identical, as we move into the channel
the solutions begin to differ. In particular, slope limiter 2 is much
too diffusive, as we progress up the channel, by the time we reach
measurement locations 4 and 5, the solution using this limiter has
lost essentially all of the tidal signal.

Finally, as a check on the accuracy of the solution for slope lim-
iter 3, we also solved the problem on two refined grids, one with
20,000 elements and 10,201 nodes (grid 2), and a second with
80,000 elements and 40,401 nodes (grid 3). For grid 2 the time step
was Dt = .125 s and for grid 3, Dt = .0625 s. In Fig. 7(f), we compare
solutions for all three grids at measurement location 4 using slope
limiter 3. As seen in the figure, the solutions are comparable and
appear to be converging, the grid 1 solution gives slightly higher
peaks and troughs of the tidal wave. The solutions for grids 2
and 3 are virtually identical. We remark that we attempted to
run the two finer grids with no slope limiting, and the DG solution
blew up, even for very small time steps. Slope limiter 3 was able to
compute stable solutions on all grids without being overly diffu-
sive. Therefore, this limiter seems to provide the best combination
of accuracy and stability of those we have tested to date.

5.2. Hurricane Ike

In this section, we present results from a hindcast study of
Hurricane Ike. In this study, we simulate ten days of the storm,
starting from September 5, 2008 at 12:00 UTC. The storm made
landfall at Galveston, Texas approximately 8 days later on Septem-
ber 13. For these simulations we compare results between the DG
code and the ADCIRC code. The ADCIRC code has been used exten-
sively for studying Ike and many previous storms in the Gulf of
Mexico, and excellent matches have been observed between
ADCIRC model results, gauge data and high-water marks collected
during these events. A complete description of the Hurricane Ike
ADCIRC studies will be available in a forthcoming paper by some
of the authors and several collaborators [16]. In short, ADCIRC
has been validated for Ike and the purpose of this section is to
see how the DG method compares to ADCIRC when using the exact
same data from the storm.

The domain used for these studies is the Western North Atlantic
model in Fig. 2. The finite element mesh consists of 6,615,381



Fig. 9. Hydrographs of ADCIRC and DG solutions locations 1–6 for Hurricane Ike. Water levels are in meters relative to NAVD88.
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elements and 3,322,439 nodes. A hybrid friction formula is used
[6], with a spatially varying Mannings-n factor:

Cf ¼ g
n2

H1=3 1þ Hbreak

H

� �hf
" #cf =hf

; ð29Þ
where n is Mannings-n, and the parameters Hbreak = 2 m, hf = 10 and
cf = 4/3. The wind field and atmospheric pressure used in this study
are from a data-assimilated hindcast wind model developed by
Ocean Weather, Inc. The wind surface stress is computed by a stan-
dard quadratic drag law.
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Define

ŝsx

q0
¼ Cd

qair

q0
jWjWx; ð30Þ

ŝsy

q0
¼ Cd

qair

q0
jWjWy: ð31Þ

Here W = (Wx,Wy) is the wind speed sampled at a 10-m height over
a 15 min time period and qair is the air density. The wind speed is
adjusted to account for local roughness directionally, for the level
of local inundation, and for forested canopies as described in [6].
The drag coefficient is defined by Garratt’s drag formula [15]:

Cd ¼ ð:75þ :06jWjÞ 	 10�3: ð32Þ

We also remark that the wind surface stress is capped at .002, thus

jssxj ¼ minð:002; jŝsxjÞ; jssyj ¼ minð:002; jŝsyjÞ: ð33Þ

We also use a spatially varying eddy viscosity parameter mT which is
non-zero throughout the domain. Further details on the parameters
used in the model can be found in [16]. The simulation was cold-
started and no tidal forcing was used. Therefore the model is forced
by wind, atmospheric pressure, bottom friction and Coriolis.

For these runs, we used a time step of Dt = .5 s in both the DG
and ADCIRC codes. The DG code results were generated using
piecewise linear approximations with slope limiter 3.
Fig. 10. Hydrographs of ADCIRC and DG solutions locations 7–10 fo
In Fig. 8, we compare the maximum water elevations computed
over the duration of the storm for ADCIRC and the DG method. That
is, we plot

max
0<t6T

fð�; tÞ: ð34Þ

The figures focus only on the region of maximum inundation, which
includes the Houston–Galveston metropolitan area and points east-
ward. The maximum storm surge occurred in an area east of Galves-
ton Bay in Chambers County, Texas. As observed in these figures,
the results agree qualitatively over most regions of the domain;
however, significant disagreement in the results can be seen in
the western and northwestern channels of Galveston Bay and in
the upper reaches of the Houston Ship Channel. The DG solution
shows higher surge along the Bolivar Peninsula, while the ADCIRC
solution shows greater inland penetration to the north of Bolivar
Peninsula and in the northeastern parts of Galveston Bay, possibly
due to differences in the wetting and drying algorithms used in
the two models.

Probing further, we compare hydrographs at several near-shore
locations along the Texas coast, in Galveston Bay, and upward
through the Houston Ship Channel. The descriptions of these loca-
tions are given in Table 3 and their physical locations can be seen
in Fig. 4.
r Hurricane Ike. Water levels are in meters relative to NAVD88.



