Math 20580
Midterm 1
September 19, 2017
Calculators are NOT allowed. Do not remove this answer page - you will return the whole exam. You will be allowed 75 minutes to do the test. You may leave earlier if you are finished.

There are 8 multiple choice questions worth 7 points each and 4 partial credit questions each worth 11 points. Record your answers by placing an \times through one letter for each problem on this answer sheet.

Sign the pledge. "On my honor, I have neither given nor received unauthorized aid on this Exam":

1. a, b, c
2. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
3. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
4. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
5. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
6. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
7. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
8. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$

Multiple Choice.
9.
10.
11.
12.

Total.

Part I: Multiple choice questions (7 points each)

1. Consider the linear system

$$
\left\{\begin{aligned}
x_{1}-3 x_{2} & =5 \\
x_{2}+x_{3} & =0
\end{aligned}\right.
$$

Which of the following $\left(x_{1}, x_{2}, x_{3}\right)$ is a solution of the system?
(a) $(-3,-1,1)$ and $(2,-1,1)$
(b) $(-1,-2,2)$ and $(-3,-1,1)$
(c) $(2,-1,1)$ and $(-1,-2,2)$
(d) $(-5,0,0)$ and $(3,1,-1)$
(e) none of the above
2. For which values of h and k is the matrix below in reduced echelon form?

$$
A=\left[\begin{array}{cccc}
1 & 2 & h & 1 \\
0 & 0 & k & -2
\end{array}\right]
$$

(a) $h=1$ and $k=0$
(b) $h=1$ and any k
(c) $k=1$ and any h
(d) $h=0$ and $k=1$
(e) none of the above
3. Consider the vectors

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right] \quad \vec{v}_{3}=\left[\begin{array}{l}
0 \\
2 \\
2
\end{array}\right] \quad \vec{v}_{4}=\left[\begin{array}{l}
3 \\
4 \\
7
\end{array}\right]
$$

Which of the following statements are true?
A. $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ are linearly dependent.
B. $\left\{\vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right\}$ are linearly independent.
C. \vec{v}_{4} is in $\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$.
(a) A,B only
(b) A,C only
(c) B,C only
(d) A, B, C
(e) A only
4. Find the product $A B$ where

$$
A=\left[\begin{array}{ccc}
1 & -1 & 2 \\
1 & 2 & 1
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 0
\end{array}\right]
$$

(a) $\left[\begin{array}{ccc}1 & -1 & 2 \\ 2 & 1 & 3 \\ 1 & -1 & 2\end{array}\right]$
(b) $\left[\begin{array}{ccc}1 & -1 & 2 \\ 2 & 1 & 3\end{array}\right]$
(c) $\left[\begin{array}{cc}2 & -1 \\ 4 & 2\end{array}\right]$
(d) $\left[\begin{array}{cc}1 & 2 \\ -1 & 1 \\ 2 & 3\end{array}\right]$
(e) $\left[\begin{array}{cc}2 & 4 \\ -1 & 2\end{array}\right]$
5. Which of the following matrices is invertible?

$$
A=\left[\begin{array}{cc}
1 & -1 \\
1 & 4
\end{array}\right], \quad B=\left[\begin{array}{cc}
0 & -1 \\
2 & 0
\end{array}\right], \quad C=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right], \quad D=\left[\begin{array}{ll}
0 & 2 \\
0 & 3
\end{array}\right]
$$

(a) A only
(b) A,B,C only
(c) A,B only
(d) D only
(e) B C C only
6. Consider the vectors $\vec{u}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\vec{v}=\left[\begin{array}{l}4 \\ 2\end{array}\right]$, and a linear transformation $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ with the property that

$$
T(\vec{u})=\left[\begin{array}{l}
4 \\
2
\end{array}\right] \quad \text { and } \quad T(\vec{v})=\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

