1. Find the reduced echelon form of the matrix $\left[\begin{array}{rrrr}2 & 1 & 1 & -5 \\ 1 & -2 & 8 & -5 \\ 1 & 1 & -1 & -2\end{array}\right]$.
(a) $\left[\begin{array}{rrrr}1 & 0 & 2 & -3 \\ 0 & 1 & -3 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$
(e) $\left[\begin{array}{rrrr}1 & -2 & 0 & 5 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0\end{array}\right]$
(b) $\left[\begin{array}{rrrr}1 & -3 & 0 & -1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0\end{array}\right]$
(c) $\left[\begin{array}{rrrr}1 & 0 & 3 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
(d) $\left[\begin{array}{rrrr}1 & -2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Solution. $\left[\begin{array}{rrrr}2 & 1 & 1 & -5 \\ 1 & -2 & 8 & -5 \\ 1 & 1 & -1 & -2\end{array}\right] \sim\left[\begin{array}{rrrr}1 & 1 & -1 & -2 \\ 1 & -2 & 8 & -5 \\ 2 & 1 & 1 & -5\end{array}\right] \sim\left[\begin{array}{rrrr}1 & 1 & -1 & -2 \\ 0 & -3 & 9 & -3 \\ 0 & -1 & 3 & -1\end{array}\right] \sim\left[\begin{array}{rrrr}1 & 1 & -1 & -2 \\ 0 & 1 & -3 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$ $\sim\left[\begin{array}{rrrr}1 & 0 & 2 & -3 \\ 0 & 1 & -3 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$ where \sim denotes row equivalence.
2. Which of the following equations involving 3×3-matrices A, B, C and I_{3} (the identity matrix) could be false for some such matrices A, B, C ?
(a) $(A+B)^{2}=A^{2}+2 A B+B^{2}$
(b) $(A+B) C=A C+B C$
(c) $(A B) C=A(B C)$
(d) $A+B=B+A$
(e) $\left(\mathrm{I}_{3}+A\right)\left(\mathrm{I}_{3}-A\right)=\mathrm{I}_{3}-A^{2}$

Solution. $\left(\mathrm{I}_{3}+A\right)\left(\mathrm{I}_{3}-A\right)=\mathrm{I}_{3}\left(\mathrm{I}_{3}-A\right)+A\left(\mathrm{I}_{3}-A\right)=\mathrm{I}_{3} \mathrm{I}_{3}-\mathrm{I}_{3} A+A \mathrm{I}_{3}-A A=\mathrm{I}_{3}-A+A-A^{2}=$ $\mathrm{I}_{3}-A^{2}$ so (e) is true.
$(A+B)^{2}=(A+B)(A+B)=A(A+B)+B(A+B)=A A+A B+B A+B B=$ $A^{2}+A B+B A+B^{2}$ could be different from $A^{2}+2 A B+B^{2}$ if $A B \neq B A$, which can happen for some A, B. So (a) could be false.

The other formulae (b), (c), (d) are all standard matrix laws which are true for all 3×3 matrices.
3. Determine by inspection which of the following sets of vectors is linearly independent.
(a) $\left\{\left[\begin{array}{r}1 \\ -2 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]\right\}$
(b) $\left\{\left[\begin{array}{r}2 \\ -3 \\ 4\end{array}\right],\left[\begin{array}{r}4 \\ -6 \\ 8\end{array}\right],\left[\begin{array}{r}1 \\ 2 \\ -4\end{array}\right],\right\}$
(e) $\{$
(c) $\left\{\left[\begin{array}{r}3 \\ -6 \\ 9\end{array}\right],\left[\begin{array}{r}2 \\ -5 \\ 1\end{array}\right],\left[\begin{array}{r}-4 \\ 3 \\ 6\end{array}\right],\left[\begin{array}{r}-4 \\ 3 \\ 7\end{array}\right]\right\}$
(d) $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]\right\}$
(e) $\left\{\left[\begin{array}{r}3 \\ -6 \\ 9\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]\right\}$

Solution. First vector in (a) is non-zero and second is not a scalar multiple of it; so they are linearly independent.
(b) Not linearly independent; $\mathbf{v}_{2}=2 \mathbf{v}_{1}$.
(c) Four vectors in \mathbb{R}^{3} must be linearly dependent.
(d) Not linearly independent; $\mathbf{v}_{3}=\mathbf{v}_{1}+2 \mathbf{v}_{2}$
(e) Not linearly independent; contains the zero vector.
4. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear map given by counterclockwise rotation of the plane about the origin by an angle of $\frac{\pi}{4}$ (in radians). Let A be the standard matrix of T. Which of the following matrices is equal to A^{2} ?
(a) $\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$
(b) $\left[\begin{array}{rr}1 & 0 \\ 1 & -1\end{array}\right]$
(c) $\left[\begin{array}{rr}1 & 0 \\ -1 & 0\end{array}\right]$
(d) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
(e) $\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$

