1. Which of the following statements is always true?
I. The null space of an $m \times n$ matrix is a subspace of \mathbb{R}^{m}.
II. If the set $B=\left\{v_{1}, \ldots, v_{n}\right\}$ spans a vector space V and $\operatorname{dim} V=n$, then B is a basis for V.
III. The rank of a $m \times n$ matrix A is the dimension of the column space of A.
(a) II and III
(b) I
(c) I and III
(d) I and II and III
(e) None are true.

Solution. II and III are true.
I. The null space is a subspace of \mathbb{R}^{n} so this is false.
II. This is the basis theorem.
III. This is the definition of rank.
2. Let \mathbb{P}_{n} be the space of polynomial functions of degree at most n. Which of the following is NOT true?
(a) The set of all polynomials of degree less than 2 with $f(0)=1$ is a subspace of \mathbb{P}_{3}.
(b) \mathbb{P}_{5} is a subspace of \mathbb{P}_{8}.
(c) If $T: \mathbb{P}_{4} \rightarrow \mathbb{R}$ is a linear transformation, then the kernel of T is a subspace of \mathbb{P}_{4}.
(d) If \mathcal{B} is a basis for \mathbb{P}_{2}, then \mathcal{B} is linearly independent in \mathbb{P}_{3}
(e) $\mathcal{B}=\left\{t-1, t+1, t^{2}\right\}$ is a basis for \mathbb{P}_{2}.

Solution. The set of all polynomials of degree less than 2 with $f(0)=1$ is not closed under addition, so it cannot be a subspace.
3. Which of the following is NOT a linear transformation?
(a) $T: \mathbb{R} \rightarrow \mathbb{R}$ where $T(x)=x^{2}$
(b) $D: \mathbb{P}_{5} \rightarrow \mathbb{P}_{4}$ defined by $D(f(t))=2 f^{\prime}(t)$, where f^{\prime} denotes the derivative of f.
(c) $T: C \rightarrow C$ where $T(f(t))=(t+1) f(t)$ and C is the space of continuous real valued functions.
(d) $T: V \rightarrow V$ that sends each vector to itself (i.e. $T(\mathbf{x})=\mathbf{x}$ for all \mathbf{x}).
(e) $T: \mathbb{P}_{3} \rightarrow \mathbb{R}$ where $T(f(t))=5 f(1)$

Solution. If $T(x)=x^{2}$, then $T(5 x)=25 x^{2} \neq 5 x^{2}=5 T(x)$, so T is not a linear transformation
4. The transformation $T: \mathbb{P}_{3} \rightarrow \mathbb{R}$ defined by $T(f(t))=f(2)$ is a linear transformation. What is a basis for the kernel of T ?
(a) $\left\{t^{3}-8, t^{2}-4, t-2\right\}$
(b) $\{1,2,4,8\}$
(c) $\left\{1, t, t^{2}, t^{3}\right\}$
(d) $\{[1]\}$
(e) $\left\{t, t^{2}, t^{3}\right\}$

Solution. Using the basis $\left\{1, t, t^{2}, t^{3}\right\}$ for \mathbb{P}_{3}, we see that the matrix for the transformation is $\left[\begin{array}{llll}1 & 2 & 4 & 8\end{array}\right]$. The matrix is in row reduced echelon form, so variables $2,3,4$ are free. Therefore, a basis is $\left\{\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-4 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-8 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$ or $\left\{t^{3}-8, t^{2}-4, t-2\right\}$.
5. $\mathcal{B}=\left\{1+t, 1-t, 2+t+3 t^{2}\right\}$ is a basis for \mathbb{P}_{2}. Find the coordinate vector of $p(t)=t^{2}$ with respect to \mathcal{B}.
(a) $\left[\begin{array}{c}-1 / 2 \\ -1 / 6 \\ 1 / 3\end{array}\right]$
(b) $\left[\begin{array}{c}1 / 2 \\ 1 / 6 \\ -1 / 3\end{array}\right]$
(c) $[1]$
(d) $\left[\begin{array}{c}1+t \\ 1-t \\ 2+t+3 t^{2}\end{array}\right]$
(e) $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$

