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Through the use of Boussinesq scaling we develop and test a model for resolving non-hydrostatic pres-
sure profiles in nonlinear wave systems over varying bathymetry. A Green–Nagdhi type polynomial
expansion is used to resolve the pressure profile along the vertical axis, this is then inserted into the
pressure-Poisson equation, retaining terms up to a prescribed order and solved using a weighted residual
approach. The model shows rapid convergence properties with increasing order of polynomial expansion
which can be greatly improved through the application of asymptotic rearrangement. Models of
Boussinesq scaling of the fully nonlinear Oðl2Þ and weakly nonlinear OðlNÞ are presented, the analytical
and numerical properties of Oðl2Þ and Oðl4Þ models are discussed. Optimal basis functions in the
Green–Nagdhi expansion are determined through manipulation of the free-parameters which arise due
to the Boussinesq scaling. The optimal Oðl2Þ model has dispersion accuracy equivalent to a Padé [2,2]
approximation with one extra free-parameter. The optimal Oðl4Þ model obtains dispersion accuracy
equivalent to a Padé [4,4] approximation with two free-parameters which can be used to optimize shoal-
ing or nonlinear properties. In comparison to experimental results the Oðl4Þ model shows excellent
agreement to experimental data.
� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Boussinesq type models have been used to make numerical pre-
dictions about nearshore wave phenomenon since their introduc-
tion by Peregrine (1967) and Madsen and Mei (1969). Through
the use of a Boussinesq-type nondimensional scaling approach it
was possible to design a relatively simple model which was appli-
cable for shallow water waves, l ¼ kh 6 p=2. Early models were
weakly dispersive and weakly nonlinear, limiting their applicability
in deeper water. Work by Madsen et al. (1991), Madsen and Srensen
(1992) and Nwogu (1993) demonstrated that with careful manipu-
lation of the equations it was possible to generate models with bet-
ter dispersion characteristics, formally up to Oðl4Þ. Further work
incorporated higher-order solutions with increased accuracy in
shoaling and nonlinear interactions (Agnon et al., 1999; Kennedy
et al., 2001; Schäffer and Madsen, 1995; Wei et al., 1995) and more
relevant physics to the nearshore such as wave breaking and wave
run-up (Chen et al., 2000; Kennedy et al., 2000; Lynett et al., 2002;
Schäffer et al., 1993). The work of Gobbi and Kirby (2001), Gobbi
et al. (2000) and Madsen and Schäffer (1998) extended the order
of accuracy of the models, obtaining a dispersive relationship that
was formally of Oðl8Þ, thereby expanding the range over which
valid solutions could be obtained. Taking a different approach,
Lynett and Liu (2004a,b) examined the increased accuracy gained
through solutions to Boussinesq models over multiple vertical lay-
ers. The use of multiple layers provided an increase in the number
of free-parameters which could be used to improve the model accu-
racy. Building on the advances made in Serre–Green–Nagdhi type
modeling of water waves (Bonneton et al., 2011; Green and
Naghdi, 1976; Serre, 1953), Zhang et al. (2013, 2014) were able to
obtain an equivalent formal high-order of accuracy, even for low-
order models, through the use of Green–Naghdi type polynomial
expansions over the vertical domain for the velocities and the use
of asymptotic rearrangement to find the optimal vertical basis
functions.

Many of the higher-order models came at the cost of model com-
plexity, which in many cases hindered the potential for these mod-
els to be adopted on a large scale. With the exception of Zhang et al.
(2013), in order to obtain formally higher-order models it was nec-
essary to use higher order spatial derivatives, which increases the
computational cost. In addition mixed space/time derivatives are
inherent in Boussinesq type models, see Peregrine (1967). Mixed
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space/time can be computationally expensive and difficult to
implement, especially in two horizontal dimensions.

Wei and Kirby (1995) suggested the use of a higher-order
Adams–Bashforth–Moulton predictor–corrector time integration
scheme, thus ensuring that the dispersive error dominated the
truncation error in the temporal discretization. Following their
work and owing to the potential for greater spatial accuracy for
lower computational cost hybrid spatial finite volume finite differ-
ence (Erduran et al., 2005; Shi et al., 2012; Gallerano et al., 2014)
and finite element (Do Carmo et al., 1993; Li et al., 1999; Panda
et al., 2014) implementations of the Boussinesq equations have
been developed, these methods either employed higher-order
predictor–corrector methods in time or took advantage of
higher-order Runge–Kutta (RK) or Strong-Stability-Preserving-
Runge–Kutta (SSPRK) methods in time. Furthermore, rearrange-
ment of the dispersive terms such that the numerical solution of
the one horizontal dimension model only requires the solution of
a tridiagonal system addressed the computational cost issue
associated with mixed space/time derivatives. However, in two
horizontal dimensions it is still necessary to solve a set of two
tightly coupled systems of equations.

Recently focus has shifted towards resolution of the dispersive
terms through the solution of the Poisson type problems. This
approach reduces the system to only one unknown, the pressure
profile, in two-horizontal dimensions, as opposed to a set of two
coupled velocity problems. A novel approach has been introduced
by Antuono and Brocchini (2013) which focuses on solutions to a
Poisson equation in the vertical velocity. This is achieved through
a decomposition of the horizontal velocities into two parts, a
depth-averaged velocity component and a deviation from depth-
averaged term. The latter is further decomposed into rotational
and irrotational components. Manipulation of the vorticity equa-
tions and the continuity equation yields a Poisson type problem,
which when solved informs the deviation of the horizontal velocity
from the depth-averaged component.

An approach that has recently gained traction is the resolution
of dispersive effects by focusing on the non-hydrostatic pressure
term. Building upon the concept introduced by Casulli and
Stelling (1998), Casulli (1999) and Stansby and Zhou (1998) many
highly accurate models have been developed and tested. Examples
include the work of Yamazaki et al. (2009) on a depth integrated
non-hydrostatic model, the Simulating WAves till SHore (SWASH)
model developed by Stelling and Zijlema (2003), Zijlema and
Stelling (2008) and Zijlema et al. (2011), the Non Hydrostatic
WAVE (NHWAVE) model developed by Ma et al. (2012) and the
CCHE2D model of Wei and Jia (2013). Each of these models have
focused on solutions to the shallow water equations (SWE) or full
Navier–Stokes equations where the non-hydrostatic pressure is
treated as a single unknown which must be found numerically.
The result is a model that does not include any mixed space/time
derivatives, they do however involve an extra pressure-Poisson
problem which must be solved to determine the non-hydrostatic
pressure.

Zijlema and Stelling (2005) were able to demonstrate numeri-
cally that with an increased number of vertical layers it was possi-
ble to obtain high order accuracy for the dispersion characteristics.
More recently Bai and Cheung (2013) derived the dispersion
relationship and shoaling coefficient for the single and two layer
models, as well as a more accurate hybrid single layer model.
The results of the linear dispersion analysis for the single layer
showed that it was only accurate for very shallow water waves.
The more expensive two layer model demonstrated a significant
improvement, equivalent to a Padé [2,4] approximation to the
Airy solution, while the single layer hybrid model contained a
free-parameter that could be used to optimize the dispersion to a
Padé [2,2] approximation.
A separate approach based on an extension of the SWE’s to
include dispersive effects while retaining their hyberbolic struc-
ture has been proposed by Antuono et al. (2009). Assuming a suf-
ficiently smooth bathymetry these so called Dispersive Nonlinear
Shallow Water Equations (DNSWE’s) are able to remain strictly
hyperbolic through the inclusion of two pseudo-potential func-
tions, thus they can take advantage of higher order finite volume
or finite element numerical methods (Grosso et al., 2010).

The coupling of Boussinesq-type models with oceanographic
models was stated as improvement of high urgency by Brocchini
(2013) in his comprehensive analysis of the current state of Bous-
sinesq models. The present work aims to take the advances made
in classical Boussinesq theory and the recent work in multi-layer
non hydrostatic pressure models to design a Boussinesq type model
for the non-hydrostatic pressure which is suitable for a straightfor-
ward coupling with oceanographic models. Instead of vertical lay-
ers, a Green–Nagdhi type polynomial expansion is used to resolve
the pressure over the vertical domain. The result is a simple model
for the non-hydrostatic pressure, which is found through the
solution to the pressure-Poisson equation and enforcement of the
bottom boundary condition on pressure. The combination of a
Green–Nagdhi type polynomial expansion with Boussinesq-type
scaling provides free-parameters, which can be manipulated using
the principles of asymptotic rearrangement to optimize for various
properties including dispersion, shoaling and nonlinear interac-
tions. At lowest-order the model is comparable to standard
Boussinesq models as well as the hybrid single layer model of Bai
and Cheung (2013) At higher-order the model compares well with
the higher order models of Gobbi and Kirby (1999) and Zhang et al.
(2013), but is relatively easier to implement and does not contain
higher-order spatial derivatives or mixed space/time derivatives.

This paper is organized as follows: Section 2 introduces the
dimensionless scaling and the governing equations for the model.
In Section 3 a pressure-Poisson model using Boussinesq scaling
and Green–Nagdhi type expansions in the vertical axis is devel-
oped. Section 4 discusses the analytical properties of the model
and compares them with well known analytical results. Section 5
discusses several validation experiments conducted using a
numerical solution to the model. Finally the conclusions of the
paper are given in Section 6. Appendix A provides details of reduc-
tion in the degrees of freedom for higher order solutions, appendix
B provides details of the linear dispersion and shoaling analysis
and appendix C provides details of the nonlinear analysis for the
second order nonlinear term.

2. Scaling

For the present study we will consider flow of a constant den-
sity inviscid fluid without bottom or surface shear stresses. We
employ a Cartesian coordinate system ðx�; y�; z�Þ, where z� repre-
sents the vertical axis centred on the still-water plane pointing
upwards. The full vertical profile stretches from the bottom
bathymetry at z� ¼ �h�ðx�; y�Þ to the free-surface z� ¼ g�ðx�; y�; t�Þ.
The following nondimensional quantities are defined:

ðx; yÞ ¼ k0ðx�; y�Þ; ðu;vÞ ¼ h0

a0

ffiffiffiffiffiffiffiffiffiffi
g0h0

p ðu�;v�Þ;

g ¼ g�

a0
; z ¼ z�

h0
;

w ¼ w�

a0k0

ffiffiffiffiffiffiffiffiffiffi
g0h0

p ; P ¼ P�

qg0a0
;

h ¼ h�

h0
; g ¼ g�

g0
;

t ¼ k0

ffiffiffiffiffiffiffiffiffiffi
g0h0

q
t�;

ð1Þ
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where the superscript ⁄ denotes a dimensional variable. The vari-
ables u;v and w represent the velocities in the x; y and z directions
respectively. The pressure, P, is defined over the entire fluid domain
and the free-surface elevation, g, is defined over the horizontal axis
ðx; yÞ. The variable h represents the bathymetric depth, g is the non-
dimensional gravitational constant and t represents time. The
parameters k0;h0; g0; a0 and q stand for a reference wavenumber,
reference bathymetric depth, the gravitational constant, a reference
wave amplitude and the fluid density, respectively.