Fig. 11. Comparison of ADCIRC + SWAN computed water levels with NOAA gauge
data at location 9 (Manchester, Houston, Texas).

Fig. 12. Closer view of the upper reaches of the Houston Ship Channel, which shows
measurement locations 5 (SH 146 bridge), 6 (Port of Houston) and 9 (Manchester).
Colors represent bathymetric depth.

Fig. 13. Bathymetry with finite element mesh overlaid along a stretch of the
Houston Ship Channel near Manchester. Bathymetry (b) is in meters. Note that a
string of nodes follows the deepest part of the channel and in some places the
channel is split across two elements.
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The comparisons are given in Figs. 9(a)–10(d). The two codes
show agreement in areas off-shore near Galveston Island and the
Bolivar peninsula, and in the lower and central parts of Galveston
Bay. There is however a major discrepancy at location 9, which is
near the community of Manchester at the farthest end of the
Houston Ship Channel. The actual measured maximum surge level
at location 9 matches well with the ADCIRC result, as seen in
Fig. 11. We note that the numerical result in this figure was
computed using a coupled wave-current model ADCIRC + SWAN
(Simulating Waves Nearshore) [13]. Therefore, additional forcing
due to wave radiation stresses are included; however the maxi-
mum surge is close to that observed in Fig. 10(c). If we look at
the results at nearby locations 5 and 6 we begin to observe differ-
ences between the codes; in particular, the maximum surge levels
in the DG solution are not as high as those produced by ADCIRC
and diminish as one moves up the channel. One possible cause of
this discrepancy can be explained by inspection of the ship channel
and how it is discretized. In Fig. 12, we show the upper part of the
Houston Ship Channel and the relative positions of measurement
locations 5, 6 and 9. We observe that the channel narrows past
the Port of Houston towards Manchester. In this region, there are
several locations where a string of nodes has been placed to follow
the deepest part of the channel, with the channel itself straddling
two elements, as seen in Fig. 13. This type of mesh is well-suited
for a continuous Galerkin (nodal-based) discretization, as the
degrees of freedom for elevation and velocity are defined at the
nodes, and the flow up the channel essentially reduces to a
quasi-1D solution along the nodes lying in the channel. This mesh
is less suited for a DG method, which is not nodal but element and
edge-based; a more suitable mesh would have at least one element
across the width of the channel. While this is a plausible explana-
tion for the discrepancy between the codes, it may not be the only
cause, and deserves further examination.
6. Conclusions

The numerical simulation of Hurricane Ike given above indi-
cates the complexities inherent in storm surge modeling: extreme
wind forcings, highly varying bathymetry, complex coastal geome-
tries with internal barriers, inlets and narrow channels, highly non-
linear bottom friction, and wetting and drying. In this paper, we
have demonstrated that the DG method with piecewise linear
approximations is generally competitive with the highly-tuned
and quasi-operational ADCIRC model. The drawbacks of the
ADCIRC model going forward are that it is restricted to linear poly-
nomials on conforming meshes, has difficulty handling strong
advection (in fact, advection terms have been turned off in ADCIRC
for the Hurricane Ike simulations), and requires tuning the
so-called ‘‘s0’’ parameter in the generalized wave continuity
formulation [23,17]. The ADCIRC model is also not locally mass
conservative, though this is not a critical issue for storm surge
modeling at present.

In this paper, we have developed and implemented a new slope
limiter which improves the performance of the DG method in in-
lets and narrow channels. Unfortunately, in our Hurricane Ike sim-
ulations, we still see what appears to be over-damping of the surge
in the furthest reaches of the Houston Ship Channel, and further re-
search is required to develop DG methods which are both accurate
and stable for these complex situations. Approaches currently un-
der investigation include the use of dynamic p and h adaptivity. In
future work, we will examine more closely p adaptivity within the
DG method and the stability of these methods for complex flow
scenarios. We are also investigating the use of more general
meshes, including the use of hybrid meshes based on mixing
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quadrilateral and triangular elements. We note that the mesh used
in our Hurricane Ike simulations was constructed for ADCIRC
simulations and thus may be more suitable for a continuous,
nodal-based finite element method than an element and edge-
based DG method. The sensitivity of the DG method to various kind
of meshes, especially in narrow channels, is also an area of current
research.

We conclude with some comments on the computational per-
formance of the DG method. One criticism of DG methods is their
cost relative to continuous Galerkin methods, and this criticism is
warranted in many cases. The DG storm surge calculations per-
formed here were done on the Ranger supercomputer at the Texas
Advanced Computing Center (TACC), as were the ADCIRC simula-
tions. Presently, using the same finite element mesh, time step,
and number of CPUs, the ADCIRC code is on average about 4 times
faster than the DG code. Studies comparing the ADCIRC and DG
codes for both efficiency and accuracy for some simple model
problems can be found in [19]. These studies showed that the DG
method was competitive with and in some cases superior to
ADCIRC when measuring accuracy vs. parallel efficiency. Improv-
ing the overall performance of the DG method, through the use
of adaptivity, more sophisticated time-stepping (including local
time-stepping), the use of quadrature-free methods, and by using
better software practices, is also the subject of future research.
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