Solution. Let $\theta=\frac{\pi}{4}$. One has $A=\left[\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]=\left[\begin{array}{rr}\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\end{array}\right]$ and $A^{2}=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$ by matrix multiplication. Alternatively, note that A^{2} is the matrix of the composite linear transformation given by rotating counterclockwise twice around the origin by angle θ i.e. A^{2} is the standard matrix of a rotation by $2 \theta=\frac{\pi}{2}$ which is $\left[\begin{array}{rr}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$.
5. Consider the linear system $\left[\begin{array}{rr}2 & -3 \\ -6 & 9 \\ 4 & -7\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}1 \\ h \\ k\end{array}\right]$ where h and k are real numbers. Which one of the following statements is true about the solution?
(a) The system is inconsistent if $h \neq-3$. (b) The system is inconsistent if $k \neq 2$.
(c) The system is not consistent for any value of h and k.
(d) The system is consistent for all values of h and k.
(e) For some values of h and k, the system has more than one solution.

Solution. $\left[\begin{array}{rrr}2 & -3 & 1 \\ -6 & 9 & h \\ 4 & -7 & k\end{array}\right] \sim\left[\begin{array}{rrr}2 & -3 & 1 \\ 0 & 0 & h+3 \\ 0 & -1 & k-2\end{array}\right] \sim\left[\begin{array}{rrr}2 & -3 & 1 \\ 0 & -1 & k-2 \\ 0 & 0 & h+3\end{array}\right] \sim\left[\begin{array}{rrr}2 & 0 & 7-3 k \\ 0 & -1 & k-2 \\ 0 & 0 & h+3\end{array}\right] \sim$ $\left[\begin{array}{llr}1 & 0 & (7-3 k) / 2 \\ 0 & 1 & 2-k \\ 0 & 0 & h+3\end{array}\right]$. The system is inconsistent precisely when $h+3 \neq 0$ i.e. $h \neq-3$. If $h=-3$, it has the unique solution $x=(7-3 k) / 2, y=2-k$.
6. The dimension of the null space of a 7×8 matrix B is 5 . How many rows of zeros does the row reduced echelon form of B contain?
(a) 4
(b) 2
(c) 3
(d) 5
(e) 1

Solution. $\operatorname{rank}(B)=8-\operatorname{nullity}(B)=8-5=3$. The reduced echelon form of B has 3 pivot rows and 7 rows altogether, so there are $7-3=4$ rows of zeros.
7. Let \mathcal{B} denote the basis of \mathbb{R}^{3} given by $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{r}-1 \\ 2 \\ -1\end{array}\right]\right\}$ and let \mathbf{v} denote the vector $\mathbf{v}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$. The coordinate vector $[\mathbf{v}]_{\mathcal{B}}$ of \mathbf{v} with respect to \mathcal{B} is $[\mathbf{v}]_{\mathcal{B}}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$. Which of the following is the value of a ?
(a) $\frac{1}{3}$
(b) $-\frac{1}{3}$
(c) $\frac{1}{6}$
(d) $-\frac{1}{6}$
(e) 0

Solution. We have to solve the linear system with augmented matrix the first matrix in:
$\left[\begin{array}{rrrr}1 & 1 & -1 & 0 \\ 1 & 0 & 2 & 1 \\ 1 & -1 & -1 & 0\end{array}\right] \sim\left[\begin{array}{rrrr}1 & 1 & -1 & 0 \\ 0 & -1 & 3 & 1 \\ 0 & -2 & 0 & 0\end{array}\right] \sim\left[\begin{array}{rrrr}1 & 1 & -1 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & -1 & 3 & 1\end{array}\right] \sim\left[\begin{array}{rrrr}1 & 1 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 3 & 1\end{array}\right] \sim\left[\begin{array}{rrrr}1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 1\end{array}\right]$
$\sim\left[\begin{array}{rrrr}1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 / 3\end{array}\right] \sim\left[\begin{array}{rrrr}1 & 0 & 0 & 1 / 3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 / 3\end{array}\right]$. The coordinate vector is $\left[\begin{array}{r}1 / 3 \\ 0 \\ 1 / 3\end{array}\right]$ so $a=\frac{1}{3}$.
8. Let A be an $n \times n$ square matrix. Suppose that for some \mathbf{b} in \mathbb{R}^{n}, the linear system $A \mathbf{x}=\mathbf{b}$ is inconsistent. Which of the following statements must be true?
(a) The linear system $A \mathbf{x}=\mathbf{c}$ has more than one solution for some \mathbf{c} in \mathbb{R}^{n}.
(b) A has a pivot in every column.
(c) The linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by $T(\mathbf{x})=A \mathbf{x}$ is one-to-one.
(d) There is an $n \times n$-matrix B with $A B=\mathrm{I}_{n}$.
(e) The linear system $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.