2.1. Governing equations

Inserting the scaled parameters into the conservation of
momentum equations, we obtain the following nondimensional
forms of the conservation of momentum equations for incompress-
ible inviscid fluid motion,

@u
@t
þ dr � ðuuTÞ þ d

@

@z
ðwuÞ þ rP ¼ 0; �h 6 z 6 dg; ð2Þ

l2 @w
@t
þ dl2r � ðuwÞ þ dl2 @

@z
ðw2Þ þ @P

@z
þ g

d
¼ 0; �h 6 z 6 dg;ð3Þ

where l � k0h0 is a measure of frequency dispersion, d � a0=h0 is a
measure of nonlinearity, r � ð@=@x; @=@yÞT is the two-dimensional
gradient operator and u � ðu; vÞT is the horizontal velocity vector.
The nondimensional forms of the continuity equation and the kine-
matic free-surface and bottom boundary conditions are given as,

r � uþ @w
@z
¼ 0; �h 6 z 6 dg; ð4Þ

w� @g
@t
� du � rg ¼ 0; z ¼ dg; ð5Þ

wþ u � rh ¼ 0; z ¼ �h: ð6Þ

Taking the divergence of the conservation of momentum equations,
Eqs. (2) and (3), and considering the continuity equation, Eq. (4), the
pressure-Poisson equation is derived with the same scaling
quantities,

l2r2P þ @
2P
@z2 ¼ �dl2rð3Þ � ðuð3Þ � rð3Þuð3ÞÞ; �h 6 z 6 dg; ð7Þ

where rð3Þ � ð@=@x; @=@y; @=@zÞ and uð3Þ � ðu;v ;wÞ. Integrating Eq.
(4) over the vertical domain from the bathymetric depth, z ¼ �h,
to the free-surface, z ¼ dg and applying the kinematic boundary
conditions derives an expression for the conservation of mass
dependent on the free-surface elevation and the fluid flux,

@g
@t
þr �

Z dg

�h
udz ¼ 0: ð8Þ

Similarly, considering Eq. (3) at z ¼ �h and applying the kinematic
bottom boundary condition, Eq. (6), the bottom pressure boundary
condition is obtained,

l2ðrhÞ � ðrPÞ þ @P
@z
þ g

d
¼ dl2u � ðu � r2hÞ; z ¼ �h: ð9Þ

Eqs. (2), (3), (7), (8) and (9) make up the complete set of governing
equations that will be solved in this work. The pressure field for a
particular velocity field uð3Þ, and free-surface displacement, dg, at
time t can be derived from Eqs. (7) and (9). Once the pressure field
has been determined, the time evolution of the velocity field uð3Þ

can be realized by substitution of the pressure field, P, into Eqs.
(2) and (3). In addition, the time evolution of the free-surface is
realized by substitution of the velocity field into Eq. (8). High-order
models are constructed through application of Boussinesq-type
approximations to the dependent variables; u;w and P. The classic
approach in Boussinesq models is to find a solution for the pressure
in terms of the horizontal and vertical velocity profiles and then
substitute this solution into the conservation of momentum or
velocity potential equations. This produces a system of equations
based entirely on the free-surface and the velocities, but as men-
tioned previously this also requires solutions to mixed space/time
derivatives.

The present work focuses on the derivation of an independent
pressure model which does not include any mixed space/time
derivatives. Similarly, the use of a single Poisson type model to
resolve the dispersive terms will yield a model which with fewer
terms and a simpler form when compared with Boussinesq-type
models of equal order.

2.2. Pressure expansion

We begin by considering the standard approach to solving for
the pressure profile in Boussinesq theory. Integrating Eq. (3) from
an arbitrary depth, z, to the free-surface and applying the zero
free-surface pressure condition, an expression for the vertical pres-
sure profile in terms of the horizontal and vertical velocities is
obtained,

P ¼ g
d
ðdgþ hÞð1� qÞ þ l2

Z dg

z

@w
@t
þ dr � ðuwÞ þ d

@

@ẑ
w2� �� �

dẑ;

ð10Þ

where the variable sigma coordinate q 2 ½0;1�, defined as

q � zþ h
dgþ h

ð11Þ

has been introduced to simplify the equations. In this work we con-
sider the Boussinesq approximation for the velocity expanded about
the depth-averaged velocity, �u. This was the approach first used by
Peregrine (1967) and later by Madsen and Schäffer (1998), and
others. The horizontal and vertical velocities are given by,

u ¼ �uþ l2 rðr � ðh�uÞÞ � hrðr � �uÞð Þðdgþ hÞ 1
2
� q

� �
þ l2 1

2
ðdgþ hÞ2rðr � �uÞ

� �
1
3
� q2

� �
þ l4u3

1
4
� q3

� �
þ l4u4

1
5
� q4

� �
þ Oðl6Þ

ð12Þ

and,

w ¼ ��u � rh� ðhþ dgÞðr � �uÞqþ Oðl2Þ; ð13Þ

where u3 and u4 are complicated differential functions of �u, for
more detail see Madsen and Schäffer (1998). Substitution of Eqs.
(12) and (13) into Eq. (10) provides an expression for the pressure
profile, which includes the typical mixed space/time derivatives,
i.e. @=@tðr � �uÞ. With a simple rearrangement of terms it is possible
to construct a general formula for the pressure profile which
includes a Green–Nagdhi type polynomial expansion in the vertical
axis,

P ¼ P0 þ
XN

n¼1

lbn Pn/n þ OðlNþ2Þ; ð14Þ

where bn ¼ nþ nmod2 is equal to n when n is even and equal to nþ 1
when n is odd, P0 ¼ P0ðx; t; qÞ is the zeroth-order component of the
expansion, Pn ¼ Pnðx; tÞ is the nth term in the expansion, and the
vertical basis functions /n ¼ /nðqÞ are defined in such a way that
the zero free-surface pressure condition is explicitly satisfied,

/n ¼
Xn

m¼1

/̂mnð1� qmÞ; ð15Þ

where the /̂mn are arbitrary constants, and /̂nn ¼ 1 can be assumed
without loss of generality.
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It is noted that the use of polynomial expansions leads to a lim-
ited region of accuracy in the dispersion and shoaling relationship
(Madsen and Agnon, 2003). This will be discussed in further detail
in Section 4, where it will be demonstrated that the approximate
dispersion and shoaling relationships converge to the analytical
solution of linear theory as the number of terms in the polynomial
expansion is increased, and that with the appropriate choice of
basis function it is possible to expand the valid range of the model
to well beyond the region of interest even at low-order. It is noted
that in order to derive a pressure expansion with terms up to qN it
is necessary to apply a velocity expansion out to an equivalent
number of terms qN . The theoretical framework for obtaining
higher order expansions has been outlined by Madsen and
Schäffer (1998), among others.

In the following sections a strategy for determining each of the
Pn terms will be developed. It will be shown that the solution for
the pressure profile does not involve any mixed space/time deriv-
atives, has few degrees of freedom to solve for, and with the appro-
priate choice of basis functions /n can produce highly accurate
solutions.

3. A Boussinesq-type non-hydrostatic pressure-Poisson model

Although expressions for the Pn terms in the pressure expansion
can be determined through substitution of the Boussinesq approx-
imations for the horizontal and vertical velocities into the vertical
conservation of momentum equation, see Eq. (10), these expres-
sions often involve higher order spatial derivatives and mixed
space/time derivatives (Nwogu, 1993). Alternatively, we discuss
an approach for determining the pressure expansion terms where
they are treated as unknowns which are found as a solution to the
pressure-Poisson equation and the bottom boundary condition for
pressure, Eqs. (7) and (9). The weighted residual method is utilized
in order to generate a sufficient number of equations to match the
order of the desired pressure expansion. The result is a set of equa-
tions equal in number to the order of the expansion which include
spatial derivatives of at most second-order, and no mixed space/
time derivatives.

The general form of the pressure solution follows Eq. (14).
Through the course of this work it was determined that the solu-
tion to the pressure profile was dependent on the choice of approx-
imation for the zeroth-order term, P0. A direct integration of the
vertical momentum equation provides an expansion about the
hydrostatic pressure, which gives,

P ¼ g
d
ðdgþ hÞð1� qÞ þ

XN

n¼1

lbn /nPn þ OðlNþ2Þ: ð16Þ

However, the solution to the pressure for this choice of P0 led to
undesirable overall properties, which will be discussed in Section 4.
If the zeroth-order term in the expansion is taken to be the still
water pressure term, as in Peregrine (1967), the model exhibits
more desirable properties in terms of dispersion characteristics.
This particular expansion can be derived in the same manner
through a simple rearrangement of terms. Considering Eq. (16),
we rearrange the terms to obtain

P¼ g
d

hð1�qÞþ ggþl2P1
� �zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{eP1

ð1�qÞþ
XN

n¼2

lbn Pn/nþOðlNþ2Þ; ð17Þ

where g
d hð1� qÞ represents the pressure for a fluid at rest and eP1 is

an Oð1Þ pressure correction term. Note that this expression is equiv-
alent to the expansion given by Eq. (16) and that all the remaining
terms in the pressure expansion remain unchanged. Dropping the �
notation leads to the general solution for pressure,
P ¼ g
d

hð1� qÞ þ P1ð1� qÞ þ
XN

n¼2

lbn Pn/n þ OðlNþ2Þ: ð18Þ

Eq. (18) defines the general Nth order Boussinesq-type approxima-
tion to the pressure.

Given a desired order of accuracy in the model, an initial free-
surface displacement, and set of horizontal velocities, the process
for determining the non-hydrostatic pressure profile and updating
the free-surface and velocities is as follows:

1. Determine the desired order of accuracy, OðlNÞ.
2. Insert the velocity profile, Eqs. (12) and (13), into Eqs. (7) and

(9) to generate a system of pressure-Poisson equations for the
pressure.

3. Substitute the Boussinesq approximation to the pressure profile
Eq. (18) and the free-surface elevation into the system of pres-
sure-Poisson equations generated in step 2.

4. Discard any terms that are formally greater than the desired
order.

5. Apply the weighted residual method over the vertical axis in
order to generate a sufficient number of equations to match
the number of unknown terms in the pressure expansion.

6. Solve the system of equations from step 5 for the unknown
pressure expansion terms Pn, for n ¼ 1 . . . N.

7. Substitute the Boussinesq-type approximation for the pressure
profile from step 6 and the velocities into the depth-integrated
form of Eq. (2) and (8) to advance the horizontal velocities and
free-surface forward in time. Furthermore substitution of the
horizontal velocities into Eq. (13) determine the vertical veloc-
ity, w.

3.1. Boussinesq system of equations with no mixed space–time
derivatives

We consider a Boussinesq type expansion of the pressure field
with scaling up to order OðlNÞ. The horizontal velocities, u, and
vertical velocity, w, are given by Eqs. (12) and (13). The Bous-
sinesq-type expansion for the pressure, P, is given by Eq. (18). Note
that the basis functions for pressure, Eq. (15), are defined such that
they disappear at the free-surface, q ¼ 1, thus the zero pressure
free-surface boundary condition is explicitly satisfied. Substituting
Eq. (18) into Eq. (7) produces an expression for the pressure-Pois-
son equation,

XN

n¼1

lb̂n l2/nr2Pnþ2l2/0nrq �rPn

h
þ /00n l2ðrqÞ � ðrqÞþ @q

@z

� �2
 !

þl2/0nr2q

 !
Pn

#
¼�l2d2rð3Þ � ðuð3Þ �rð3Þuð3ÞÞ�l2 g

d
r2hð1�qÞ�2ðrhÞ � ðrqÞ�hr2q
� 	

þOðlNþ2Þ;06 q61: ð19Þ

Similarly, substitution into Eq. (9) produces an expression for the
pressure bottom boundary condition,

XN

n¼1

lb̂n l2ðhþ dgÞ/nrh � rPn þ 1þ l2ðrhÞ � ðrhÞ
� �

/0nPn
� �

¼ dl2ðhþ dgÞu � ðu � r2hÞ � g 1þ l2ðrhÞ � ðrhÞ
� �

g

þ Oðlb̂nþ2Þ; q ¼ 0: ð20Þ

Since there are N unknowns, Pn, and only two equations, a
weighted residual in the vertical direction is used to solve the full
system for the pressure-Poisson component of the equations. Arbi-
trary weighting functions were employed in order to determine if
the choice of weighting function influenced the solution. As will



Table 1
Definition of Integrals.

Wnm ¼
R q

0 Wmq̂/00ndq̂ Unm ¼
R q

0 Wmq̂/0ndq̂ Xm ¼
R q

0 Wmdq̂

Gn ¼
R q

0 /ndq̂ Rn ¼
R q

0 q̂/0ndq̂ nnm ¼
R q

0 Wm/ndq̂

Cnm ¼
R q

0 Wmq̂/ndq̂ vm ¼
R q

0 Wmq̂dq̂ Snm ¼
R q

0 Wmq̂2/00ndq̂

Hnm ¼
R q

0 Wm/0ndq̂ Knm ¼
R q

0 Wm/00ndq̂
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be illustrated in the case for a two term expansion, i.e. N ¼ 2, the
choice of weighting functions has a direct impact on the solution
accuracy and stability. The weighting functions are defined as
follows,

Wn ¼
Xn

m¼0

cW mnqm; cW nn ¼ 1; ð21Þ

where cW mn are constants to be determined, and the set of weight-
ing functions is linearly independent. Each equation in the weighted
residual method takes the form,Z 1

0
Wm

XN

n¼1

lb̂n l2/nr2Pnþ2l2/0nrq �rPn

h 

þ /00n l2ðrqÞ � ðrqÞþ @q
@z

� �2
 !

