Multiple Choice

- **1.** (6 pts.) Find the reduced echelon form of the matrix $\begin{bmatrix} 1 & 2 & -1 & -1 \\ 2 & 4 & -1 & 0 \\ -3 & -6 & 1 & 0 \end{bmatrix}$.
- (a) $\begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

- (d) $\begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$ (e) $\begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
- **2.** (6 pts.) Determine by inspection which of the following sets is linearly independent.
- (a) $\left\{ \begin{bmatrix} 2 \\ -5 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 3 \\ -2 \end{bmatrix} \right\}$

- (b) $\left\{ \begin{vmatrix} 3\\2 \end{vmatrix}, \begin{vmatrix} 2\\-1 \end{vmatrix}, \begin{vmatrix} 1\\-1 \end{vmatrix} \right\}$
- (c) $\left\{ \begin{bmatrix} 4 \\ -6 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 6 \\ -9 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix} \right\}$
- (d) $\left\{ \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \begin{bmatrix} 3\\6\\2 \end{bmatrix} \right\}$
- (e) all four sets are linearly dependent
- **3.** (6 pts.) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ and $S: \mathbb{R}^3 \to \mathbb{R}^2$ be linear transformations with

$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\1\\1\end{bmatrix}, T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}1\\-1\\1\end{bmatrix} \text{ and }$$

$$S\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = \begin{bmatrix}-1\\1\end{bmatrix}, S\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\1\end{bmatrix}, S\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}1\\-1\end{bmatrix}.$$

Which matrix below is the standard matrix of ST?

(a) $\begin{vmatrix} 1 & -1 \\ 1 & -1 \end{vmatrix}$

- (b) $\begin{vmatrix} -1 & 1 \\ 1 & -1 \end{vmatrix}$
- (c) $\begin{bmatrix} 0 & 2 & 0 \\ -2 & 0 & 2 \\ 0 & 2 & 0 \end{bmatrix}$

- (d) $\begin{bmatrix} 0 & -2 & 0 \\ 2 & 0 & -2 \\ 0 & 2 & 0 \end{bmatrix}$ (e) $\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}$

- **4.** (6 pts.) The determinant of $\begin{bmatrix} 0 & 2 & -3 \\ -2 & 6 & -12 \\ 1 & -2 & 3 \end{bmatrix}$ is
- (a) -6
- (b) -12
- (c) (
- (d) 6
- (e) 12
- **5.** (6 pts.) Let A be a 7×8 matrix of rank 3. Which of the following is equal to the dimension of the null space of A?
- (a) 5
- (b) 0
- (c) 3
- (d) 4
- (e) 7
- **6.** (6 pts.) Let \mathcal{B} be the basis of \mathbb{R}^3 given by the vectors $\left\{\begin{bmatrix}1\\-2\\1\end{bmatrix},\begin{bmatrix}1\\0\\1\end{bmatrix},\begin{bmatrix}2\\2\\0\end{bmatrix}\right\}$ and let x be the vector $x = \begin{bmatrix}4\\2\\4\end{bmatrix}$. Which of the following is the coordinate vector $[x]_{\mathcal{B}}$ of x with respect to \mathcal{B} ?
- (a) $\begin{bmatrix} -1\\5\\0 \end{bmatrix}$

 $\text{(b)} \quad \begin{bmatrix} 14\\0\\6 \end{bmatrix}$

 $\begin{array}{c|c}
(c) & \begin{bmatrix} 2\\ 3\\ -2 \end{bmatrix}
\end{array}$

 $(d) \quad \begin{bmatrix} 4 \\ -1 \\ 3 \end{bmatrix}$

- (e) $\begin{bmatrix} -2\\0\\5 \end{bmatrix}$
- 7. (6 pts.) Suppose an $n \times n$ square matrix A is such that the homogeneous linear system Ax = 0 has a non-trivial solution. Which of the following statements must be true?
- (a) The linear system Ax = b is inconsistent for some b in \mathbb{R}^n
- (b) A has a pivot in every column.
- (c) The linear map $T: \mathbb{R}^n \to \mathbb{R}^n$ given by T(x) = Ax is onto.
- (d) There is an $n \times n$ -matrix B with $AB = I_n$.
- (e) The linear system $A^T x = 0$ has only the trivial solution.

