Math 20580
Final Exam
December 12, 2017
Calculators are NOT allowed. Do not remove this answer page - you will return the whole exam. You will be allowed 2 hours to do the test. You may leave earlier if you are finished. There are 20 multiple choice questions worth 7 points each. You will receive 10 points for being present and following the instructions. Record your answers by placing an \times through one letter for each problem on this answer sheet.

Sign the pledge. "On my honor, I have neither given nor received unauthorized aid on this Exam":

1. a b c d e
2. a b c d e
3. $a \operatorname{b} \quad \mathrm{c}$ d $\begin{aligned} & \text { e }\end{aligned}$
4. a bly d
5. a b c d e
6. a b $\mathrm{b} \sqrt{\mathrm{c}}$ e
7. a b $\mathrm{c} \sqrt{\mathrm{d}}, \mathrm{e}$
8. a b c d e
9. a b c d e
10. a b c d e
11. a b c d, e
12. a b e d e
13. a b $\mathrm{c} \sqrt{\mathrm{d}}, \mathrm{e}$
14. a b c d e
15. a b c d e
16. a b e d e
17. a b c d e
18. a b c d e
19. a b c d e
20. a b c d e
21. Find $T\left[\begin{array}{l}1 \\ 1\end{array}\right]$ if $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is a linear transformation such that

$$
T\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
6
\end{array}\right] \quad \text { and } \quad T\left[\begin{array}{l}
3 \\
4
\end{array}\right]=\left[\begin{array}{c}
0 \\
-2 \\
4
\end{array}\right]
$$

(a) $\left[\begin{array}{l}2 \\ 2 \\ 2\end{array}\right]$
(b) $\left[\begin{array}{c}2 \\ -2 \\ 10\end{array}\right]$
(c) $\left[\begin{array}{c}1 \\ -1 \\ 5\end{array}\right]$
(d) $\left[\begin{array}{l}-1 \\ -1 \\ -1\end{array}\right]$
(e) cannot be determined from the given information.
2. Find the solution of the initial value problem

$$
\left\{\begin{array}{l}
4 y^{\prime \prime}-4 y^{\prime}+y=0 \\
y(2)=4 e, \quad y^{\prime}(2)=3 e
\end{array}\right.
$$

(a) $4 e^{2 t-3}$
(b) $(t+2) e^{t / 2}$
(c) $4 e^{t / 2}+t / 2-1$
(d) $5 e^{t / 2}-e^{-t / 2}$
(e) $e \cdot t^{2}$
3. If $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ is an eigenvector of the matrix $\left[\begin{array}{ccc}4 & 0 & -1 \\ 3 & 0 & 3 \\ 2 & -2 & 5\end{array}\right]$ then the corresponding eigenvalue is
(a) 3
(b) 1
(c) -1
(d) -3
(e) 0
4. Find the integrating factor that would make the following equation exact:

$$
y^{2}+\sin x+x y \frac{d y}{d x}=0
$$

(a) $\mu=e^{x y^{2} / 2}$
(b) $\mu=e^{y^{2}}$
(c) $\mu=\frac{x^{2} y^{2}}{2}$
(d) $\mu=y \sin (x)$
(e) $\mu=x$
5. The eigenvalues of the matrix $A=\left[\begin{array}{cc}2 & 3 \\ -1 & 2\end{array}\right]$ are
(a) $-2 \pm i \cdot 2 \sqrt{3}$
(b) 2 (with multiplicity 2)
(c) $2 \pm i \cdot \sqrt{3}$
(d) $2 \pm i$
(e) A has no eigenvalues
6. Consider the equation

$$
y^{\prime \prime}-2 t y^{\prime}+e^{t} y=0
$$

Find the Wronskian of the fundamental set of solutions of this equation determined by the conditions $y_{1}(0)=2, y_{1}^{\prime}(0)=1$ and $y_{2}(0)=-1, y_{2}^{\prime}(0)=3$.
(a) e^{t+7}
(b) $7 e^{t^{2}}$
(c) $-t^{2}+7$
(d) 7
(e) $(t+7) e^{t}$
7. Let $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & 2 & -3 \\ 1 & -1 & 0\end{array}\right]$ and $D=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3\end{array}\right]$. Find the invertible matrix P such that $A=P D P^{-1}$.
(a) $\left[\begin{array}{ccc}2 & 0 & 0 \\ 1 & 1 & -3 \\ 1 & 1 & 1\end{array}\right]$
(b) $\left[\begin{array}{ccc}0 & 0 & 2 \\ 1 & 1 & -3 \\ 2 & 2 & 2\end{array}\right]$
(c) $\left[\begin{array}{ccc}2 & 1 & 1 \\ -3 & 0 & 1 \\ 1 & -1 & 0\end{array}\right]$
(d) $\left[\begin{array}{ccc}1 & -3 & 0 \\ 2 & 1 & 1 \\ 1 & 0 & 1\end{array}\right]$
(e) P cannot be determined from the given data.
8. Let $y(t)$ be the unique solution of the initial value problem

$$
\ln t \cdot \frac{d y}{d t}-\frac{2 y}{\cos t}=\frac{t^{2}}{2^{t}-8} \quad y(2)=\pi
$$