þl2/0nr2q

 !
Pn

#!
dq

¼
Z 1

0
Wm �l2d2rð3Þ � ðuð3Þ �rð3Þuð3ÞÞ

�
�l2 g

d
r2hð1�qÞ�2ðrhÞ � ðrqÞ�hr2q
� 		

dqþOðlb̂nþ2Þ

for m¼1 . . .N�1:

ð22Þ

The system of equations comprised of Eqs. (20) and (22) are
solved to determine all Pn, which in turn determines the pressure
profile that can then be used with the conservation of momentum
equations to update the velocities.

Substitution of the velocity expansion, Eq. (12), demonstrates
that the conservation of mass, Eq. (8), is only dependent on the
depth-averaged velocity,

g;t þr � ðdgþ hÞ�uð Þ ¼ 0: ð23Þ

In order to update the horizontal velocities we consider the depth
integral of Eq. (2),Z dg

�h

@u
@t
þ dr � ðuuTÞ þ d

@

@z
ðwuÞ þ rP


 �
dz ¼ 0: ð24Þ

Application of the Leibniz integration rule and the kinematic
free-surface and bottom boundary conditions yields the following
simplification of Eq. (24),

@

@t

Z dg

�h
udzþ dr �

Z dg

�h
ðuuTÞdzþ

Z dg

�h
rPð Þdz ¼ 0; ð25Þ

see Nwogu equations (12) and (13) (Nwogu, 1993). It is clear from
the definition of the velocity profile expansion, Eq. (12), that at
Oðl2Þ only the zeroth order velocity terms are retained in Eq. (25),
thus,

@

@t
ðhþdgÞ�uð Þþdr� ðhþdgÞ�u�uT

� �
þ
Z dg

�h
rPð ÞdzþOðdl4Þ¼0: ð26Þ

Substitution of the pressure expansion, Eq. (18), the conserva-
tion of mass, Eq. (23), and division by ðhþ dgÞ, yields the final form
of the horizontal momentum equation in vector notation,

@�u
@t
þd�u �r�uþ

XN

n¼0

lb̂n GnrPn�
1

hþdg
/njq¼0rhþRnrðhþdgÞ
� 	

Pn

��
þOðlNþ2;dl4Þ¼0; ð27Þ

where Gn and Rn are given in Table 1, and evaluated at q ¼ 1. It is
important to note that based on the definition of the depth averaged
velocity, the first term in Eq. (27) is linearly exact for all orders, while
the convective term is exact up to Oðl2Þ, with errors of Oðdl4Þ. Given
a pressure profile expansion of OðlNÞ, we have either a fully nonlin-
ear Oðl2Þ or weakly nonlinear OðlNÞ;N > 2, model which is only
dependent on the depth-averaged horizontal velocities.
Eqs. (20), (22), (23) and (27) make up the complete system of
equations for the model. Recall that the solution for w is explicitly
defined in terms of �u by Eq. (13). Having the pressure model only
rely on the depth-integrated velocity is advantageous in that some
ocean circulation models assume a depth-averaged velocity, thus
all conclusions about increased accuracy from the inclusion of a
non-hydrostatic pressure model can be extended to the general
class of ocean circulation models. The equations for pressure are
an elliptic problem, while the equations for velocity and the free-
surface are both hyperbolic. The strategy for solving this system
of equations has two steps:

1. Given a specific velocity and free-surface profile, determine the
pressure profile using Eqs. (20) and (22).

2. Update the velocities and free-surface using Eqs. (27) and (23)
using the pressure profile found in the previous step. Recall that
the Boussinesq expansion for the vertical velocity, w, is repre-
sented in terms of the depth averaged horizontal velocity.

3.2. Fully nonlinear Oðl2Þ solution

Substituting the horizontal and vertical velocities, Eqs. (12) and
(13), into the governing equations for the pressure solution, Eqs.
(20) and (22), and truncating all terms of order greater than
Oðl2Þ produces a system of equations to solve for the pressure
expansion components, P1 and P2.

Bottom boundary condition:

a1;2P2 þ a2;1 � rP1 þ a1;1P1 ¼ a0 þ Oðl4Þ; ð28Þ

where,

a1;2 ¼ l2/̂12

� 	
; ð29Þ

a2;1 ¼ � l2ðhþ dgÞðrhÞ
� �

; ð30Þ
a1;1 ¼ ð1þ l2ðrhÞ � ðrhÞÞ

� �
; ð31Þ

a0 ¼ g 1þ l2ðrhÞ2
� 	

g� dl2ðhþ dgÞ�u � ð�u � r2hÞ ð32Þ

and
Pressure-Poisson:

b1;2;1P2 þ b3;1;1r2P1 þ b2;1;1 � rP1 þ b1;1;1P1 ¼ b0;1 þ Oðl4Þ; ð33Þ

where,

b1;2;1 ¼�l2x1; ð34Þ

b3;1;1 ¼
1
6
l2x2ðhþdgÞ2; ð35Þ

b2;1;1 ¼
1
3
l2 ð1þx2Þdrg�x2rhð ÞðhþdgÞ; ð36Þ

b1;1;1 ¼�
1
6
l2 x2r2h�dð1þx2Þr2g

� 	
ðhþdgÞ

h
þ2 ð1þx2Þdrg�x2rhð Þ �rðhþdgÞ�; ð37Þ

b0;1 ¼�
1
2

dl2x1ðhþdgÞ2rð�u �r�uÞ�1
6

gl2ð1þx2ÞðhþdgÞhr2g

�1
3

gl2 dð1þx2Þðgrh�hrgÞþx2hrhð Þ �rg

�1
6

gl2x2 ðhþdgÞr2h�2ðrhÞ � ðrhÞ
� 	

g; ð38Þ
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where x1 ¼ ð1þ 2cW 01Þ and x2 ¼ ð1þ 3cW 01Þ are defined in order
to simplify the expressions and with W1 ¼ cW 01 þ q as the arbitrary
weighting function used in the weighted residual approach. Simul-
taneous solutions of Eqs. (28) and (33) determines the pressure pro-
file components, P1 and P2. The pressure and velocity expansions
are substituted into the horizontal velocity and conservation of
mass equations, Eqs. (27) and (23), to advance the velocities and
free-surface forward in time as follows,

@�u
@t
þ d�u � r�uþ 1

2
g

hðrgÞ þ ðrhÞg
hþ dg

� �
þ 1

6
l2ð4þ 3/̂12ÞrP2

þ 1
6
l2 dð4þ 3/̂12Þrg� ð2þ 3/̂12Þrh

hþ dg

 !
P2

þ 1
2
rP1 þ

1
2

drg�rh
hþ dg

� �
P1 þ Oðl4Þ ¼ 0

ð39Þ

and

@g
@t
þr ðhþ dgÞ�uð Þ ¼ 0: ð40Þ
3.2.1. Reduction in the degrees of freedom for the fully nonlinear Oðl2Þ
case

It is possible to reduce the degrees of freedom in the overall sys-
tem. We first note that P2 can be solved for explicitly in terms of P1

and rP1 through algebraic manipulation of Eq. (28),

P2 ¼
1

a1;2
a0 � a2;1 � rP1 � a1;1P1ð Þ þ Oðl4Þ; ð41Þ

provided a1;2 – 0. Substituting Eq. (41) into Eq. (33), a single elliptic
problem for P1 is obtained,

b3;1;1r2P1 þ b2;1;1 �
b1;2;1

a1;2
a2;1

� �
� rP1

þ b1;1;1 �
b1;2;1

a1;2
a1;1

� �
P1

¼ b0;1 �
b1;2;1

a1;2
a0

� �
þ Oðl4Þ; ð42Þ

where all the coefficients are defined as above. In one horizontal
dimension Eq. (42) results in a tri-diagonal matrix to solve the lin-
ear system. Similar to standard Boussinesq models, extension into
two horizontal dimensions will necessitate the use of iterative tech-
niques to solve the linear system in a computationally efficient
manner, however unlike standard Boussinesq theory, which has
an elliptic problem associated with each of the horizontal velocities,
the model has only one elliptic problem which is confined to solving
for the first term in the pressure expansion, P1, while the velocity
equations remain strictly hyperbolic. Given the solution for P1 it
is straightforward to use Eq. (41) to determine P2. This reduction
in degrees of freedom reduces the complexity of the model and
should contribute to increased overall computational efficiency.

3.3. Weakly nonlinear OðlNÞ solution

It is possible to extend the Oðl2Þ solution to arbitrary order
where all OðlNÞ terms are retained. However the extension of the
fully nonlinear model to higher order leads to very complex equa-
tions and numerical implementation becomes difficult. For this
reason we explore a weakly nonlinear model for arbitrary N � 4
where all terms of Oðdl4Þ or greater are truncated, the implemen-
tation of the fully nonlinear model will be left to future work.
Details of the general formula for the higher order solution can
be found in Appendix A. As it is shown in Appendix A, a reduction
in the degrees of freedom for the problem is possible. In general a
full reduction in degrees of freedom for a pressure expansion of
order OðlNÞ will lead to a set of N � 2 elliptic equations to be
solved.

4. Analytic properties

As with classical Boussinesq theory, the linear and nonlinear
properties of the pressure-Poisson model can be assessed through
linear and nonlinear expansions. Results show that the model con-
verges to the well known Stoke’s solution at high-order for linear
properties. Increased accuracy can be achieved when arbitrary ver-
tical basis functions for pressure are used and appropriate coeffi-
cients are chosen so as to optimize for linear and nonlinear
properties. In this section, Stoke’s type analysis and multiple scales
analysis are performed to explore the linear and nonlinear proper-
ties of the model and to determine the set of basis functions lead-
ing to optimal performance of the model.

4.1. Linear dispersion

We consider the first order dispersion properties of a small
amplitude wave train over a flatbed. The approximate dispersion
relationship can then be compared with the well known Airy dis-
persion relationship (Dean and Dalrymple, 1991) given by
C2

Airy=gh ¼ tanhðkhÞ=ðkhÞ. Details of the derivation are standard
and can be found in Appendix B. The order of accuracy for the
approximate dispersion relationship is reliant on three important
components of the model, (1) the order of approximation in the
pressure solution N, (2) the choice of basis functions /n, Eq. (15),
and (3) for the N ¼ 2 case the choice of weighting functions, wm,
Eq. (21).

We begin with the simplest case, N ¼ 2. We consider basis and
weighting functions,

/1 ¼ 1� q; ð43Þ
/2 ¼ /̂12ð1� qÞ þ ð1� q2Þ; ð44Þ

w1 ¼ cW 01 þ q; ð45Þ

which provides the following dispersion relationship,

C2

gh
¼ 1þ BðkhÞ2

1þ ðBþ 1
3ÞðkhÞ2

; ð46Þ

where,

B ¼ �2þ /̂12 þ 4cW 01 þ 3/̂12
cW 01

12cW 01 þ 6
: ð47Þ

Eq. (46) is equivalent to the general dispersion relationship derived
by Madsen et al. (1991). As demonstrated by Madsen the appropri-
ate choice of coefficients affects the accuracy of the dispersion rela-
tionship. If the basis functions and weighting functions are taken to
be monomial, corresponding to a choice of /̂12 ¼ 0;cW 01 ¼ 0 and
B ¼ � 1

3, then the dispersion relationship becomes

C2

gh
¼ 1� 1

3
ðkhÞ2; ð48Þ

which is equivalent to the dispersion relationship for the model
derived by Nwogu (1993) expanded about the still water level,
za ¼ 0. This dispersion relationship has a formal accuracy of
Oðl2Þ; however it produces a negative value for kh > 3, setting a
limit on the applicability of the model, as a negative dispersion rela-
tionship will lead to imaginary celerity in the solution. As a result,
the use of monomial basis and weighting functions is not recom-
mended. It is noted here that if the pressure expansion is chosen
to be given by Eq. (16) then the dispersion relationship for the



42 A.S. Donahue et al. / Ocean Modelling 86 (2015) 36–57
model is given by Eq. (48), regardless of choice of basis or weighting
functions. It is for this reason that an expansion about the still water
pressure, Eq. (18) was considered for the model.