Solution. Since $A \mathbf{x}=\mathbf{b}$ is inconsistent for some \mathbf{b}, the linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by $T(\mathbf{x})=A \mathbf{x}$ is not onto. If T is not onto, the equivalent conditions for matrix invertibility show that A is not invertible, and T is not one-to-one either, so $A \mathbf{x}=\mathbf{c}$ has at least two solutions for some \mathbf{c} in \mathbb{R}^{n}. The conditions for invertibility also show that the other listed conditions (b),(c),(d),(e) are all equivalent to invertibility of A, so cannot hold.
9. Which of the following is the solution of the matrix equation $\left[\begin{array}{rr}3 & -1 \\ -17 & 5\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}h \\ k\end{array}\right]$?
(a) $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{rr}-5 / 2 & -1 / 2 \\ -17 / 2 & -3 / 2\end{array}\right]\left[\begin{array}{l}h \\ k\end{array}\right]$
(b) $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{rr}3 / 2 & 1 / 2 \\ 17 / 2 & 5 / 2\end{array}\right]\left[\begin{array}{l}h \\ k\end{array}\right]$
(c) $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{rr}-3 / 2 & -1 / 2 \\ -17 / 2 & -5 / 2\end{array}\right]\left[\begin{array}{l}h \\ k\end{array}\right]$
(d) $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{rr}-3 / 2 & -17 / 2 \\ -1 / 2 & -5 / 2\end{array}\right]\left[\begin{array}{l}h \\ k\end{array}\right]$
(e) $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{ll}-5 / 2 & -17 / 2 \\ -1 / 2 & -3 / 2\end{array}\right]\left[\begin{array}{l}h \\ k\end{array}\right]$

Solution. The equation is $A \mathbf{v}=\mathbf{b}$ where $A=\left[\begin{array}{rr}3 & -1 \\ -17 & 5\end{array}\right], \mathbf{v}=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}h \\ k\end{array}\right]$. Note $\operatorname{det} A=3 \cdot 5-(-1) \cdot(-17)=-2$ so A is invertible and $A^{-1}=\frac{1}{-2}\left[\begin{array}{rr}5 & 1 \\ 17 & 3\end{array}\right]$. The solution is $\mathbf{v}=A^{-1} \mathbf{b}$ i.e. $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{rr}-5 / 2 & -1 / 2 \\ -17 / 2 & -3 / 2\end{array}\right]\left[\begin{array}{l}h \\ k\end{array}\right]$.
10. Compute the inverse of the matrix $A=\left[\begin{array}{rrr}1 & 1 & 3 \\ -3 & -2 & -6 \\ -1 & -1 & -2\end{array}\right]$.

Solution. Row-reduce $\left[\begin{array}{rrrrrr}1 & 1 & 3 & 1 & 0 & 0 \\ -3 & -2 & -6 & 0 & 1 & 0 \\ -1 & -1 & -2 & 0 & 0 & 1\end{array}\right] \sim\left[\begin{array}{llllll}1 & 1 & 3 & 1 & 0 & 0 \\ 0 & 1 & 3 & 3 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1\end{array}\right] \sim$
$\left[\begin{array}{rrrrrr}1 & 0 & 0 & -2 & -1 & 0 \\ 0 & 1 & 3 & 3 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1\end{array}\right] \sim\left[\begin{array}{rrrrrr}1 & 0 & 0 & -2 & -1 & 0 \\ 0 & 1 & 0 & 0 & 1 & -3 \\ 0 & 0 & 1 & 1 & 0 & 1\end{array}\right]$. The inverse is $\left[\begin{array}{rrr}-2 & -1 & 0 \\ 0 & 1 & -3 \\ 1 & 0 & 1\end{array}\right]$.
11. Express the solution set of

$$
\begin{aligned}
2 x_{1}-4 x_{2}+5 x_{3}+x_{4} & =-3 \\
x_{1}-2 x_{2}+2 x_{3}+x_{4} & =-1 \\
x_{1}-2 x_{2}+3 x_{3} & =-2
\end{aligned}
$$

