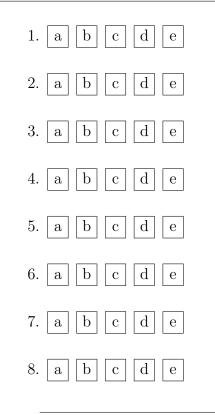
Math 20580	Name:		
Midterm 2	Instructor:		
October 26, 2017	Section:		
		• • • •	

Calculators are NOT allowed. Do not remove this answer page – you will return the whole exam. You will be allowed 75 minutes to do the test. You may leave earlier if you are finished.

There are 8 multiple choice questions worth 7 points each and 4 partial credit questions each worth 11 points. Record your answers by placing an \times through one letter for each problem on this answer sheet.

Sign the pledge. "On my honor, I have neither given nor received unauthorized aid on this Exam":



Multiple Choice.

9.			
10.			
11.			
12.			
_			

Total.

Part I: Multiple choice questions (7 points each)

1. Find the determinant of the matrix

(a) 25 (b) 0 (c) 18 (d) -25 (e) -18
$$\begin{bmatrix} 1 & 11 & 0 & 2 \\ 0 & -3 & 0 & 0 \\ 4 & -9 & 6 & 12 \\ 2 & -20 & 0 & 3 \end{bmatrix}$$

2. Find the matrix of change of coordinates $\underset{C \leftarrow B}{P}$ between the following bases of \mathbb{R}^2 :

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 2\\3 \end{bmatrix} \right\} \qquad \mathcal{C} = \left\{ \begin{bmatrix} 2\\3 \end{bmatrix}, \begin{bmatrix} 1\\2 \end{bmatrix} \right\}$$

(a)
$$\begin{bmatrix} 3 & -2\\-2 & 1 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix}$$
 (c)
$$\begin{bmatrix} 1 & 0\\1 & 0 \end{bmatrix}$$
 (d)
$$\begin{bmatrix} 0 & 1\\1 & 0 \end{bmatrix}$$
 (e)
$$\begin{bmatrix} -3 & 2\\2 & -1 \end{bmatrix}$$

3. Consider the space $C(\mathbb{R})$ of continuous functions on \mathbb{R} and let H be the subspace of $C(\mathbb{R})$ spanned by the functions $\{1, \sin^2 t, \cos^2 t, \sin t \cos t, \sin 2t, \cos 2t\}$. What is the dimension of H?

(a) 1 ((b) 2	(c) 3	(d) 4	(e) H is infinite-dimensional
----	-------	-------	-------	-------	---------------------------------

Hint.	You may use the trig identities:	$\sin 2t = 2\sin t\cos t$	$\cos 2t = 2\cos^2 t - 1.$
-------	----------------------------------	---------------------------	----------------------------

4. Find the eigenvalues of the matrix

5. Find the area of the parallelogram whose vertices are

(0, -2), (6, -1), (-3, 1), (3, 2).

(a) 21 (b) 15 (c) 12 (d) 3 (e) 6

6. Which of the following statements are always true?

I. Row-equivalent matrices have the same characteristic equations.

II. Similar matrices have the same eigenvalues.

III. The determinant of a square matrix is equal to the product of the diagonal entries.

- (a) I. is true but II. and III. are false
- (b) II. is true but I. and III. are false
- (c) III. is true but I. and II. are false
- (d) All of them are true
- (e) None of them are true

7. The vector $\vec{v} = \begin{bmatrix} -1+3i\\2 \end{bmatrix}$ is a complex eigenvector of the matrix $A = \begin{bmatrix} 3 & -5\\2 & 5 \end{bmatrix}$. What is the corresponding complex eigenvalue?

(a)
$$3+2i$$
 (b) $3-4i$ (c) 2 (d) $4+3i$ (e) $5+5i$

8. Consider the following basis of \mathbb{R}^3 consisting of orthogonal vectors:

$$\mathcal{B} = \left\{ \begin{bmatrix} 2\\1\\2 \end{bmatrix}, \begin{bmatrix} -2\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\-2 \end{bmatrix} \right\}$$

Find the \mathcal{B} -coordinate vector $[\vec{v}]_{\mathcal{B}}$ where $\vec{v} = \begin{bmatrix} 2\\-2\\1 \end{bmatrix}$.
(a) $\begin{bmatrix} 9\\0\\0 \end{bmatrix}$ (b) $\begin{bmatrix} 0\\-1\\0 \end{bmatrix}$ (c) $\begin{bmatrix} 1/5\\-2/5\\1/5 \end{bmatrix}$ (d) $\begin{bmatrix} -2\\2\\-1 \end{bmatrix}$ (e) $\begin{bmatrix} 4/9\\-7/9\\-4/9 \end{bmatrix}$

Part II: Partial credit questions (11 points each). Show your work.

9. Consider the matrix

$$A = \begin{bmatrix} 2 & 2 & 3 & 3 \\ 1 & 1 & 0 & 0 \\ -3 & -3 & 4 & 4 \end{bmatrix}$$

(a) Find a basis for Row(A) (the row space of A).

(b) Determine the rank of A and the dimension of the null space of A.

(c) Give an example of a non-zero unit vector which is orthogonal to Row(A).

10. Consider the vector space \mathbb{P}_2 of polynomials of degree at most two, and the transformation $T : \mathbb{P}_2 \longrightarrow \mathbb{R}^3$ given by

$$T(p(t)) = \begin{bmatrix} p(1)\\p'(1)\\p''(1) \end{bmatrix}$$

•

(a) Show that $\mathcal{B} = \{1 + t^2, 2 - t, (1 + t)^2\}$ is a basis of \mathbb{P}_2 .

(b) Find the matrix of T relative to the basis \mathcal{B} of \mathbb{P}_2 from part (a) and the standard basis of \mathbb{R}^3 (you may use that T is a linear transformation without explaining why).

(c) Suppose that p(t) is a polynomial whose \mathcal{B} -coordinate vector is $[p(t)]_{\mathcal{B}} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$. Find p(t) and T(p(t)). 11. Consider the matrix $A = \begin{bmatrix} 4 & -1 \\ 1 & 2 \end{bmatrix}$. Determine whether A is diagonalizable or not.

12. Consider the vectors $\vec{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 4 \\ 0 \\ 1 \end{bmatrix}$.

(a) Find the orthogonal projection of \vec{v} onto $L = \text{Span}\{\vec{u}\}$.

(b) Find the distance from \vec{v} to L.