What is the largest interval on which a solution y is guaranteed to exist?
(a) $t>0$
(b) $\frac{\pi}{2}<t<3$
(c) $t<1$
(d) $1<t<3 \pi / 2$
(e) $3<t<\frac{3 \pi}{2}$
9. Which of the following statements is not true for an invertible $n \times n$ matrix?
(a) $\operatorname{dim}(\operatorname{Row} A)=n$
(b) $\operatorname{rank} A=n$
(c) 0 is an eigenvalue of A
(d) $A^{t} A^{-1}$ is invertible
(e) $\operatorname{dim}(\operatorname{Nul} A)=0$
10. Which formula describes the general solution of the differential equation

$$
2 t^{2} y^{\prime \prime}+3 t y^{\prime}-y=0, t>0
$$

given the fact that $y_{1}(t)=t^{-1}$ is a solution of this equation.
(a) $c_{1} t^{2}+c_{2} t^{-1}$
(b) $c_{1} t^{-1}+c_{2}$
(c) $c_{1} t^{-1}+c_{2} t^{2 / 3}$
(d) $c_{1} e^{t}+c_{2} t^{-1}$
(e) $c_{1} t^{-1}+c_{2} t^{1 / 2}$
11. Find the general solution of

$$
y^{\prime \prime}+2 y^{\prime}+\frac{13}{4} y=0
$$

(a) $y(t)=c_{1} e^{-t}+c_{2}(\cos (3 t / 2)+\sin (3 t / 2))$
(b) $y(t)=c_{1} t e^{-t}+c_{2} e^{-t}$
(c) $y(t)=c_{1} e^{-t} \cos (3 t / 2)+c_{2} e^{-t} \sin (3 t / 2)$
(d) $y(t)=c_{1} e^{-t}+c_{2} e^{3 t / 2}$
(e) $y(t)=c_{1} \cos (-t)+c_{2} \sin (3 t / 2)$
12. Which formula describes implicitly the solution of the initial value problem

$$
3 e^{x} \cdot \frac{d y}{d x}-\frac{x}{y^{2}}=0, \quad y(0)=1
$$

(a) $3 y e^{x}=x^{2}+3$
(b) $3 e^{x}=\frac{x}{y}+3$
(c) $e^{x}(x+y)=y^{2}$
(d) $y^{3}+(x+1) e^{-x}=2$
(e) $y^{3}+2 y=3 e^{x}+x$
13. Consider the matrices

$$
A=\left[\begin{array}{ccccc}
2 & 4 & -2 & 1 & 11 \\
3 & 6 & -3 & 1 & 15 \\
-1 & -2 & 1 & 2 & 2 \\
4 & 8 & -4 & 4 & 28
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ccccc}
1 & 2 & -1 & 0 & 4 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

where B is the reduced echelon form of A. A basis for the orthogonal complement of the row space of A is given by
(a) $\left\{\left[\begin{array}{c}2 \\ 3 \\ -1 \\ 4\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 2 \\ 4\end{array}\right]\right\}$
(b) $\left\{\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-4 \\ 0 \\ 0 \\ -3 \\ 1\end{array}\right]\right\}$
(c) $\left\{\left[\begin{array}{c}-1 \\ -2 \\ 1 \\ 0 \\ -4\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ 0 \\ -1 \\ -3\end{array}\right]\right\}$
(d) $\left\{\left[\begin{array}{c}-1 \\ -2 \\ 1 \\ 2 \\ 2\end{array}\right],\left[\begin{array}{c}4 \\ 8 \\ -4 \\ 4 \\ 28\end{array}\right]\right\}$
(e) $\left\{\left[\begin{array}{c}4 \\ 6 \\ -2 \\ 8\end{array}\right],\left[\begin{array}{c}-2 \\ -3 \\ 1 \\ -4\end{array}\right],\left[\begin{array}{c}11 \\ 15 \\ 2 \\ 28\end{array}\right]\right\}$
14. Based on the method of Undetermined Coefficients, find the form of a particular solution of the differential equation