An optimal choice of coefficients in the weighting function can
produce a more accurate model. The optimal choice,

Ŵ01 ¼ �
1
3

5/̂12 þ 12
5/̂12 þ 8

; ð49Þ

corresponding to B ¼ 1
15, produces the well known Padé [2,2]

approximation to the Airy dispersion relationship,

C2

gh
¼

1þ 1
15 ðkhÞ2

1þ 2
5 ðkhÞ2

; ð50Þ

which has a formal accuracy of Oðl4Þ. In addition, we still have one
free parameter /̂12 which no longer affects the dispersion relation-
ship, but as will be illustrated in the following section, will play a
role in the accuracy of shoaling.

This technique can be extended to the N ¼ 4 case with basis
functions:

/n ¼
Xn

m¼1

/̂mnð1� qmÞ; /̂nn ¼ 1; n ¼ 1 . . . 4; ð51Þ

Wn ¼
Xn

m¼0

cW mnqm; cW nn ¼ 1; n ¼ 1 . . . 3; ð52Þ

which in turn provides four independent free parameters, for
simplicity we define

K1 � /̂13/̂24 � /̂23/̂14; ð53Þ

K2 � /̂13/̂34 � /̂14; ð54Þ

K3 � /̂23/̂34 � /̂24; ð55Þ

K4 � /̂13: ð56Þ

The general dispersion relation then becomes,

C2

gh
¼ 1þ A1ðkhÞ2 þ A2ðkhÞ4 þ A3ðkhÞ6

1þ A4ðkhÞ2 þ A5ðkhÞ4
; ð57Þ

where

A1 ¼
1

12
2� K3 þ 2K4ð Þ; ð58Þ

A2 ¼
1

360
�12þ 5K1 þ 15K2 þ 10K3 þ 10K4ð Þ; ð59Þ

A3 ¼
1

8640
�40K1 � 45K2 � 48K4ð Þ; ð60Þ

A4 ¼
1

12
6� K3 þ 2K4ð Þ; ð61Þ

A5 ¼
1

72
K1 þ 3K2 þ 6K4ð Þ: ð62Þ

The four free parameters, K1 � K4, can be manipulated to improve
the dispersion characteristics, both in the sense of order of accuracy,
and in the sense of asymptotic behavior. A choice of K1 ¼ �24=35�
42=25K4;K2 ¼ 64=105� 64=25K4 and K3 ¼ 2=3þ 2K4 gives the
well known Padé [4,4] approximant to the dispersion relation,

C2

gh
¼

1þ 1
9 ðkhÞ2 þ 1

945 ðkhÞ4

1þ 4
9 ðkhÞ2 þ 1

63 ðkhÞ4
; ð63Þ

which is accurate up to Oðl8Þ. In order to get the Oðl10Þ accurate
Padé [6,4] approximant

C2

gh
¼

1þ 19
165 ðkhÞ2 þ 2

1485 ðkhÞ4 � 1
155925 ðkhÞ6

1þ 74
165 ðkhÞ2 þ 26

1485 ðkhÞ4
; ð64Þ
a choice of K1 ¼ �21776=28875þ 42=25K4;K2 ¼ 6464=9625�
64=25K4 and K3 ¼ 34=55þ 2K4 is required. It is noted that for both
optimized dispersion cases there is a free variable, K4. Just as with
the Oðl2Þ case this free-variable will be used to optimize either
shoaling or nonlinear effects while retaining optimum dispersion
properties. Both the Padé [4,4] and Padé [6,4] represent a significant
improvement in accuracy for dispersion, however, the Padé [6,4]
approximant approaches �1 in the limit which will lead to imagi-
nary celerity. Therefore the set of basis functions that lead to the
Padé [4,4] approximant are considered more advantageous. We
note that the free coefficient /̂12 does not appear in the system,
nor do any of the coefficients associated with the arbitrary
weighting functions.

In general an optimum set of basis functions can be found to
provide a Padé [N,N] or Padé [N + 2,N] approximant solution to
the dispersion for all N P 4, thus obtaining accuracy in the disper-
sion up to order Oðl2NÞ or Oðl2Nþ2Þ respectively. However the Padé
[N + 2,N] solution is not recommended due to the fact that it will
always lead to negative celerity for large dimensionless
wavenumbers.

Fig. 1 shows the ratio of the approximate dispersion for optimal
basis functions. For the N ¼ 2 case the optimal basis function solu-
tion is accurate to within 10% of the analytical dispersion up to the
nominal intermediate water limit ð0 6 kh 6 pÞ. For the N ¼ 4 case
the choice of optimal basis functions gives accurate dispersion to
within 5% of the analytical dispersion up to the deep water limit
ð0 6 kh 	 2pÞ, which is well within the proposed application range
of this model.

4.2. Shoaling properties

Extension of the linear dispersion analysis to include a perturba-
tion solution with a multiple scales expansion will generate an
approximation to the linear shoaling gradient. We consider the case
where the solution has two spatial scales, a slow and fast derivative,
x and X respectively. The slow derivative is assumed to vary at a
rate proportional to a parameter e
 1. In addition the bathymetry
is considered to be slowly varying, i.e. rh ¼ e @h

@X
. Details of the

shoaling gradient analysis can be found in Appendix B. Solutions
to the shoaling gradient can be compared with the well known
solution derived by Madsen and Srensen (1993), given by,

ch ¼
h

~gð0Þ
@~gð0Þ

@X

@h
@X

� ��1

¼ �2kh sinhð2khÞ þ 2ðkhÞ2ð1� coshð2khÞÞ
ð2khþ sinhð2khÞÞ2

: ð65Þ

An estimation of the error between the approximate shoaling gradi-
ent and the Stokes solution can be calculated using the cumulative
shoaling error by integrating the difference between the analytic
and approximate shoaling gradient from shallow to deep water fol-
lowing the formula used by Chen and Liu (1995),

A
Ast
¼ exp

Z kh

0

chðkh0Þ � cBðkh0Þ
kh0

dðkh0Þ
" #

; ð66Þ

where cB is the approximate shoaling gradient and ch is the Stoke’s
solution. As stated previously in Section 4.1, after optimizing the
basis functions for dispersion for the Oðl2Þ and Oðl4Þ, one free-
coefficient remained that could be used to optimize the shoaling
gradient. After optimizing the dispersion to be equivalent to the
Padé [2,2] approximant, the Oðl2Þ shoaling gradient becomes

ch ¼
1
8

A1ðkhÞ10 þ A2ðkhÞ8 þ A3ðkhÞ6 þ ðkhÞ4 þ A5ðkhÞ2 þ A6

/̂12ð2ðkhÞ4 þ 10ðkhÞ2 þ 75Þ
2 ; ð67Þ



Fig. 1. Approximate linear dispersion relationships, C, compared with linear Airy dispersion, CSt , well past the nominal deep-water limit of kh ¼ p; (i) optimum basis
functions for N ¼ 2;Oðl4Þ Padé [2,2] accurate, (ii) optimum basis functions for N ¼ 4;Oðl8Þ Padé [4,4] accurate, and (iii) optimum basis functions N ¼ 4;Oðl10Þ Padé [6,4]
accurate.
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where,

A1 ¼ 60/̂2
12 þ 128/̂12 þ 64; ð68Þ

A2 ¼ 450/̂2
12 þ 992/̂12 þ 480; ð69Þ

A3 ¼ 3000/̂2
12 þ 6420/̂12 þ 3200; ð70Þ

A4 ¼ 5625/̂2
12 þ 13200/̂12 þ 6000; ð71Þ

A5 ¼ 8250/̂12; ð72Þ
A6 ¼ �11250/̂12: ð73Þ

The approximate shoaling gradient, Eq. (67), has a Taylor expansion
of,

ch ¼ �
1
4
þ 1

4
ðkhÞ2 þ 1

360
45/̂2

12 þ 88/̂12 þ 48
/̂12

 !
ðkhÞ4

þ Oðl6Þ; ð74Þ

as compared with the Taylor expansion for the exact solution, Eq.
(67),

ch ¼ �
1
4
þ 1

4
ðkhÞ2 � 1

18
ðkhÞ4 � 1

540
ðkhÞ6 þ Oðl8Þ: ð75Þ

There are several choices of /̂12 which can optimize the shoaling
gradient for different properties; (i) setting /̂12 ¼ �6=5�
2=15

ffiffi
ð

p
21Þ � �1:2� 0:61 will cause the solution to match the

Taylor expansion up to Oðl4Þ, (ii) a choice of /̂12 2 ð�4=3;�4=5Þwill
cause the limit of the approximate shoaling gradient to be positive,
indicating that waves traveling from deep water will decrease in
amplitude as they enter shallow water, and (iii) A choice of
/̂12 ¼ �0:704720 will minimize the cumulative error in the
shoaling gradient, Eq. (66), up to the nominal deep water limit of
kh ¼ p. The details of these three cases can be found in Table 2.
Table 2
Cases of optimized basis functions for improved shoaling and Stoke’s second harmonic pro
studies is designated in bold.

Case # Coefficients Dispersion

(i) /̂12 ¼ �6=5þ 2=15
ffiffiffiffiffiffi
15
p

; Ŵ01 ¼ 2=3�
ffiffiffiffiffiffiffiffi
5=3

p
Padé [2,2]

(ii) /̂12 ¼ �4=3; Ŵ01 ¼ �4=3 Padé [2,2]

(iii) /̂12 ¼ �0:704720 Padé [2,2]

Ŵ01 ¼ �0:631192

(iv) /̂12 ¼ �353=225 Padé [2,2]

Ŵ01 ¼ �187=21
An analysis of Eq. (67) demonstrates that setting A1 ¼ 0, corre-
sponding to /̂12 ¼ �4=3 or /̂12 ¼ �4=5 ,will not only cause the
limit to be positive but will also cause the deep water limit to be
zero, which matches the deep water limit of the Airy solution. It
is important to note that the choices of /̂12 for both case (i) and
case (iii) are outside of the range for which the deep water limit
of the shoaling gradient is positive, which can lead to stability
issues. Thus these two cases are not recommended.

Fig. 2 shows the results a comparison of cases (i)–(iii) for the
Oðl2Þ case. Given that case (ii) represents a range of values, we
take /̂12 ¼ �4=3 in order to take advantage of the agreement with
the deep water limit. As can be seen from the figure both the opti-
mization for the infinite limit (ii) and the Taylor expansion optimi-
zation (i) provide similar results in terms of accuracy, however the
/̂12 ¼ �4=3 case also has better deep to shallow water properties.
Thus it is recommended that when optimizing shoaling for the
Oðl2Þ case the choice of /̂12 ¼ �4=3 be used.

A similar analysis is conducted on the Oðl4Þ case, although the
approximate shoaling gradient is more complex. For simplicity the
formula is not given here, however the properties will be dis-
cussed. After choosing basis functions such that the dispersion is
optimized to a Padé [4,4] approximant, the Taylor expansion of
the approximate shoaling gradient becomes

ch ¼ �
1
4
þ 1

4
ðkhÞ2 � 1

18
ðkhÞ4

� 1
151200

22491/̂2
13 � 9555/̂13 � 125
21/̂13 � 5

 !
ðkhÞ6 þ Oðl8Þ: ð76Þ

As with the Oðl2Þ case it is possible to define basis functions such
that certain properties of the shoaling gradient are optimized: (v)
a choice of /̂13 ¼ 35=102� 5=714

ffiffiffiffiffiffiffiffiffiffiffiffi
1245
p

¼ 0:343� 0:247 will cause
the solution to be formally accurate up to Oðl6Þ; (vi) the deep water
perties for the fully nonlinear Oðl2Þmodel. The case used for the numerical validation

Shoaling Nonlinear Notes

Oðl4Þ Oðl2Þ

Oðl2Þ Oðl2Þ Bounded Shoaling Limit

Oðl2Þ Oðl2Þ Minimized Shoaling Error over kh 2 ½0;p�

Oðl2Þ Oðl4Þ



Fig. 2. Approximate shoaling gradient, ch , compared with linear theory well past the nominal deep-water limit shown for the N ¼ 2 case, using optimum basis functions for
cases (i)–(iii), see Table 2. The exact solution is shown as the solid black line. Direct comparison of shoaling gradients (top panel) and cumulative shoaling error (bottom
panel).
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limit of the shoaling gradient will be bounded with /̂13 ¼ 10=19�
10=399

ffiffiffiffiffiffi
61
p

¼ 0:526� 0:196; and finally (vii) /̂13 ¼ 0:60440 will
minimize the cumulative shoaling error, Eq. (66), over the interval
kh 2 ½0;p�. The details of these three cases are shown in Table 3.
We note that if /̂13 2 ½0:3306;0:7720� then the limit of the shoaling
gradient will be positive, all three of the optimization cases shown
here fall within these bounds. Fig. 3 shows a comparison between
the Stoke’s solution for the shoaling gradient and each of the three
optimization cases. All three cases show good accuracy up to
the nominal shallow water limit, with cases (v) and (vii) showing
the closest agreement to the exact solution.

