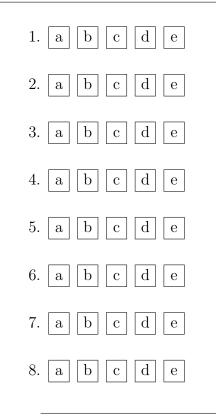
Math 20580	Name:	 		 _
Midterm 1	Instructor:	 		 _
September 19, 2017	Section:	 		 _
			. 1	

Calculators are NOT allowed. Do not remove this answer page – you will return the whole exam. You will be allowed 75 minutes to do the test. You may leave earlier if you are finished.

There are 8 multiple choice questions worth 7 points each and 4 partial credit questions each worth 11 points. Record your answers by placing an \times through one letter for each problem on this answer sheet.

Sign the pledge. "On my honor, I have neither given nor received unauthorized aid on this Exam":



Multiple Choice.

9.			
10.			
11.			
12.			

Total.

Part I: Multiple choice questions (7 points each)

1. Consider the linear system

$$\begin{cases} x_1 - 3x_2 = 5\\ x_2 + x_3 = 0 \end{cases}$$

Which of the following (x_1, x_2, x_3) is a solution of the system?

- (a) (-3, -1, 1) and (2, -1, 1) (b) (-1, -2, 2) and (-3, -1, 1)
- (c) (2, -1, 1) and (-1, -2, 2) (d) (-5, 0, 0) and (3, 1, -1)
- (e) none of the above

2. For which values of h and k is the matrix below in reduced echelon form?

$$A = \begin{bmatrix} 1 & 2 & h & 1 \\ 0 & 0 & k & -2 \end{bmatrix}$$

- (a) h = 1 and k = 0 (b) h = 1 and any k(c) k = 1 and any h (d) h = 0 and k = 1
- (e) none of the above

3. Consider the vectors

$$\vec{v}_1 = \begin{bmatrix} 1\\2\\3 \end{bmatrix} \qquad \vec{v}_2 = \begin{bmatrix} 2\\4\\6 \end{bmatrix} \qquad \vec{v}_3 = \begin{bmatrix} 0\\2\\2 \end{bmatrix} \qquad \vec{v}_4 = \begin{bmatrix} 3\\4\\7 \end{bmatrix}$$

Which of the following statements are true?

A. $\{\vec{v}_1,\vec{v}_2\}$ are linearly dependent.

- B. $\{\vec{v}_2,\vec{v}_3,\vec{v}_4\}$ are linearly independent.
- C. \vec{v}_4 is in Span{ $\vec{v}_1, \vec{v}_2, \vec{v}_3$ }.
- (a) A,B only (b) A,C only (c) B,C only (d) A,B,C (e) A only

4. Find the product AB where

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 2 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & 3 \\ 1 & -1 & 2 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & 3 \end{bmatrix}$$
 (c)
$$\begin{bmatrix} 2 & -1 \\ 4 & 2 \end{bmatrix}$$
 (d)
$$\begin{bmatrix} 1 & 2 \\ -1 & 1 \\ 2 & 3 \end{bmatrix}$$
 (e)
$$\begin{bmatrix} 2 & 4 \\ -1 & 2 \end{bmatrix}$$

5. Which of the following matrices is invertible?

$$A = \begin{bmatrix} 1 & -1 \\ 1 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & -1 \\ 2 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad D = \begin{bmatrix} 0 & 2 \\ 0 & 3 \end{bmatrix}$$

(a) A only (b) A,B,C only (c) A,B only (d) D only (e) B, C only

6. Consider the vectors $\vec{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$, and a linear transformation $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ with the property that

$$T(\vec{u}) = \begin{bmatrix} 4\\ 2 \end{bmatrix}$$
 and $T(\vec{v}) = \begin{bmatrix} 1\\ 2 \end{bmatrix}$.

The image of the vector $\vec{u} + 2\vec{v}$ under the transformation T is

(a)
$$\begin{bmatrix} 6\\6 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1\\2 \end{bmatrix}$ (c) $\begin{bmatrix} 2\\4 \end{bmatrix}$ (d) $\begin{bmatrix} 9\\6 \end{bmatrix}$ (e) $\begin{bmatrix} 4\\2 \end{bmatrix}$

7. Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2\}$ be a basis for a subspace of H in \mathbb{R}^4 where

$$\vec{b}_1 = \begin{bmatrix} 1\\1\\2\\3 \end{bmatrix}$$
 and $\vec{b}_2 = \begin{bmatrix} -2\\2\\3\\-1 \end{bmatrix}$

If $[\vec{x}]_{\mathcal{B}} = \begin{bmatrix} 2\\ -1 \end{bmatrix}$ is the coordinate vector (relative to \mathcal{B}) of some element \vec{x} in H then (a) $\vec{x} = \begin{bmatrix} 0\\ 0\\ 1\\ 5 \end{bmatrix}$ (b) \vec{x} is in \mathbb{R}^2 (c) $\vec{x} + \vec{b}_2 = 2\vec{b}_1$ (d) $\vec{x}, \vec{b}_1, \vec{b}_2$ are linearly independent (e) none of the above.

8. The ranks of the matrices

$$A = \begin{bmatrix} 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & 3 \\ 1 & -1 & 2 \end{bmatrix} \qquad C = \begin{bmatrix} 2 & 5 & -3 & -4 & 8 \\ 0 & -3 & 2 & 5 & 7 \\ 0 & 0 & 0 & 4 & -6 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

are given by

Part II: Partial credit questions (11 points each). Show your work.

9. Consider the vectors

$$\vec{v}_1 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} 2\\1\\t \end{bmatrix}, \quad \vec{v}_3 = \begin{bmatrix} 0\\1\\-t \end{bmatrix}.$$

Find the values of t for which \vec{v}_1 is contained in Span{ \vec{v}_2, \vec{v}_3 }.

10. Consider the linear transformation $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^4$ given by $\begin{bmatrix} x_1 + x_2 \end{bmatrix}$

$$T(x_1, x_2) = \begin{vmatrix} x_1 + x_2 \\ -x_1 \\ 2x_1 + 3x_2 \\ x_1 + 2x_2 \end{vmatrix}.$$

(a) Find the standard matrix of T.

(b) Write down four distinct vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$ that are in the range of T.

(c) Is the vector
$$\vec{v} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$
 in the range of T ?

11. Find the inverse of the matrix

$$A = \begin{bmatrix} 2 & 0 & 5 \\ 0 & 1 & 0 \\ 3 & 0 & 7 \end{bmatrix}$$

12. Find a basis for $\mathrm{Col}(\mathbf{A})$ and a basis for $\mathrm{Nul}(\mathbf{A})$ where

$$A = \begin{bmatrix} 1 & -2 & 0 & 1 & 1 \\ 2 & -4 & 1 & 4 & 1 \\ -1 & 2 & -1 & -3 & 0 \end{bmatrix}$$