Solution. Row reduce $\left[\begin{array}{cccc}1 & 1 & 2 & 0 \\ 1 & -1 & 1 & 0 \\ 0 & 0 & 3 & 1\end{array}\right]$ to get $\left[\begin{array}{cccc}1 & 0 & 0 & -1 / 2 \\ 0 & 1 & 0 & -1 / 6 \\ 0 & 0 & 1 & 1 / 3\end{array}\right]$ thus the coordinate vector is $\left[\begin{array}{c}-1 / 2 \\ -1 / 6 \\ 1 / 3\end{array}\right]$.
6. Find a basis for the eigenspace of $\left[\begin{array}{rr}-1 & 2 \\ 2 & 2\end{array}\right]$ with eigenvalue 3 .
(a) $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\}$
(b) $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{r}2 \\ -1\end{array}\right]\right\}$
(c) $\left\{\left[\begin{array}{r}-1 \\ 2\end{array}\right]\right\}$
(d) $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$
(e) 3 is not an eigenvalue of the matrix

Solution. If $A=\left[\begin{array}{rr}-1 & 2 \\ 2 & 2\end{array}\right]$, then the solutions of $(A-3 I) \mathbf{x}=\mathbf{0}$ are all multiples of $\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
7. Let A be the matrix

$$
A=\left[\begin{array}{rrr}
2 & 0 & 0 \\
1 & 3 & 0 \\
-3 & * & -1
\end{array}\right]
$$

where $*$ can be any number. What are the eigenvalues of A ?
(a) 2, 3, - 1
(b) $2,1,-3$
(c) It is not possible to tell without knowing *
(d) $2,0,0$
(e) $\left[\begin{array}{r}2 \\ 1 \\ -3\end{array}\right]$

Solution. The matrix is lower triangular, so the characteristic polynomial is $(2-t)(3-$ $t)(-1-t)$, and the eigenvalues are $2,3,-1$.
8. What is the characteristic polynomial of the matrix $\left[\begin{array}{rr}-3 & 4 \\ 1 & 2\end{array}\right]$?
(a) $\lambda^{2}+\lambda-10$
(b) $\lambda^{2}+\lambda-6$
(c) $\lambda^{2}-\lambda+10$
(d) $(-3-\lambda)(2-\lambda)$
(e) $\lambda^{2}-\lambda+6$

Solution. The characteristic polynomial is

$$
\operatorname{det}\left[\begin{array}{rr}
-3-\lambda & 4 \\
1 & 2-\lambda
\end{array}\right]=(-3-\lambda)(2-\lambda)-4=\lambda^{2}+\lambda-10
$$

9. The eigenvalues of a 3×3 matrix A are $-1,1$ with 1 having multiplicity 2 . Which of the following statements is true?
(a) The equation $A \mathbf{x}=\mathbf{b}$ is consistent for all \mathbf{b}.
(b) The matrix A has a 3 -dimensional null space.
(c) The diagonal entries of A are $-1,1,1$. (d) The matrix A can be diagonalized.
(e) The equation $A \mathbf{x}=\mathbf{0}$ has infinitely many solutions.

Solution. If none of the eigenvalues are zero then the matrix is invertible.
10. Let $\mathcal{B}=\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{r}-3 \\ 4\end{array}\right]\right\}$ and $\mathcal{C}=\left\{\left[\begin{array}{r}-1 \\ 2\end{array}\right],\left[\begin{array}{r}-2 \\ 3\end{array}\right]\right\}$ be two bases of \mathbf{R}^{2}.
(a) Find the change of coordinates matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$.
(b) Suppose that \mathbf{v} is a vector in \mathbf{R}^{2} such that $[\mathbf{v}]_{\mathcal{B}}=\left[\begin{array}{r}-1 \\ 1\end{array}\right]$. Compute $[\mathbf{v}]_{\mathcal{C}}$.

Solution.