4.3. Nonlinear properties

A perturbation expansion of the dependent variables,
g ¼ gð0Þ þ egð1Þ þ Oðe2Þ, is substituted into the model. First-order
linear terms, Oð1; dÞ, will match the first-order terms from the
shoaling analysis and describe the dispersion properties of the
model. The second-order linear terms combined with first-order
nonlinear terms, Oðe; d2Þ, will be different than those of the shoal-
ing analysis and can be compared with the well known Stoke’s sec-
ond-order harmonic (Dean and Dalrymple, 1991). See Appendix C
for details regarding the derivation of the second order harmonic
term.

Recall that in the implementation, all models Oðl4Þ or greater
are weakly nonlinear. As a result all solutions for N ¼ 2 will be
formally fully nonlinear, while solutions for N � 4 will be weakly
nonlinear. Fig. 4 shows a comparison of the ratios between the
approximate second harmonic, gð1Þ and the Stoke’s second har-
monic, gSt , for varying cases of optimized values. Details for each
case can be found in Tables 2 and 3, for the Oðl2Þ and Oðl4Þmodels
respectively.

As with the case of shoaling, only one free-parameter, /̂12, is
available at Oðl2Þ to optimize nonlinear properties. Although there
are several approaches to optimizing the nonlinear properties of
the model, for brevity only one case is examined: (iv) choosing
/̂12 ¼ �353=225 optimizes the nonlinear accuracy making the for-
mal accuracy of the second harmonic Oðl4Þ. The top panel of Fig. 4
shows the ratios of the approximate solution and the Stoke’s solu-
tion for the Oðl2Þ implementation. The first three cases, (i)–(iii),
represent the three optimized shoaling cases previously discussed.
For these cases the formal accuracy of the approximate second har-
monic is Oðl2Þ. As can be seen in the figure all four cases have rea-
sonable accuracy for very shallow waves, but cases (i) and (iii)
begin to diverge after kh ¼ 0:5. Cases (ii) and (iv) are able to main-
tain good agreement with the analytical solution throughout the
shallow water region. For all of these cases the dispersion has been
optimized to a Padé [2,2] approximant.

For the Oðl4Þ case there are two free-parameters that allow
for the optimization of the solution. The first is /̂13, which can
also be used to optimize shoaling, and the second is /̂12, which
only appears in the equation for the nonlinear solution. For
brevity, two possible approaches for optimizing the nonlinear
properties are examined. We first consider the optimal shoaling
cases (v)–(vii) with /̂12 ¼ �2144=1197� 8=1425/̂13 chosen such
that the second harmonic is formally accurate up to Oðl4Þ. Case



Table 3
Cases of optimized basis functions for improved shoaling and Stoke’s second harmonic properties for the weakly nonlinear Oðl4Þ model. The case used for the numerical
validation studies is designated in bold.

Case # Coefficients Dispersion Shoaling Nonlinear Notes

(v) /̂12 ¼ �60812=33915� 4=101745
ffiffiffiffiffiffiffiffiffiffiffiffi
1245
p

/̂13 ¼ 35=102 5=714
ffiffiffiffiffiffiffiffiffiffiffiffi
1245
p

/̂23 ¼ ð�41450 2229
ffiffiffiffiffiffiffiffiffiffiffiffi
1245
p

Þ=57210
/̂14 ¼ ð2185� 89

ffiffiffiffiffiffiffiffiffiffiffiffi
1245
p

Þ=3570
/̂24 ¼ ð�118730 1429

ffiffiffiffiffiffiffiffiffiffiffiffi
1245
p

Þ=57120
/̂34 ¼ 1

Padé [4,4] Oðl6Þ Oðl4Þ

(vi) /̂12 ¼ �ð204016� 16
ffiffiffiffiffiffi
61
p
Þ=113715

/̂13 ¼ 10=19� 10=399
ffiffiffiffiffiffi
61
p

/̂23 ¼ ð29452 3153
ffiffiffiffiffiffi
61
p
Þ=15690

/̂14 ¼ 2ð1261� 89
ffiffiffiffiffiffi
61
p
Þ=1995

/̂24 ¼ ð2012 3953
ffiffiffiffiffiffi
61
p
Þ=15960

/̂34 ¼ 1

Padé [4,4] Oðl4Þ Oðl4Þ Bounded Shoaling Limit

(vii) /̂12 ¼ �1:79454; /̂13 ¼ 0:60440
/̂23 ¼ 0:605257; /̂14 ¼ �1:54214
/̂24 ¼ �1:27021; /̂34 ¼ 1

Padé [4,4] Oðl4Þ Oðl4Þ Minimized Shoaling Error over kh 2 ½0;p�

(viii) /̂12 ¼ �0:1206296
/̂13 ¼ �1:790467
/̂23 ¼ 1:45195; /̂14 ¼ 6:98359
/̂24 ¼ 4:36622; /̂34 ¼ 1

Padé [4,4] Oðl4Þ Oðl4Þ Bounded Stoke’s Limit

(ix) /̂12 ¼ �1:709480; /̂13 ¼ 0:60440
/̂23 ¼ 0:605257; /̂14 ¼ �1:54214
/̂24 ¼ �1:27021; /̂34 ¼ 1

Padé [4,4] Oðl4Þ Oðl2Þ Minimized Shoaling & Stoke’s Error over kh 2 ½0;p�

Fig. 3. Approximate shoaling gradient, ch , compared with linear theory well past the nominal deep-water limit shown for the N ¼ 4 case, using optimum basis functions for
cases (v)–(vii), see Table 3. Direct comparison of shoaling gradients (top panel) and cumulative shoaling error (bottom panel).
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(viii) optimizes the nonlinear terms to Oðl4Þ accuracy as well as
makes the deep water limit close to zero with a choice of
/̂31 ¼ �1:790467 and /̂12 ¼ �0:1206296. Lastly, case (ix)
minimizes the shoaling and nonlinear error over the nominal
shallow water range, kh 2 ½0;p� with a choice of /̂31 ¼ 0:60440
and /̂12 ¼ �1:709480.



Fig. 4. Ratio of approximate second harmonic, g, to Stoke’s second harmonic, gSt , for N ¼ 2 case (top panel) and N ¼ 4 case (bottom panel) using optimized dispersion,
shoaling and nonlinearity, nonlinear cases (i)–(ix), see Tables 2 and 3.
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The bottom panel of Fig. 4 show the ratios for the Oðl4Þ imple-
mentation. Each of the five cases demonstrate good agreement
with the Stoke’s solution in the shallow water regime, with cases
(viii) and (ix) showing the highest accuracy at the nominal shallow
water limit. All five cases remained stable for the numerical valida-
tion cases and showed excellent agreement in comparison with
experimental/analytical results. For brevity only the results of sim-
ulations from case (viii) are included in the validation section.

5. Numerical validation

5.1. Numerical algorithm and boundary condition treatment

Second-order central finite differences are used for the spatial
derivatives and the time dependent hyperbolic component of the
model is solved using a second order leap-frog scheme. Solutions
to the pressure profile are found using a tri-diagonal solver for
the elliptic problem for Oðl2Þ and an LU solver for Oðl4Þ. In order
to avoid the generation of high frequency spurious oscillations in
the solution a one-dimensional Arakawa staggered C grid in space
was used such that the pressure, P, and free-surface elevation, g,
are defined at each node and the velocity, u, is defined at each
half-node. Following the example of Zijlema et al. (2011) the tem-
poral domain is also staggered such that the velocity solution is
offset in time from the free-surface and pressure solution by half
a time step. In all cases discussed in this section the boundary con-
ditions are taken to be reflective.

In cases where the initial conditions involve the generation of
waves, the generating-absorbing sponge later technique developed
by Zhang et al. (2014) was used. The computational domain is broken
up into three distinct sections. The first section represents a wave
generation region of length L1, the second section is of length L2

and represents a computational zone, the third section of length L3

represents a wave absorption region where the incoming waves are
gradually damped. Fig. 5(a) shows an example setup where the wave
generation region is of length L1 ¼ 5, the computational area is of
length L2 ¼ 32 and the wave absorption region is of length L3 ¼ 10.

5.2. Linear wave propagation

A simple case of the propagation of a small amplitude mono-
chromatic wavetrain is examined. Waves of wavelength L ¼ 5h,
where h is the depth, are generated in the source region and
allowed to propagate downstream. The spatial domain setup fol-
lows the diagram shown in Fig. 5(a). As seen in Fig. 5(b), the waves
initially generated in the source region are accurately propagated
downstream. Upon reaching the sponge layer region the wave-
absorption is seen as the waves gradually decrease in amplitude
until eventually reaching an amplitude of nearly zero. It should
be noted that in this case the boundary conditions are treated as
reflective. However, given the strength of the wave generation–
absorption method, any reflections that occur at the boundaries
are damped by the sponge layers.

5.3. Regular wave generation accuracy

In order to evaluate the accuracy of the wave generation-absorp-
tion a set of model runs were conducted for various degrees of non-



Fig. 5. Computational domain for sponge layer simulations (a) and an example of linear wave generation over this domain (b).

Fig. 6. Maximum and minimum wave heights recorded over a 20 m sample area for varying imposed wave heights, Himp . Results are shown for the fully nonlinear Oðl2Þ
solution, solid red line with circles, and for the weakly nonlinear Oðl4Þ solution, dashed blue line with triangles. (For interpretation of the references to colour in this figure
caption, the reader is referred to the web version of this article.)

Fig. 7. Maximum and minimum wave heights recorded over a 20 m sample are for varying sponge lengths, S. All simulations shown were conducted using the fully nonlinear
Oðl2Þ model. Three imposed wave heights are shown, Himp=h ¼ 0:01: red solid line with circles, Himp=h ¼ 0:1: blue dashed line with triangles, and Himp=h ¼ 0:2: magenta
dash–dot line with squares. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this article.)
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linearity. The model domain is the same as the test case described in
Section 5.2. A wave of length L ¼ 5h is generated in a channel of depth
h, corresponding to kh ¼ 1:25664 and T

ffiffiffiffiffiffiffiffi
g=h

p
¼ 6:07898. In all cases

the integrated sponge strength is ~x1 ¼ 10
ffiffiffiffiffiffi
gh

p
and the sponge is qua-

dratically varying, see Zhang et al. (2014) for more details regarding
the sponge layer setup. The wavetrain is allowed to propagate for 15
wave periods before a record is made of the solution in a range of
length 20h located at a distance of 5h from the edge of the wave gen-
eration region and 7h from the edge of the wave absorption region. At
each spatial domain point the wave heights are averaged over five



Fig. 8. Evolution of a solitary wave traveling over a shelf. The ratio of the solitary wave height to reference depth, hs , is 0.12 in all cases. The final time solution is shown with a
bold line, the dotted line designates the height of the leading soliton. Each of the three cases represent a different shelf height ht .
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wave periods. The maximum and minimum wave heights over the
recorded region are then compared with the imposed wave height
from the wave generation region. Fig. 6 shows the results of this anal-
ysis, for both the fully nonlinear Oðl2Þmodel, hereafter referred to as
the PP2 model, and the weakly nonlinear Oðl4Þ model, hereafter
referred to as the PP4 model.

The measured wave heights compare very well with the
imposed wave heights for small amplitude waves. As the amplitude



Table 4
Comparison of wave height results for the case of a soliton propagating over shelves
of different heights with an incident wave height of H=hs ¼ 0:12 where hs is the depth
of the channel prior to the shelf and ht represents the height of the shelf.