$$
y^{\prime \prime}+4 y^{\prime}+5 y=\left(t^{2}+1\right) e^{-2 t}
$$

(a) $Y(t)=A_{0}\left(t^{2}+1\right) e^{-2 t} \cos (t)+B_{0}\left(t^{2}+1\right) e^{-2 t} \sin (t)$
(b) $Y(t)=\left(A_{0} t^{2}+A_{1} t+A_{2}\right) e^{-2 t} \cos (t)+\left(B_{0} t^{2}+B_{1} t+B_{2}\right) e^{-2 t} \sin (t)$
(c) $Y(t)=t\left(A_{0} t^{2}+A_{1} t+A_{2}\right) e^{-2 t}$
(d) $Y(t)=\left(A_{0} t^{2}+A_{1} t+A_{2}\right) e^{2 t}+\left(B_{0} t^{2}+B_{1} t+B_{2}\right) e^{-2 t}$
(e) $Y(t)=\left(A_{0} t^{2}+A_{1} t+A_{2}\right) e^{-2 t}$
15. The second column of the inverse of the matrix $\left[\begin{array}{ccc}1 & -2 & 1 \\ 2 & -3 & 2 \\ -1 & 2 & 0\end{array}\right]$ is
(a) $\left[\begin{array}{c}2 \\ 3 \\ -2\end{array}\right]$
(b) $\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right]$
(c) $\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$
(d) $\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$
(e) $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$
16. Consider the initial value problem

$$
\frac{d y}{d t}=2 y^{2}-4 y, \quad y(5)=1
$$

Which of the following describes the nature of the solution?
(a) $\quad \lim _{t \rightarrow-\infty} y(t)=2 ; \quad \lim _{t \rightarrow \infty} y(t)=0 ; \quad$ inflection point at $y=1$
(b) $\quad \lim _{t \rightarrow-\infty} y(t)=2 ; \quad \lim _{t \rightarrow \infty} y(t)=\infty ; \quad$ concave up
(c) $\quad \lim _{t \rightarrow-\infty} y(t)=0 ; \quad \lim _{t \rightarrow \infty} y(t)=4 ; \quad$ inflection point at $y=2$
(d) $\quad \lim _{t \rightarrow-\infty} y(t)=-\infty ; \quad \lim _{t \rightarrow \infty} y(t)=0 ; \quad$ concave down
(e) $\quad \lim _{t \rightarrow-\infty} y(t)=0 ; \quad \lim _{t \rightarrow \infty} y(t)=-\infty ; \quad$ inflection point at $y=1 / 2$
17. Recall that \mathbb{P}_{n} denotes the vector space of polynomials of degree at most n, and consider the linear transformation $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{3}$ defined by

$$
T(y)=t y^{\prime \prime}-y^{\prime}+(t+1) y
$$

The matrix of T relative to the basis $\left\{1, t, t^{2}\right\}$ of \mathbb{P}_{2} and the basis $\left\{1, t, t^{2}, t^{3}\right\}$ of \mathbb{P}_{3} is
(a) $\left[\begin{array}{ccc}1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$
(b) $\left[\begin{array}{c}t \\ -1 \\ t+1\end{array}\right]$
(c) $\left[\begin{array}{c}1-t \\ 1+t \\ t+t^{2} \\ t^{2}\end{array}\right]$
(d) $\left[\begin{array}{cccc}1 & 1 & 0 & 0 \\ -1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]$
(e) it cannot be determined from the given information.
18. Solve the initial value problem

$$
\left\{\begin{array}{l}
t y^{\prime}+(t+1) y=t e^{-t}, t>0 \\
y(1)=2 e^{-1}
\end{array}\right.
$$

(a) $2 e^{-t}$
(b) $t e^{-t}+1$
(c) $\left(t^{2}+1\right) e^{-t}$
(d) $\frac{1+t}{e^{t}}$
(e) $\frac{t^{2}+3}{2 t e^{t}}$
19. Consider the lined L spanned by the vector $\vec{v}=\left[\begin{array}{c}2 \\ -1\end{array}\right]$. The distance from the vector $\vec{x}=\left[\begin{array}{c}7 \\ -1\end{array}\right]$ to the line L is
(a) $\sqrt{45}$
(b) $\sqrt{5}$
(c) $2 \sqrt{3}$
(d) 5
(e) $\sqrt{50}$
20. Using the method of Variation of Parameters, find a particular solution of the differential equation

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=x^{2} \ln (x), x>0,
$$

knowing that $\left\{y_{1}, y_{2}\right\}=\left\{x^{2}, x^{2} \ln (x)\right\}$ is a fundamental set of solutions for the homogeneous equation $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0$.
(a) $x \ln (x)+\frac{x^{3}}{3}$
(b) $\frac{x^{3} \ln (x)}{2}$
(c) $\frac{x^{2} \ln ^{3}(x)}{6}$
(d) $2 x \ln ^{2}(x)$
(e) $\frac{(x+\ln (x))^{2}}{2}$