The image of the vector $\vec{u}+2 \vec{v}$ under the transformation T is
(a) $\left[\begin{array}{l}6 \\ 6\end{array}\right]$
(b) $\left[\begin{array}{l}1 \\ 2\end{array}\right]$
(c) $\left[\begin{array}{l}2 \\ 4\end{array}\right]$
(d) $\left[\begin{array}{l}9 \\ 6\end{array}\right]$
(e) $\left[\begin{array}{l}4 \\ 2\end{array}\right]$
7. Let $\mathcal{B}=\left\{\vec{b}_{1}, \vec{b}_{2}\right\}$ be a basis for a subspace of H in \mathbb{R}^{4} where

$$
\vec{b}_{1}=\left[\begin{array}{l}
1 \\
1 \\
2 \\
3
\end{array}\right] \quad \text { and } \quad \vec{b}_{2}=\left[\begin{array}{c}
-2 \\
2 \\
3 \\
-1
\end{array}\right]
$$

If $[\vec{x}]_{\mathcal{B}}=\left[\begin{array}{c}2 \\ -1\end{array}\right]$ is the coordinate vector (relative to \mathcal{B}) of some element \vec{x} in H then
(a) $\vec{x}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 5\end{array}\right]$
(b) \vec{x} is in \mathbb{R}^{2}
(c) $\vec{x}+\vec{b}_{2}=2 \vec{b}_{1}$
(d) $\vec{x}, \vec{b}_{1}, \vec{b}_{2}$ are linearly independent
(e) none of the above.
8. The ranks of the matrices

$$
A=\left[\begin{array}{lll}
2 & 4 & 6 \\
3 & 6 & 9
\end{array}\right] \quad B=\left[\begin{array}{ccc}
1 & -1 & 2 \\
2 & 1 & 3 \\
1 & -1 & 2
\end{array}\right] \quad C=\left[\begin{array}{ccccc}
2 & 5 & -3 & -4 & 8 \\
0 & -3 & 2 & 5 & 7 \\
0 & 0 & 0 & 4 & -6 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

are given by
(a) $\operatorname{rank}(A)=2, \operatorname{rank}(B)=3, \operatorname{rank}(C)=3$
(b) $\operatorname{rank}(A)=1, \operatorname{rank}(B)=2, \operatorname{rank}(C)=3$.
(c) $\operatorname{rank}(A)=2, \operatorname{rank}(B)=3, \operatorname{rank}(C)=4$.
(d) $\operatorname{rank}(A)=1, \operatorname{rank}(B)=3, \operatorname{rank}(C)=3$.
(e) $\operatorname{rank}(A)=2, \operatorname{rank}(B)=2, \operatorname{rank}(C)=3$.

Part II: Partial credit questions (11 points each). Show your work.
9. Consider the vectors

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{l}
2 \\
1 \\
t
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{c}
0 \\
1 \\
-t
\end{array}\right] .
$$

Find the values of t for which \vec{v}_{1} is contained in $\operatorname{Span}\left\{\vec{v}_{2}, \vec{v}_{3}\right\}$.
10. Consider the linear transformation $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{4}$ given by

$$
T\left(x_{1}, x_{2}\right)=\left[\begin{array}{c}
x_{1}+x_{2} \\
-x_{1} \\
2 x_{1}+3 x_{2} \\
x_{1}+2 x_{2}
\end{array}\right]
$$

(a) Find the standard matrix of T.
(b) Write down four distinct vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}$ that are in the range of T.
(c) Is the vector $\vec{v}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$ in the range of T ?
11. Find the inverse of the matrix

$$
A=\left[\begin{array}{lll}
2 & 0 & 5 \\
0 & 1 & 0 \\
3 & 0 & 7
\end{array}\right]
$$

12. Find a basis for $\operatorname{Col}(\mathrm{A})$ and a basis for $\operatorname{Nul}(\mathrm{A})$ where

$$
A=\left[\begin{array}{ccccc}
1 & -2 & 0 & 1 & 1 \\
2 & -4 & 1 & 4 & 1 \\
-1 & 2 & -1 & -3 & 0
\end{array}\right]
$$