H=hs

ht=hs PP2 PP4 LPA (n ¼ 7) GN KdV Bouss.

0.6137 0.1779 0.1772 0.1745 0.168 0.181 –
0.5 0.2029 0.2010 0.1988 0.184 0.207 0.20
0.4510 0.2167 0.2137 0.2120 0.190 0.220 –
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is increased, nonlinear effects become more prominent and the
error in the measured wave heights increases. Given the higher
order of accuracy inherent in the PP4 model, the error observed,
even at strongly nonlinear waves, is relatively low. The imposed
wave in the generation layer was of first order and we would expect
the errors to increase at a quadratic rate and this is observed in
these results.

It was found through the course of these tests that the size of the
generation and absorption layer had an impact on the level of accu-
racy in the downstream propagated wave. Fig. 7 shows the results of
testing sponge layers of different lengths, S, using the PP2 model.
Three wave amplitudes were examined, a small wave amplitude,
Himp ¼ 0:01h, serves as a reference, since it would be expected that
such small amplitude waves would be accurately captured. It can
be seen in the figure that for the smaller of the sponge lengths the
small wave amplitude is accurately captured to within 0:5% and as
the sponge length increases the solution approaches a steady solu-
tion that is very accurate. As the imposed wave amplitude is
increased to Himp ¼ 0:1h and Himp ¼ 0:2h respectively a similar pat-
tern is observed. The smaller sponge lengths are capable of capturing
the solution to within 2% of the imposed amplitude, but as the
sponge lengths are increased the accuracy of the solution increases
to within 0.2%. A similar phenomenon was observed by
Dommermuth (2000) for the gradual introduction of nonlinear
interactions over time. Due to the nature of the sponge layer gener-
ation technique, the larger the sponge length the greater the dis-
tance over which the linear imposed wave dominates, allowing for
a gradual introduction of the nonlinear interactions into the system.

Clear improvement for all three test cases is observed simply by
increasing the length of the sponge layer from S=h ¼ 5 to S=h ¼ 10.
In the case of an imposed wave height of Himp ¼ 0:2 the accuracy of
the downstream wave improves from a maximum error of 1:8% to
a maximum error of 0:6%, a similar observation is made for the
minimum measured wave heights.

5.4. Propagation of a solitary wave over a shelf

As a first test of the model’s ability to predict nonlinear wave
transformation, shoaling of a solitary wave is examined. The
Fig. 9. Experimental setup for wave transformation over a submerged sh
domain is broken into three regions; an initial level of depth hs

and length 25hs, a plane slope of length 10hs which reaches a shelf
depth of ht , and a final level of depth ht and length 215hs. A solitary
wave of height 0:12hs propagates from the left hand boundary
towards the shelf. Fig. 8(a) shows a schematic of the system. All
numerical simulations were conducted with a spatial resolution
of Dx ¼ 0:01. A CFL number of 0.5 was chosen to maintain a low
truncation error in the temporal solution while ensuring relatively
good computational efficiency. The solution was allowed to propa-
gate a sufficient amount of time to ensure that the leading soliton
would reach a steady state near the right edge of the domain.

Johnson (1973) proved that according to KdV theory the solitary
wave will break up into a finite number of solitons upon traveling
over the shoal and that the number of solitons can be predicted by
the ratio of the shelf depth to the initial depth, ht=hs. The results for
the numerical model given three separate shelf depths are
explored here; ht=hs ¼ 0:6137; ht=hs ¼ 0:5 and ht=hs ¼ 0:4510. The
first and third of these shelf depths are eigendepths of the KdV
equation and according to theory the solitary wave should break
up into two distinct solitons for the former case and three distinct
solitons for the latter case. The second case was chosen to facilitate
comparison with the Boussinesq-type solution of Madsen and Mei
(1969). A time evolution of the results for each of the three cases is
shown in Figs. 8(b)–8(d). In Fig. 8(b) at the final time step it is
observed that the solitary wave has fissioned into two solitons that
have propagated far downstream of the shelf, in agreement with
the theory. Similarly, in Fig. 8(d) it is observed that the solitary
wave breaks down into three solitons. It is noted that in all cases
an oscillating wave is observed trailing the primary soliton train,
this is a result of a deviation of the model from KdV theory. The
amplitude of this wave is relatively small when compared with
the amplitudes of the main soliton train.

Verification of the numerical results for both the PP2 model
and the PP4 model is conducted through comparison of the lead-
ing soliton height with the heights predicted by KdV theory as
well as the numerical results reported for the LPA model
(Kennedy and Fenton, 1997). Green–Naghdi (GN) restricted The-
ory 1 Ertekin and Wehausen, 1986 and the previously mentioned
numerical Boussinesq-type (Bouss.) solution (Madsen and Mei,
1969), these results can be found in Table 4. The Green–Naghdi,
KdV and Boussinesq models reported here have a relatively low
level of approximation and are not expected to perform as well
when the waves become highly nonlinear. The LPA model has
been demonstrated to be very accurate for cases of highly nonlin-
ear waves and is considered to be the most accurate prediction
for the purposes of comparison. Both the PP2 and PP4 results
compare well with the LPA model, and as expected the higher
order accuracy in the PP4 model provides results more closely
aligned with the LPA results.
oal, gauge locations are listed along the top axis, all units are in (m).



Fig. 10. Comparison for PP2 simulation on Beji and Battjes (1993) Case (A), between the observed data (circles) and modeled data (line), d represents the index of agreement,
see Eq. (77). Numerical implementation using case (ii), see Table 2.
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5.5. Wavetrain traveling over a submerged shoal

The final validation of the model is conducted through compar-
ison of numerical results with experimental results collected by
Beji and Battjes (1993) on the effect of a wave train traveling over
a submerged shoal. These experimental results have been used in
many cases to validate a range of Boussinesq-type models
(Cienfuegos et al., 2007; Gobbi and Kirby, 1999; Roeber et al.,
2010; Yamazaki et al., 2009; Zhang et al., 2013). Fig. 9 illustrates
the experimental setup. A wave train is traveling from the left of
the domain to the right in a channel of 0.4 m depth. The incoming
wavetrain has a wave height of H0 ¼ 0:020 m and a wave period of
T ¼ 2:02 s, resulting in kh ¼ 0:67. The upstream slope of the sub-
merged shoal is 1:20 and begins 6 m into the domain, the down-



Fig. 11. Comparison for the PP4 simulation on Beji and Battjes (1993) Case (A), between the observed data (circles) and modeled data (line), d represents the index of
agreement, see Eq. (77). Numerical implementation using case (viii), see Table 3.
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stream slope of the shoal is 1:10 and begins 14 m into the
domain. The shoal has an overall height of 0.3 m and length of
11 m, see Dingemans (1994) for more details regarding the
experimental setup. The experimental data set is composed of
time histories for free-surface elevation at ten locations through-
out the domain.

A quantitative assessment of the agreement between the model
and the experimental results is conducted using the index of agree-
ment, d, proposed by Willmott (1981) and later used by Gobbi and
Kirby (1999) to assess the accuracy of WKGS, WN4 and FN4 mod-
els. The formula for d is as follows,
d ¼ 1�
Pn2

j¼n1
yðjÞ � ydðjÞ½ �2Pn2

j¼n1
jyðjÞ � �ydj þ jydðjÞ � �ydj½ �2

; ð77Þ

where the points n1 and n2 are the bounds covering one full wave
period, ydðjÞ represents measured data used for comparison, yðjÞ
represents predicted values from the model and �yd is the average
value of the observed data over one wave period. All simulations
were conducted on a mesh spanning from �15 m to 30 m, with a
grid spacing of Dx ¼ 0:025 m and Dt ¼ 0:00025 s. A small Dt value
was chosen in order to facilitate a better match with the time
history of the experimental data. Due to the sharp corners in



Table 5
Comparison of d values, see (77), between WKGS Oðl2Þ, FN4 Oðl4Þ and WN4 Oðl4Þ from Gobbi and Kirby (1999), Z2 Oðl2Þ and Z4 Oðl4Þmodels from Zhang et al. (2013) and PP2
Oðl2Þ and PP4 Oðl4Þ solutions to the model for Beji and Battjes (1993) test case (A). Dx ¼ 0:025ðmÞ;Dt ¼ 0:0025ðsÞ; x 2 ½�15;30�.

Gauge location (m) PP2 WKGS Z2 PP4 FN4 WN4 Z4

Upsteam of the shoal 2 0.998 0.998 0.988 0.998 0.998 0.998 0.998
4 0.992 0.996 0.973 0.992 0.996 0.996 0.998
10.5 0.995 0.995 0.983 0.995 0.995 0.995 0.998

On the shoal 12.5 0.996 0.999 0.983 0.997 0.999 0.998 0.987
13.5 0.998 0.996 0.986 0.998 0.995 0.987 0.980
14.5 0.988 0.995 0.990 0.992 0.997 0.993 0.942
15.7 0.980 0.995 0.992 0.992 0.996 0.980 0.967

Downstream of the shoal 17.3 0.994 0.975 0.972 0.994 0.995 0.972 0.977
19 0.820 0.973 0.964 0.995 0.982 0.943 0.978
21 0.753 0.927 0.902 0.997 0.993 0.962 0.976
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the bathymetry, which cause discontinuities in the bathymetric
derivatives, a five-point moving average filter was used with ten
iterations. The smoothing was relatively minor at this grid scale
and did not significantly alter the bathymetry.

Comparison of the numerical and experimental results are illus-
trated in Figs. 10 and 11 for the PP2 and PP4 models respectively. A
comparison of the index of agreement is given in Table 5, along with
the values reported by Gobbi and Kirby (1999) for the fully nonlinear
Oðl2ÞWKGS model and the two Oðl4Þmodels, WN4 (weakly nonlin-
ear) and FN4 (fully nonlinear) and values for the fully nonlinear
Oðl2Þ and weakly nonlinear Oðl4Þ fully rotational Green–Naghdi
Boussinesq-type model developed by Zhang et al. (2013), Z2 and
Z4 respectively.

Upstream of the shoal the wave propagation is relatively mono-
chromatic and serves as a verification that the sponge layer wave
generation boundary condition is producing the appropriate wave
train, subfigures (a) and (b). As the wave train approaches the shoal
the wave height begins to increase, a reflection of the shoaling
dynamics. In addition the peaks become sharper indicating the
separation of the wave energy into higher frequency waves, as seen
in subfigures (c)–(e). Agreement between both the PP2 and PP4
models and the experimental data is very good in this region and
on the same order as the models developed by Gobbi and Zhang.
Once the wave train has passed over the shoal the dynamics of
the problem become considerably more complex and the need
for higher-order dispersion becomes more pronounced. The system
now exhibits waves of many frequencies traveling at varying
speeds, in addition the nonlinear interactions between the various
wave frequencies becomes more prominent, as seen in subfigures
(f)–(j). It is in this region that the benefit of added accuracy for dis-
persion, shoaling and nonlinear effects can be observed. The PP2
model does a poor job capturing the downstream solution, how-
ever the PP4 model does remarkably well. The index of agreement
for stations downstream of the shoal for the PP4 model matches
the fully nonlinear FN4 model and surpasses the weakly nonlinear
WN4 and Z4 models.

6. Conclusions

The framework for a Boussinesq-type non-hydrostatic pressure
model with a Green–Nagdhi type expansion along the vertical axis
has been developed. The resulting model is capable of resolving
high-order dispersion, shoaling and nonlinear effects and when
coupled with a SWE model produces a highly accurate solution
for waves in both shallow and intermediate water. The vertical
dimension in the model is handled through vertical modes in the
pressure expansion, thus reducing the unknowns of the model to
those resolving the horizontal dimensions. Through the application
of asymptotic rearrangement, optimal vertical basis functions can
be found which produce the highest order dispersion accuracy as
well as improved accuracy in the shoaling and nonlinear character-
istics. The result is a relatively simple model to implement that is
highly accurate.