(a) We row reduce:

$$
\left[\begin{array}{rrrr}
-1 & -2 & 2 & -3 \\
2 & 3 & 1 & 4
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 2 & -2 & 3 \\
0 & -1 & 5 & -2
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 0 & 8 & -1 \\
0 & 1 & -5 & 2
\end{array}\right],
$$

so the change of basis matrix is

$$
\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}=\left[\begin{array}{rr}
8 & -1 \\
-5 & 2
\end{array}\right] .
$$

(b)

$$
[\mathbf{v}]_{\mathcal{C}}=\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}[\mathbf{v}]_{\mathcal{B}}=\left[\begin{array}{rr}
8 & -1 \\
-5 & 2
\end{array}\right]\left[\begin{array}{r}
-1 \\
1
\end{array}\right]=\left[\begin{array}{r}
-9 \\
7
\end{array}\right] .
$$

11. Consider the transformation $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ given by $T(f(t))=(3 t-2) f^{\prime}(t)$, where $f^{\prime}(t)$ is the derivative of $f(t)$. For example,

$$
T\left(t^{2}-3 t+1\right)=(3 t-2)(2 t-3)=6 t^{2}-13 t+6
$$

The function T is a linear transformation. You do not need to show this.
(a) Calculate the matrix A of T with respect to the basis $\mathcal{B}=\left\{1, t, t^{2}\right\}$ for \mathbb{P}_{2}.
(b) Find a basis for the kernel (null space) of T consisting of elements of \mathbb{P}_{2}. What is its dimension?
(c) Find a basis for the range of T consisting of elements of \mathbb{P}_{2}. What is its dimension?

Solution.

(a) We compute

$$
\begin{aligned}
T(1) & =0 \\
T(t) & =3 t-2 \\
T\left(t^{2}\right) & =(3 t-2)(2 t)=6 t^{2}-4 t
\end{aligned}
$$

It follows that the matrix of T with respect to the basis \mathcal{B} is

$$
A=\left[\begin{array}{rrr}
0 & -2 & 0 \\
0 & 3 & -4 \\
0 & 0 & 6
\end{array}\right]
$$

(b) Row reducing A we have

$$
\left[\begin{array}{rrr}
0 & -2 & 0 \\
0 & 3 & -4 \\
0 & 0 & 6
\end{array}\right] \sim\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] .
$$

A basis for the null space of A is $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$, which corresponds to $\{1\}$ in \mathbb{P}_{2}. The dimension is 1 .
(c) The range of T is the same as the column space of A, which has basis $\left\{\left[\begin{array}{r}-2 \\ 3 \\ 0\end{array}\right],\left[\begin{array}{r}0 \\ -4 \\ 6\end{array}\right]\right\}$, which corresponds to $\left\{-2+3 t,-4 t+6 t^{2}\right\}$ in \mathbb{P}_{2}. The dimension is 2 .
12. Let $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 6 & 2\end{array}\right]$. Find a diagonal matrix D and a matrix P such that $A=P D P^{-1}$. You do not need to compute P^{-1}.

Solution. First compute the characteristic polynomial:
$\operatorname{det}\left[\begin{array}{ccc}2-\lambda & 0 & 0 \\ 0 & 3-\lambda & 1 \\ 0 & 6 & 2-\lambda\end{array}\right]=(2-\lambda)(3-\lambda)(2-\lambda)-(2-\lambda) 6=(2-\lambda)\left(\lambda^{2}-5 \lambda\right)=\lambda(2-\lambda)(\lambda-5)$.
The eigenvalues are $0,2,5$.
We next find corresponding eigenvectors.
eigenvalue 0:

$$
\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 1 \\
0 & 6 & 2
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

A basis of the null space is $\left\{\left[\begin{array}{c}0 \\ 1 \\ -3\end{array}\right]\right\}$.
eigenvalue 2:

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 6 & 0
\end{array}\right] \sim\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] .
$$

A basis for the null space is $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$.
eigenvalue 5:

$$
\left[\begin{array}{ccc}
-3 & 0 & 0 \\
0 & -2 & 1 \\
0 & 6 & -3
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

A basis for the null space is $\left\{\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]\right\}$.
We can choose D, P so that

$$
D=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 5
\end{array}\right], \quad P=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
-3 & 0 & 2
\end{array}\right]
$$