8. (6 pts.) Which of the following is the solution for $\begin{bmatrix} x \\ y \end{bmatrix}$ of the matrix equation

$$\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} h \\ k \end{bmatrix}?$$

(a)
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -5/2 & 3/2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} h \\ k \end{bmatrix}$$

(b)
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -5/2 & -3/2 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} h \\ k \end{bmatrix}$$

(c)
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -1 & 3/2 \\ 2 & -5/2 \end{bmatrix} \begin{bmatrix} h \\ k \end{bmatrix}$$

(d)
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -1 & -3/2 \\ -2 & -5/2 \end{bmatrix} \begin{bmatrix} h \\ k \end{bmatrix}$$

(e)
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 & -3 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} h \\ k \end{bmatrix}$$

9. (6 pts.) Let
$$A = \begin{bmatrix} 2 & 3 & 0 & 0 \\ 1 & 1 & 1 & 2 \\ 1 & 2 & -1 & -2 \end{bmatrix}$$
. What is the rank of A ?

- (a) 2
- (b) 0
- (c) 1
- (d) 3
- (e) 4

Partial Credit

You must show your work on the partial credit problems to receive credit!

10. (14 pts.) Express the solution set of

in Parametric Vector Form.

11. (14 pts.) The row-reduced echelon form of the 3×5 matrix $A = \begin{bmatrix} 2 & -4 & 1 & 1 & 5 \\ 3 & -6 & -2 & 5 & -7 \\ 5 & -10 & 3 & 2 & 4 \end{bmatrix}$ is

given by $B = \begin{bmatrix} 1 & -2 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$. (You may assume this; you do not have to check it.)

- (a) Determine a basis for the null space null(A).
- (b) Determine a basis for the column space col(A).
- (c) Determine a basis for the row space row(A).

12. (14 pts.) Compute the inverse of the matrix
$$A = \begin{bmatrix} 4 & 2 & 3 \\ 2 & 2 & 2 \\ 1 & 0 & 1 \end{bmatrix}$$

Exam 1D solutions

Multiple choice. Exam 1D has all multiple choice answers (a).

$$(1) \begin{bmatrix} 1 & 2 & -1 & -1 \\ 2 & 4 & -1 & 0 \\ -3 & -6 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & -1 & -1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & -2 & -3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- (2) (a), clearly one vector is not a multiple of the other so LI
 - (b): too many vectors dependent.
 - (c): 3rd vector is a multiple of first-dependent.
 - (d): zero vector dependent.
 - (e): false since LI in (a).
- (3) The standard matrix of T is $A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix}$. The standard matrix of S is $B = \begin{bmatrix} -1 & 1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$. Hence the standard matrix of ST is the matrix product $BA = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$
- $\begin{vmatrix} 0 & 2 & -3 \\ -2 & 6 & -12 \\ 1 & -2 & 3 \end{vmatrix} = \begin{vmatrix} 1 & -2 & 3 \\ -2 & 6 & -12 \\ 0 & 2 & -3 \end{vmatrix} = \begin{vmatrix} 1 & -2 & 3 \\ 0 & 2 & -6 \\ 0 & 2 & -3 \end{vmatrix} = \begin{vmatrix} 1 & -2 & 3 \\ 0 & 2 & -3 \\ 0 & 0 & 3 \end{vmatrix}$ Since this last matrix is upper triangular, the determinant is $-1 \cdot 2 \cdot 3 = -6.$
- (5) For a $p \times q$ -matrix, rank(A)+dim(null(A)) = q. Hence dim(null(A)) = q rank(A) = 8 3 = 5.
- (6) We have to solve the linear system whose augmented matrix is first matrix following: $\begin{bmatrix} 1 & 1 & 2 & 4 \\ -2 & 0 & 2 & 2 \\ 1 & 1 & 0 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 & 4 \\ 0 & 2 & 6 & 10 \\ 0 & 0 & -2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 & 4 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & -1 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$ The coordinate vector is $\begin{bmatrix} -1 \\ 5 \\ 0 \end{bmatrix}$.
- (7) Ax = b is inconsistent for some b, directly from the invertible matrix theorem.
- (8) Let $A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$. Note A has determinant $2 \cdot 5 3 \cdot 4 = -2$ and so is invertible. The solution is $\begin{bmatrix} x \\ y \end{bmatrix} = A^{-1} \begin{bmatrix} h \\ k \end{bmatrix}$. So $\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{-2} \begin{bmatrix} 5 & -3 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} h \\ k \end{bmatrix} = \begin{bmatrix} -5/2 & 3/2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} h \\ k \end{bmatrix}$.