In classical Boussinesq-type models the higher order dispersive
terms are resolved through the inclusion of higher-order mixed
space/time derivatives for the velocity. These mixed space/time
derivatives can be difficult and inefficient to implement numeri-
cally. Similarly, extension of the model to two horizontal dimen-
sions will involve mixed spatial derivatives, such as @3u=ð@x@y@tÞ
and @3v=ð@x@y@tÞ, which add an extra layer of computational com-
plexity. While it is true that these issues have been largely
addressed in the literature, in two horizontal dimensions there still
remains a set of two elliptic equations to solve, one for each of the
horizontal velocities, respectively. In contrast, the model devel-
oped in this work resolves the dispersive terms through the non-
hydrostatic pressure component, which at Oðl2Þ involves only a
single equation to be solved, even for two-horizontal dimensions.
Furthermore, the final forms of the model are simple and have
fewer terms than many other comparable order equations.

The pressure-Poisson equation is a well known elliptic problem
which does not exhibit mixed space/time derivatives or mixed spa-
tial derivatives. Numerical implementation is straightforward and
it is possible to take advantage of many of the well known tech-
niques for solving elliptic problems. Through algebraic manipula-
tion of the governing equations it is possible to reduce the
degrees of freedom in the problem, which in turn will improve
the computational efficiency of the model. A detailed comparison
of the computational efficiency of the present model and the clas-
sic Boussinesq approach is outside the scope of this paper, how-
ever, research is currently under way to compare the present
approach with other Boussinesq models. Analysis of computational
cost and accuracy will be conducted.

The model was validated using a variety of test cases. It was
demonstrated that the model is capable of capturing the relatively
simple phenomenon of low amplitude wave propagation as well
the more complicated physics involved with a wavetrain traveling
over a submerged shoal. In all test cases the numerical results of
the model performed well in comparison to analytic and experi-
mental data. In the case of the wavetrain traveling over a sub-
merged shoal the results from the current model were compared
with the results of the fully rotational Boussinesq model of
Zhang et al. (2013), and the results computed by Gobbi and Kirby
(1999), for fully nonlinear second-order models (Z2, WKGS) and
weakly and fully nonlinear fourth-order models (Z4, WN4, FN4).
The fully nonlinear second-order model demonstrated comparable
performance with the models of Gobbi and Zhang in front of and
upon the submerged shoal but showed decreased accuracy behind
the shoal, demonstrating the need for higher order accuracy in the
dispersive effects. However the current weakly nonlinear fourth
order model was shown to be very accurate and to be comparable
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in accuracy to the fully nonlinear fourth-order model of Gobbi
(FN4) including the region behind the shoal.

The coupled pressure-Poisson/SWE model has been shown to
be an accurate model for resolving the propagation of waves over
variable bathymetry. Future work will focus on the implementa-
tion of breaking and wave runup in order to extend the realm of
applicable problems to the model.
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Appendix A. Weakly nonlinear OðlNÞ pressure problem

It is observed that solutions to the full set of equations follow a
pattern. A pressure solution for an expansion of OðlNÞ can be found
using the following expressions,

Bottom boundary condition:

XN

n¼0

a2;n � rPn þ a1;nPnð Þ ¼ a0 þ OðlbNþ2; dl4Þ; ðA:1Þ

Pressure Poisson:

XN

n¼0

b3;n;mr � rPn þ b2;n;m � rPn þ b1;n;mPnð Þ

¼ b0;m þ OðlbNþ2; dl4Þ;m ¼ 1 . . . N � 1; ðA:2Þ

where,

a2;n ¼ lb̂nþ2ðhþ dgÞðrhÞ/njq¼0; ðA:3Þ

a1;n ¼ lb̂nþ2ðrhÞ � ðrhÞ þ lb̂n

� 	
/0njq¼0; ðA:4Þ

a0 ¼ �gðhþ dgÞ þ dl2ðhþ dgÞ�u � ð�u � r2hÞ ðA:5Þ

and

b3;n;m¼lb̂nþ2ðhþdgÞ2nnmjq¼1; ðA:6Þ

b2;n;m¼2lb̂nþ2ðhþdgÞ HnmðrhÞ�UnmðrhþrgÞð Þjq¼1; ðA:7Þ

b1;n;m¼lb̂n l2ðrhÞ2þ1
� 	

Knmþl2Snm ðrhÞþdðrgÞð Þ2
h

�2l2WnmðrhÞ � rhþdrgð Þ

þl2Hnm ðhþdgÞr2h�2rhðrhþdrgÞ
� 	

þl2Unm 2ðrhþdrgÞ2�ðhþdgÞðr2hþdr2gÞ
� 	i

jq¼1; ðA:8Þ

b0;m¼�dl2ðhþdgÞ2Xmrð�u �r�uÞjq¼1; ðA:9Þ

where,

b̂n ¼
0 for n ¼ 0;
bn otherwise

�
ðA:10Þ

and the above integrals are defined in Table 1. It is important to
note that, in order to construct a weakly nonlinear model, all terms
that are of Oðdl4Þ and higher are discarded in addition to all terms
that are of OðlNþ2Þ. An advantage of considering the model in this
framework is that all of the integrals as they are defined in Table 1
can be calculated once and substituted into the ai;j’s and bi;j;k’s. A
versatile algorithm can then be designed such that the elliptic sol-
ver is based on arbitrary ai;j’s and bi;j;k’s.

The conservation of momentum equations follow a similar pat-
tern and can be defined as,

@�u
@t
þ d�u � r�uþ 1

2
g

hrgþ grh
hþ dg

� �
þ
XN

n¼1

C2;nrPn þ C1;nPnð Þ ¼ 0;

ðA:11Þ

where,

C2;n ¼ lb̂n Gnjq¼1; ðA:12Þ

C1;n ¼ lb̂n
�1

hþ dg
rh/njq¼0 þrhRnjq¼1ðrhþ drgÞ
� 	

: ðA:13Þ

Finally the conservation of mass equation remains unchanged,

@g
@t
þr ðhþ dgÞ�uð Þ ¼ 0: ðA:14Þ

Eqs. (A.1), (A.2), (A.11) and (A.14) make up the complete system of
equations for an arbitrary OðlNÞ model.

A.1. Reduction in degrees of freedom for higher order models

The technique for reducing the degrees of freedom in the fully
nonlinear Oðl2Þ case can be extended to the weakly nonlinear
OðlNÞ case. Considering Eqs. (A.1) and (A.2), truncation of all terms
of OðlbNþ2Þ and nonlinear terms of order Oðdl4Þ in the coefficients
ai;j and bi;j;k produces,

a1;NPN þ
XN�1

n¼1

a2;n � rPn þ a1;nPnð Þ ¼ a0 þ OðlbNþ2; dl4Þ; ðA:15Þ

b1;N;mPN þ
XN�1

n¼1

b3;n;mr � rPn þ b2;n;m � rPn þ b1;n;mPnð Þ

¼ b0;m þ OðlbNþ2; dl4Þ; m ¼ 1 . . . N � 1; ðA:16Þ

where,

a1;N ¼ lbN /0N jq¼0 2 R; ðA:17Þ
b1;N;m ¼ lbN KNmjq¼1 2 R; ðA:18Þ

which implies that PN can be explicitly written in terms of the Pn for
n ¼ 1 . . . N � 1, assuming /0Njq¼0 – 0. This reduces the number of
unknowns in the elliptic equation by one and gives the following
system of equations:

PN ¼
1

a1;N
a0 �

XN�1

n¼1

a2;n � rPn þ a1;nPnð Þ
 !

; ðA:19Þ

XN�1

n¼1

B3;n;mr �rPn þ B2;n;m � rPn þ B1;n;mPnð Þ ¼ B0;m;

m ¼ 1 . . . N � 1; ðA:20Þ

where,

B3;n;m ¼ b3;n;m; ðA:21Þ

B2;n;m ¼ b2;n;m �
b1;N;m

a1;N

� �
a2;n; ðA:22Þ

B1;n;m ¼ b1;n;m �
b1;N;m

a1;N

� �
a1;n; ðA:23Þ

B0;m ¼ b0;m �
b1;N;m

a1;N

� �
a0: ðA:24Þ
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Furthermore it is possible to reduce the elliptic problem by an addi-
tional degree of freedom due to the fact that for N � 4 any term of
order Oðlb̂ðN�1Þþ2Þ wil also be truncated. For m ¼ 1 Eq. (A.20) can be
written as

B1;N�1;1PN�1þ
XN�2

n¼1

B3;n;1r�rPnþB2;n;1 �rPnþB1;n;1Pnð Þ¼B0;1; ðA:25Þ

where,

B1;N�1;1 ¼ lbN KðN�1Þ1jq¼1 �KN1jq¼1
/0N�1

/0N

� �
q¼0

 !
: ðA:26Þ

This implies that PN�1 can be written as an explicit combination of
the Pn terms for n ¼ 1 . . . N � 2, assuming that B1;N�1;1 – 0. Thus

PN ¼
1

a1;N
a0�

XN�1

n¼1

a2;n �rPnþa1;nPnð Þ
 !

; ðA:27Þ

PN�1 ¼
1

B1;N�1;1
B0;1�

XN�2

n¼1

B3;n;1r�rPnþB2;n;1 �rPnþB1;n;1Pnð Þ
 !

; ðA:28Þ

XN�2

n¼1

bB3;n;mr�rPnþ bB2;n;m �rPnþ bB1;n;mPn

� 	
¼ bB0;m;

m¼2 . . .N�1; ðA:29Þ

where,

bB3;n;m ¼ B3;n;m �
B1;N�1;m

B1;N�1;1

� �
B3;n;1; ðA:30Þ

bB2;n;m ¼ B2;n;m �
B1;N�1;m

B1;N�1;1

� �
B2;n;1; ðA:31Þ

bB1;n;m ¼ B1;n;m �
B1;N�1;m

B1;N�1;1

� �
B1;n;1; ðA:32Þ

bB0;m ¼ B0;m �
B1;N�1;m

B1;N�1;1

� �
B0;1: ðA:33Þ

No more reduction of degrees of freedom is possible in this manner.
However this technique has reduced the degrees of freedom in the
elliptic problem by two and in general the inclusion of an OðlNÞ
pressure profile will lead to an additional N � 2 elliptic equations
to be solved. This reduction in the degrees of freedom will improve
the computational cost of the method in the numerical implemen-
tation. For example, in one horizontal dimension the Oðl4Þ model
has only six bands in the elliptic problem using a central difference
method. Note that the set of basis functions and weighting func-
tions is arbitrary, thus the set of constant coefficients in each of
these sets can be chosen in order to enforce a1;N – 0 and
B1;N�1;1 – 0, making the reduction in the degrees of freedom always
possible.