in parametric vector form.
Solution. Row reduce: $\left[\begin{array}{lllll}2 & -4 & 5 & 1 & -3 \\ 1 & -2 & 2 & 1 & -1 \\ 1 & -2 & 3 & 0 & -2\end{array}\right] \sim\left[\begin{array}{rrrrr}1 & -2 & 2 & 1 & -1 \\ 2 & -4 & 5 & 1 & -3 \\ 1 & -2 & 3 & 0 & -2\end{array}\right] \sim\left[\begin{array}{rrrrr}1 & -2 & 2 & 1 & -1 \\ 0 & 0 & 1 & -1 & -1 \\ 0 & 0 & 1 & -1 & -1\end{array}\right]$ $\sim\left[\begin{array}{rrrrr}1 & -2 & 0 & 3 & 1 \\ 0 & 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$. The equation is equivalent to

$$
\begin{aligned}
x_{1}-2 x_{2}+3 x_{4} & =1 \\
x_{3}-x_{4} & =-1
\end{aligned}
$$

where the free variables x_{2} and x_{4} can take arbitrary values (the last row of the matrix gives the equation $0=0$, which we omit because it is always true).

The bound variables are x_{1}, x_{3} (corresponding to pivot columns) and the free variables are x_{2}, x_{4}. Rewriting with free variables on the right,

$$
\begin{aligned}
x_{1} & \\
& =1+2 x_{2} \\
x_{2} & -3 x_{4} \\
& \\
& =-1 \\
& x_{3} \\
& \\
& \\
x_{4} & =
\end{aligned}
$$

(we include the equation $x_{i}=x_{i}$, for $i=2$ or 4 , to indicate that the free variable x_{i} can take arbitrary values). In parametric form

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
1 \\
0 \\
-1 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{r}
-3 \\
0 \\
1 \\
1
\end{array}\right]
$$

or writing $x_{2}=r, x_{4}=s$,

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
1 \\
0 \\
-1 \\
0
\end{array}\right]+r\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{r}
-3 \\
0 \\
1 \\
1
\end{array}\right]
$$

12. The row-reduced echelon form of the 3×6 matrix $A=\left[\begin{array}{rrrrrr}0 & 2 & 4 & 1 & 5 & 6 \\ 0 & 1 & 2 & -1 & 7 & -5 \\ 0 & -1 & -2 & -2 & 2 & 0\end{array}\right]$ is given by $B=\left[\begin{array}{rrrrrr}0 & 1 & 2 & 0 & 4 & 0 \\ 0 & 0 & 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$. (You may assume this; you do not have to check it.)
(a) Determine a basis for the null space $\operatorname{null}(A)$.
(b) Determine a basis for the column space $\operatorname{col}(A)$.

Solution. (a) The pivot columns of A and B are $2,4,6$, so x_{1}, x_{3} and x_{5} are free variables. Writing the homogeneous equations from B with free variables on the right gives

We include the equation $x_{i}=x_{i}$, for $i=1,3$ or 5 , to indicate that the free variable x_{i} can take arbitrary values. The system has 3 basic solutions given by setting one free variable equal to 1 and the others equal to 0 . Setting $x_{1}=1$ and $x_{3}=x_{5}=0$ gives the solution $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 0\end{array}\right]^{T}$. Setting $x_{3}=1$ and $x_{1}=x_{5}=0$ gives the solution $\mathbf{v}_{\mathbf{2}}=\left[\begin{array}{llllll}0 & -2 & 1 & 0 & 0 & 0\end{array}\right]^{T}$. Setting $x_{5}=1$ and $x_{1}=x_{3}=0$ gives the solution $\mathbf{v}_{\mathbf{3}}=$ $\left[\begin{array}{llllll}0 & -4 & 0 & 3 & 1 & 0\end{array}\right]^{T}$. Then $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ is a basis for $\operatorname{null}(A)$.
(b) Row operations don't change the solution space of the homogeneous equation or the linear dependences of columns of a matrix. The pivot columns (2rd, 4th, 6th) of B form a basis for $\operatorname{col}(B)$ so the pivot columns (2rd, 4th, 6th) of A form a basis for $\operatorname{col}(A)$. A basis of $\operatorname{col}(A)$ is given by $\left\{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{3}}\right\}$ where $\mathbf{w}_{\mathbf{1}}=\left[\begin{array}{lll}2 & 1 & -1\end{array}\right]^{T}, \mathbf{w}_{\mathbf{2}}=\left[\begin{array}{lll}1 & -1 & -2\end{array}\right]^{T}$ and $\mathbf{w}_{\mathbf{3}}=\left[\begin{array}{lll}6 & -5 & 0\end{array}\right]^{T}$.