(9) Row reduce:
$$\begin{bmatrix} 2 & 3 & 0 & 0 \\ 1 & 1 & 1 & 2 \\ 1 & 2 & -1 & -2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 2 \\ 2 & 3 & 0 & 0 \\ 1 & 2 & -1 & -2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & -2 & -4 \\ 0 & 1 & -2 & 4 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 3 & 6 \\ 0 & 1 & -2 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

$$(10) \begin{bmatrix} 1 & 1 & -1 & 2 & -6 \\ 1 & 0 & 1 & 1 & -3 \\ 1 & -1 & 3 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 & 2 & -6 \\ 0 & -1 & 2 & -1 & 3 \\ 1 & -2 & 4 & -2 & 6 \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 & 2 & -6 \\ 0 & 1 & -2 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 1 & -1 & -3 \\ 0 & 1 & -2 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 The equation is equivalent to

The bound variables are x_1 , x_2 , and free variables are x_3 , x_4 . Rewriting with free variables on the right,

$$x_1 = -3 - x_3 - x_4$$

 $x_2 = -3 + 2x_3 - x_4$

or in vector parametric form

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -3 \\ -3 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ 2 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -1 \\ -1 \\ 0 \\ 1 \end{bmatrix} =$$

or writing $x_3 = a$, $x_4 = b$,

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -3 \\ -3 \\ 0 \\ 0 \end{bmatrix} + a \begin{bmatrix} -1 \\ 2 \\ 1 \\ 0 \end{bmatrix} + b \begin{bmatrix} -1 \\ -1 \\ 0 \\ 1 \end{bmatrix}$$

(11) (a) The pivot columns of A and B are 1, 3, 5, so x_2 and x_4 are free variables. Writing the homogeneous equations from B with

$$\begin{array}{rcl} x_1 & \equiv & 2x_2 - & x_4 \\ x_2 & \equiv & & x_4 & T \end{array}$$

 $x_1 = 2x_2 - x_4$ $x_3 = x_4$. The $x_5 = 0$ free variables on the right gives

system has 2 basic solutions given by setting one free variable equal to 1 and the others equal to 2. Setting $x_2 = 1$ and $x_4 = 0$ gives the solution $v_1 = \begin{bmatrix} 2 & 1 & 0 & 0 & 0 \end{bmatrix}^T$. Setting $x_2 = 0$ and $x_4 = 1$ gives the solution $v_2 = \begin{bmatrix} -1 & 0 & 1 & 1 & 0 \end{bmatrix}^T$ (we write these using transpose T to save space). Then $\{v_1, v_2\}$ is a basis for null(A).

(b) Row operations don't change the solution space of the homogeneous equation or the linear dependences of columns of a matrix. The pivot columns (1st, 2rd, 5th) of B form a basis for col(B) so the pivot columns (1st, 2rd, 5th) of A form a basis for col(A). A basis of col(A) is given by $\{w_1, w_2, w_3\}$ where

$$w_1 = \begin{bmatrix} 2\\3\\5 \end{bmatrix}$$
 and $w_2 = \begin{bmatrix} 1\\-2\\3 \end{bmatrix}$, $w_3 = \begin{bmatrix} 5\\-7\\4 \end{bmatrix}$.

(c) Row span of a matrix is unchanged by ERO's, so row(A) = row(B). Since B is in echelon form, its non-zero rows form a basis of row(B) and hence of row(A). So a basis of row(A) is given by $\{u_1, u_2, u_3\}$ where $u_1 = \begin{bmatrix} 1 & -2 & 0 & 1 & 0 \end{bmatrix}$, $u_2 = \begin{bmatrix} 0 & 0 & 1 & -1 & 0 \end{bmatrix}$ and $u_1 = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \end{bmatrix}$.

(12) Row-reduce:
$$\begin{bmatrix} 4 & 2 & 3 & 1 & 0 & 0 \\ 2 & 2 & 2 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 \\ 2 & 2 & 2 & 0 & 1 & 0 \\ 4 & 2 & 3 & 1 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 2 & 0 & 0 & 1 & -2 \\ 0 & 2 & -1 & 1 & 0 & -4 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 2 & 0 & 0 & 1 & -2 \\ 0 & 0 & -1 & 1 & -1 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & -1 & -1 \\ 0 & 2 & 0 & 0 & 1 & -2 \\ 0 & 0 & -1 & 1 & -1 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 & -1 & -1 \\ 0 & 1 & 0 & 0 & 1/2 & -1 \\ 0 & 0 & 1 & -1 & 1 & 2 \end{bmatrix} \text{ so } \begin{bmatrix} 1 & -1 & -1 \\ 0 & 1/2 & -1 \\ -1 & 1 & 2 \end{bmatrix} \text{ is the inverse.}$$