Appendix B. Linear properties

In order to explore the dispersive and shoaling properties of the
model we consider the linear case, i.e. Oð1Þ, with a multiple scales
expansion of the dependent variables. The multiple scales expan-
sion consists of the case where spatially there is a fast derivative,
x, and a slow derivative, X, and we consider only one scale in the
time domain, t. In addition we also consider that the bathymetry
is slowly varying, i.e. h;x ¼ eh;X, where e
 1. Spatial derivatives
to both pressure and free-surface are thus given by the following
expressions:

Pn;x ! Pn;x þ ePn;X þ Oðe2Þ; ; ðB:1Þ
Pn;xx ! Pn;xx þ e Pn;xX þ Pn;Xxð Þ þ Oðe2Þ ðB:2Þ

and similar expressions for the free-surface spatial derivatives, g;x
and g;xx. Next we consider a perturbation solution to the dependent
variables:
Pn ¼ Pð0Þn þ ePð1Þn þ Oðe2Þ; ðB:3Þ
g ¼ gð0Þ þ egð1Þ þ Oðe2Þ; ðB:4Þ
u0 ¼ uð0Þ0 þ euð1Þ0 þ Oðe2Þ: ðB:5Þ

Substituting the multiples scales expansion and perturbation
expansion, Eqs. B.1,B.2,C.10,C.11,B.5, into the governing equations
and retaining only terms up to Oðe;1Þ we get the following set of
equations:

Oð1;1Þ :

ggð0Þ þ
XN

n¼1

lb̂n /n;qjq¼0Pð0Þn ¼ 0; ðB:6Þ

l2gh2vmgð0Þ;xx þ
XN

n¼1

lb̂n ðl2h2nnmPð0Þn;xx þKnmPð0Þn Þ
" #

q¼1

¼ 0;

m ¼ 1 . . . N � 1; ðB:7Þ
gð0Þ;t þ huð0Þ0;x ¼ 0; ðB:8Þ

huð0Þ0;t þ
1
2

ghgð0Þ;x þ h
XN

n¼1

lb̂n Gnjq¼1Pð0Þn;x ¼ 0: ðB:9Þ

Oðe;1Þ :

ggð1Þ þ
XN

n¼1

lb̂n /n;qjq¼0Pð1Þn ¼ �
XN

n¼1

lb̂nþ2hh;X/njq¼0Pð0Þn;x; ðB:10Þ

l2gh2vmgð1Þ;xx þ
XN

n¼1

lb̂n ðl2h2nnmPð1Þn;xx þKnmPð1Þn Þ ¼
"
2l2ghh;Xðvm �XmÞgð0Þ;x � l2gh2vmðg

ð0Þ
;xX þ gð0Þ;XxÞ�XN

n¼1

lb̂n l2h2nnmðPð0Þn;xX þ Pð0Þn;XxÞ þ 2l2hh;XðHnm �WnmÞPð0Þn;x

� 	#
q¼1

;

m ¼ 1 . . . N � 1; ðB:11Þ
gð1Þ;t þ huð1Þ0;x ¼ �h;Xuð0Þ0 � huð0Þ0;X; ðB:12Þ

huð1Þ0;t þ
1
2

ghgð1Þ;x þ h
XN

n¼1

lb̂n Gnjq¼1qPð1Þn;x ¼

� 1
2

ghgð0Þ;X �
1
2

gh;Xgð0Þ�XN

n¼1

lb̂n hGnPð0Þn;X þ h;Xð/n � RnÞPð0Þn

� 	
q¼1

; ðB:13Þ

where the formulas for the above integrals can be found in Table 1.
A general solution to the Oð1;1Þ equations will provide an under-
standing of the linear dispersion properties, while a general solution
to the Oðe;1Þ equations will lead to an analysis of the linear shoaling
properties of the model. We apply the following general solutions to
the above equations:

gð0Þ ¼ ~gð0Þeiw; Pð0;1Þn ¼ eP ð0;1Þn eiw; uð0;1Þ0 ¼ ~uð0;1Þ0 eiw; ðB:14Þ

where gð1Þ is taken to be zero, i is the imaginary constant and
w ¼ wðx; tÞ such that w is a periodic function in both x and t with fre-
quency k and r respectively, such that,

gð0Þ;t ¼ �ir~gð0Þeiw; gð0Þ;x ¼ ik~gð0Þeiw; gð0Þ;xx ¼ �k2 ~gð0Þeiw;

gð0Þ;X ¼ ~gð0Þ;X eiw; gð0Þ;Xx ¼ ik~gð0Þ;X eiw; gð0Þ;xX ¼ ik;X~gð0Þeiw þ ik~gð0Þ;X eiw;

and the same for Pð0;1Þn and uð0;1Þ0 . Furthermore, to simplify the solu-

tions we define eP ð0;1Þn and ~uð0;1Þ0 in terms of transition functions

TnðkhÞð0;1Þ and S0ðkhÞð0;1Þ which are dependent on the depth h and
the wavenumber k,

eP ð0Þn ¼ g~gð0ÞTð0Þn ; ~uð0Þ0 ¼ r~gð0ÞSð0Þ0 ;eP ð1Þn ¼ igh;X~gð0ÞTð1Þn ; ~uð1Þ0 ¼ ih;Xr~gð0ÞSð1Þ0 :
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Considering that the shoaling coefficient, ch ¼ ðh~gð0ÞX Þ=ðhX~gð0ÞÞ, is a
function of the change in the free-surface with respects to the
change in the bathymetry, we rewrite the slow derivative of g in
terms of the shoaling coefficient ch, Eq. (65). Lastly we define a var-
iable Q related to the dispersion relationship.

~gð0Þ;X ¼
h;X
h

� �
~gð0Þch; Q � r2

gh
:

From these it is also possible to derive the following relationships:

bQ ¼ khQ ;kh

Q þ khQ ;kh
;

k;X ¼ �h;X
k
h

� �bQ ;
ðkhÞ;X ¼ kh;Xð1� bQ Þ;eP ð0Þn;X ¼ g ~gð0Þ;X Tð0Þn þ kh;Xð1� bQ Þ~gð0ÞTð0Þn;kh

� 	
;

~uð0Þ0;X ¼ r ~gð0Þ;X Sð0Þ0 þ kh;Xð1� bQ Þ~gð0ÞSð0Þ0;kh

� 	
:

Substituting these relationships into Eqs. (B.6)–(B.13) we obtain the
following system of equations:

Oð1;1Þ :XN

n¼1

lb̂n /0njq¼0Tð0Þn ¼ �1; ðB:15Þ

XN

n¼1

lb̂n l2ðkhÞ2nnm �Knm

� 	
Tð0Þn

 !
q¼1

¼ 0;

m ¼ 1 . . . N � 1; ðB:16Þ

Sð0Þ0 ¼
1

kh
; ðB:17Þ

r2

gk2h
¼ C2

gh
¼ 1

2
þ
XN

n¼1

lb̂n Gnjq¼1Tð0Þn : ðB:18Þ

Oðe;1Þ :XN

n¼1

lb̂n /0njq¼0Tð1Þn ¼�ðkhÞ
XN

n¼1

lb̂nþ2/njq¼0Tð0Þn ; ðB:19Þ

�2ðkhÞl2 vm þ
XN

n¼1

lb̂n nnmTð0Þn

 !
ch

"

þ
XN

n¼1

lb̂n l2ðkhÞ2nnm �Knm

� 	
Tð1Þn

¼ l2ðkhÞð2Xm �vmð2þ bQ ÞÞ þXN

n¼1

lb̂nþ2 ð2ðkhÞðHnm �WnmÞð

� khÞbQ nnmÞTð0Þn þ 2ðkhÞ2ð1� bQ ÞnnmT ð0Þn;kh

� 	i
q¼1

;

m¼ 1 . . . N�1; ðB:20Þ

Sð0Þ0 ch � ðkhÞSð1Þ0 ¼ ðkhÞð bQ � 1ÞSð0Þ0;kh � Sð0Þ0 ; ðB:21Þ

1
2
þ
XN

n¼1

lb̂n GnTð0Þn

 !
q¼1

ch þ ðkhÞ2 C2

gh

 !
Sð1Þ0

� ðkhÞ
XN

n¼1

lb̂n Gnjq¼1Tð1Þn ¼�
1
2
�
Z 1

0

XN

n¼1

lb̂n ð/n � RnÞTð0Þn

�
� khÞð bQ � 1ÞGnTð0Þn;kh

� 	
q¼1

: ðB:22Þ

The first-order pressure solutions can be found by solving Eqs.
(B.15) and (B.16). From Eq. (B.18) it is clear that the dispersion
relationship is directly related to the solution for the first order
pressure terms, Tð0Þn . Once the Oð1;1Þ solutions are found they can
be substituted into the Oðe;1Þ equations, (B.19)–(B.22) creating a
system of equations. Solving this system of equations provides a
solution for the shoaling gradient ch which can then be compared
with the Stoke’s solution for the shoaling gradient.

Appendix C. Nonlinear properties

In order to explore the nonlinear properties of the model we
consider the nonlinear case, i.e. OðdÞ, with a flat bathymetry. As
with the linear properties we consider a perturbation solution to
the dependent variables:

Pn ¼ Pð0Þn þ ePð1Þn þ Oðe2Þ; ðC:1Þ
g ¼ gð0Þ þ egð1Þ þ Oðe2Þ; ðC:2Þ
u0 ¼ uð0Þ0 þ euð1Þ0 þ Oðe2Þ: ðC:3Þ

Substituting the perturbation expansion into the governing equa-
tions and focusing on the Oðe; dÞ terms we get the following set of
equations:

ggð1Þ þ
XN

n¼1

lb̂n /n;qjq¼0Pð1Þn ¼0; ðC:4Þ

gl2vmkq¼1h2gð1Þ;xx þ
XN

n¼1

lb̂n l2h2nnmPn;xxþKnmPn

� 	
jq¼1

¼�2l2h2Xmjq¼1 uð0Þ;x
� 	2

þghl2vmjq¼1 2ðgð0Þ;x Þ
2�gð0Þgð0Þ;xx

� 	
�
XN

n¼1

lb̂n 2l2nnmgð0ÞPð0Þn;xx�2l2hUnmðgð0Þ;x Pð0Þn;xþgð0Þ;xx Pð0Þn Þ
� 	

jq¼1;

m¼1 . . .N�1 ðC:5Þ

gð1Þ;t þhuð1Þ;x ¼� gð0Þ;x uð0Þ þgð0Þuð0Þ;x
� 	

; ðC:6Þ

1
2

ghgð1Þ;x þhuð1Þ;t þ
XN

n¼1

lb̂n hGnjq¼1Pð1Þn;x ¼�gð0Þuð0Þ;t �hgð0Þuð0Þ;x

þ
XN

n¼1

lb̂n Rngð0Þ;x Pð0Þn �Gngð0ÞPð0Þn;x

� 	
jq¼1: ðC:7Þ

Note that the Oð1Þ equations are equivalent to the Oð1Þ equations
from Appendix B. A general solution to the above equations will
lead to an approximation for the nonlinear properties of the model.
We apply the following general solutions,

gð0Þ ¼ ~gð0Þeiw; Pð0;1Þn ¼ eP ð0;1Þn eiw; uð0;1Þ0 ¼ ~uð0;1Þ0 eiw; ðC:8Þ

where i is the imaginary constant and w ¼ wðx; tÞ such that w is a
periodic function in both x and t with frequency k and r respec-
tively, such that,

gð0Þ;t ¼ �ir~gð0Þeiw; gð0Þ;x ¼ ik~gð0Þeiw; gð0Þ;xx ¼ �k2~gð0Þeiw;

gð1Þ;t ¼ �2ir~gð0Þeiw; gð1Þ;x ¼ 2ik~gð0Þeiw; gð1Þ;xx ¼ �4k2 ~gð0Þeiw:

and the same for Pð0;1Þn and uð0;1Þ0 . Furthermore, to simplify the solu-
tions we define eP ð0;1Þn and ~uð0;1Þ0 in terms of transition functions
TnðkhÞð0;1Þ and S0ðkhÞð0;1Þ which are dependent on the depth h and
the wavenumber k, and define ~gð1Þ in terms of the first order wave
height ~gð0Þ,

~gð1Þ ¼ eAð~gð0ÞÞ2;eP ð0Þn ¼ g~gð0ÞT ð0Þn ; ~uð0Þ0 ¼ r~gð0ÞSð0Þ0 ;eP ð1Þn ¼ igð~gð0ÞÞ2Tð1Þn ; ~uð1Þ0 ¼ irð~gð0ÞÞ2Sð1Þ0 :

Substituting these relationships into Eqs. (C.4)–(C.7) and simplify-
ing we get the following:
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eAþXN

n¼1

lb̂n /n;qjq¼0Tð1Þn ¼0; ðC:9Þ

4gl2ðkhÞ2vmjq¼1
eAþg

XN

n¼1

lb̂n 4l2ðkhÞ2nnm�Knm

� 	
jq¼1Tð1Þn

¼l2ðkhÞ2 gvm�2hXmðSð0Þ0 Þ
2
r2

� 	
jq¼1

þgðkhÞ2
XN

n¼1

lb̂nþ2 3Unm�2wnmð ÞTð0Þn ; m¼1 . . .N�1; ðC:10Þ

eA�ðkhÞSð1Þ0 ¼ðkhÞSð0Þ0 ; ðC:11Þ

gkeA�2r2Sð1Þ0 þ2gk
XN

n¼1

lb̂n wnmTð1Þn

¼r2 1�ðkhÞSð0Þ0

� 	
Sð0Þ0 þgk

XN

n¼1

lb̂n Rn�Gnð Þjq¼1Tð0Þn : ðC:12Þ

Note that the solutions for Tð0Þn ; Sð0Þ0 and r can be found through solv-
ing Eqs. (B.15)–(B.18) from Appendix B. Solving the system of equa-
tions made up of Eqs. (C.9)–(C.12) for eA determines an expression
for the second-order nonlinear terms which can then be compared
with the Stoke’s second-order solution.
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