Math 20580	Name:
Practice Midterm 3	Instructor:
April 16, 2015	Section:
Calculators are NOT allowed.	Do not remove this answer page – you will return the whole
exam. You will be allowed 75	minutes to do the test. You may leave earlier if you are
finished.	· · ·

There are 8 multiple choice questions worth 7 points each and 4 partial credit questions each worth 11 points. Record your answers by placing an \times through one letter for each problem on this answer sheet.

Sign the pledge. "On my honor, I have neither given nor received unauthorized aid on this Exam":

Multiple Choice.

Total.

Part I: Multiple choice questions (7 points each)

1. Find the closest point to
$$\begin{bmatrix} 1\\1\\2 \end{bmatrix}$$
 in the subspace of \mathbb{R}^3 spanned by $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$ and $\begin{bmatrix} -1\\1\\2 \end{bmatrix}$.
(a) $\begin{bmatrix} -2\\1\\1 \end{bmatrix}$ (b) $\begin{bmatrix} -1\\1\\2 \end{bmatrix}$ (c) $\begin{bmatrix} 1\\1\\2 \end{bmatrix}$ (d) $\begin{bmatrix} 8/5\\1\\6/5 \end{bmatrix}$ (e) $\begin{bmatrix} -3/5\\1\\6/5 \end{bmatrix}$

2. Which of the following is a least square solution $\mathbf{\hat{x}}$ to the equation

$$\begin{bmatrix} 1 & -2\\ 2 & 1\\ 1 & -2\\ 2 & 1 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 1\\ 3\\ 1\\ 3 \end{bmatrix}?$$
(a) $\begin{bmatrix} 11/9\\ 1/9 \end{bmatrix}$ (b) $\begin{bmatrix} 3/2\\ 1/2 \end{bmatrix}$ (c) $\begin{bmatrix} 7/5\\ 1/5 \end{bmatrix}$ (d) $\begin{bmatrix} 1\\ -2 \end{bmatrix}$ (e) $\begin{bmatrix} 2\\ 1 \end{bmatrix}$

3. Which of the following functions is a solution to the initial value problem

$$\frac{dy}{dt} = (y-t)^2 + 1; \qquad y(0) = -1?$$
(a) $y = \frac{1}{t+1} - 2$ (b) $y = t$ (c) $y = \frac{-1}{t+1} + t$
(d) $y = t - 1$ (e) $y = \frac{-2}{t+1} + 1$

4. Let A be an $m \times n$ matrix. Which of the following may be *false*?

- (a) The equation $A^T A \mathbf{x} = A^T \mathbf{b}$ is always consistent for any \mathbf{b} in \mathbb{R}^m .
- (b) $A^T A$ is invertible.
- (c) A solution to $A^T A \mathbf{x} = A^T \mathbf{b}$ is a least squares solution of $A \mathbf{x} = \mathbf{b}$.
- (d) The columns of A^T lie in the column space of $A^T A$.
- (e) If $A^T A \mathbf{x} = A^T \mathbf{b}$ then $A \mathbf{x} \mathbf{b}$ is orthogonal to $\operatorname{Col}(A)$.

5. Which of the following is a general solution to the differential equation

(a)
$$xy + y \sin y - \sin y = c$$

(b) $xy + y \cos y - \sin y = cy$
(c) $xy + y \sin y - \cos y = c$
(d) $xy + y \cos y - \sin y = cy$
(e) $xy + y \cos y - \cos y = c$

6. Consider the initial value problem

$$\sin(2x) + \cos(3y)\frac{dy}{dx} = 0$$
 $y(\pi/2) = \pi/3$

Which of the following implicitly defines the solution?

(a)
$$\frac{-\cos(2x)}{2} + \frac{\sin(3y)}{3} = \frac{-1}{2}$$
 (b) $-\cos(2x) + \sin(3y) = \frac{1}{2}$
(c) $\sin(2x) + \cos(3y) = 1$ (d) $-\cos(2x) + \sin(3y) = \frac{-1}{2}$
(e) $\frac{-\cos(2x)}{2} + \frac{\sin(3y)}{3} = \frac{1}{2}$

7. Let y(t) be the unique solution of the initial value problem

$$(t^{2} - t)\frac{dy}{dt} + \cos(\pi t)y = \frac{t^{2} - t}{t - 2} \qquad y(3/2) = 0$$

What is the largest interval where y is defined?

(a)
$$t > 0$$
 (b) $0 < t < 2$ (c) $1 < t < 2$ (d) $t < 1/2$ (e) $t < 2$

8. A tank initially contains 100*l* of pure water. Then, at t = 0, a sugar solution with concentration of 4g/l starts being pumped into the tank at a rate of $5l/\min$. The tank is kept well mixed, and the solution is being pumped out at the rate of $4l/\min$. Which of the following is the initial value problem for y(t) = quantity of sugar, in grams, in the tank at time t?

(a)
$$\frac{dy}{dt} = 5y - 4(100 + t)$$
 $y(0) = 0$
(b) $\frac{dy}{dt} = 20 - 4y$ $y(0) = 0$
(c) $\frac{dy}{dy} = 4$ $y(0) = 100$
(d) $\frac{dy}{dt} = 20 - \frac{4y}{2}$ $y(0) = 0$

(e)
$$\frac{dt}{dy} = 20 - \frac{100 + t}{(100 + t)^2}$$
 $y(0) = 100$

Part II: Partial credit questions (11 points each). Show your work.

9. Using the Gram-Schmidt Process, find an orthonormal basis of the subspace of \mathbb{R}^4 spanned by the vectors $\begin{bmatrix} 1\\0\\0\\0\end{bmatrix}, \begin{bmatrix} 1\\2\\1\\2\end{bmatrix}$ and $\begin{bmatrix} 1\\3\\1\\3\end{bmatrix}$.

10. By drawing a direction field, sketch two solutions to the ODE

$$\frac{dy}{dt} = t^2 y^2 (y-2)$$

with initial conditions y(0) = 1 and y(0) = 3. Indicate clearly the limiting behavior $\lim_{t \to \infty} y(t)$ and $\lim_{t \to -\infty} y(t)$. 11. Find the function y(t), for t > 0, which solves the initial value problem

$$t\frac{dy}{dt} + 4y = \frac{e^{-t}}{t^2}$$
 , $y(1) = 0$

12. Consider the differential equation

$$2y\frac{dy}{dx} = -e^x$$

- (a) Find the general solution.
- (b) Find the solution with y(0) = 1.
- (c) What is the largest interval in which the solution in part (b) is defined?