Math 20580

Practice Midterm 3
April 16, 2015
Name: \qquad
Instructor: \qquad
Section:
Calculators are NOT allowed. Do not remove this answer page - you will return the whole exam. You will be allowed 75 minutes to do the test. You may leave earlier if you are finished.
There are 8 multiple choice questions worth 7 points each and 4 partial credit questions each worth 11 points. Record your answers by placing an \times through one letter for each problem on this answer sheet.

Sign the pledge. "On my honor, I have neither given nor received unauthorized aid on this Exam":

1. a, b, d, d
2. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$
3. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$
4. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
5. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
6. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
7. a b c d e
8. a b c d e

Multiple Choice.
9.
10.
11.
12.

Total.

Part I: Multiple choice questions (7 points each)

1. Find the closest point to $\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$ in the subspace of \mathbb{R}^{3} spanned by $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right]$.
(a) $\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right]$
(b) $\left[\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right]$
(c) $\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$
(d) $\left[\begin{array}{c}8 / 5 \\ 1 \\ 6 / 5\end{array}\right]$
(e) $\left[\begin{array}{c}-3 / 5 \\ 1 \\ 6 / 5\end{array}\right]$
2. Which of the following is a least square solution $\hat{\mathbf{x}}$ to the equation

$$
\left[\begin{array}{cc}
1 & -2 \\
2 & 1 \\
1 & -2 \\
2 & 1
\end{array}\right] \mathbf{x}=\left[\begin{array}{l}
1 \\
3 \\
1 \\
3
\end{array}\right] ?
$$

(a) $\left[\begin{array}{c}11 / 9 \\ 1 / 9\end{array}\right]$
(b) $\left[\begin{array}{l}3 / 2 \\ 1 / 2\end{array}\right]$
(c) $\left[\begin{array}{l}7 / 5 \\ 1 / 5\end{array}\right]$
(d) $\left[\begin{array}{c}1 \\ -2\end{array}\right]$
(e) $\left[\begin{array}{l}2 \\ 1\end{array}\right]$
3. Which of the following functions is a solution to the initial value problem

$$
\frac{d y}{d t}=(y-t)^{2}+1 ; \quad y(0)=-1 ?
$$

(a) $y=\frac{1}{t+1}-2$
(b) $y=t$
(c) $y=\frac{-1}{t+1}+t$
(d) $y=t-1$
(e) $y=\frac{-2}{t+1}+1$
4. Let A be an $m \times n$ matrix. Which of the following may be false?
(a) The equation $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$ is always consistent for any \mathbf{b} in \mathbb{R}^{m}.
(b) $A^{T} A$ is invertible.
(c) A solution to $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$ is a least squares solution of $A \mathbf{x}=\mathbf{b}$.
(d) The columns of A^{T} lie in the column space of $A^{T} A$.
(e) If $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$ then $A \mathbf{x}-\mathbf{b}$ is orthogonal to $\operatorname{Col}(A)$.
5. Which of the following is a general solution to the differential equation

$$
1+\left(\frac{x}{y}-\sin y\right) \frac{d y}{d x}=0 ?
$$

(a) $x y+y \sin y-\sin y=c$
(b) $x y+y \cos y-\sin y=c y$
(c) $x y+y \sin y-\cos y=c$
(d) $x y+y \cos y-\sin y=c$
(e) $x y+y \cos y-\cos y=c$
6. Consider the initial value problem

$$
\sin (2 x)+\cos (3 y) \frac{d y}{d x}=0 \quad y(\pi / 2)=\pi / 3
$$

Which of the following implicitly defines the solution?
(a) $\frac{-\cos (2 x)}{2}+\frac{\sin (3 y)}{3}=\frac{-1}{2}$
(b) $-\cos (2 x)+\sin (3 y)=\frac{1}{2}$
(c) $\sin (2 x)+\cos (3 y)=1$
(d) $-\cos (2 x)+\sin (3 y)=\frac{-1}{2}$
(e) $\frac{-\cos (2 x)}{2}+\frac{\sin (3 y)}{3}=\frac{1}{2}$
7. Let $y(t)$ be the unique solution of the initial value problem

$$
\left(t^{2}-t\right) \frac{d y}{d t}+\cos (\pi t) y=\frac{t^{2}-t}{t-2} \quad y(3 / 2)=0
$$

What is the largest interval where y is defined?
(a) $t>0$
(b) $0<t<2$
(c) $1<t<2$
(d) $t<1 / 2$
(e) $t<2$
8. A tank initially contains $100 l$ of pure water. Then, at $t=0$, a sugar solution with concentration of $4 g / l$ starts being pumped into the tank at a rate of $5 l / \mathrm{min}$. The tank is kept well mixed, and the solution is being pumped out at the rate of $4 l / \mathrm{min}$. Which of the following is the initial value problem for $y(t)=$ quantity of sugar, in grams, in the tank at time t ?
(a) $\frac{d y}{d t}=5 y-4(100+t) \quad y(0)=0$
(b) $\frac{d y}{d t}=20-4 y \quad y(0)=0$
(c) $\frac{d y}{d y}=4 \quad y(0)=100$
(d) $\frac{d y}{d t}=20-\frac{4 y}{100+t} \quad y(0)=0$
(e) $\frac{d y}{d t}=20-\frac{y}{(100+t)^{2}} \quad y(0)=100$

Part II: Partial credit questions (11 points each). Show your work.
9. Using the Gram-Schmidt Process, find an orthonormal basis of the subspace of \mathbb{R}^{4} spanned by the vectors $\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 1 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 3 \\ 1 \\ 3\end{array}\right]$.
10. By drawing a direction field, sketch two solutions to the ODE

$$
\frac{d y}{d t}=t^{2} y^{2}(y-2)
$$

with initial conditions $y(0)=1$ and $y(0)=3$.
Indicate clearly the limiting behavior $\lim _{t \rightarrow \infty} y(t)$ and $\lim _{t \rightarrow-\infty} y(t)$.
11. Find the function $y(t)$, for $t>0$, which solves the initial value problem

$$
t \frac{d y}{d t}+4 y=\frac{e^{-t}}{t^{2}} \quad, \quad y(1)=0
$$

12. Consider the differential equation

$$
2 y \frac{d y}{d x}=-e^{x}
$$

(a) Find the general solution.
(b) Find the solution with $y(0)=1$.
(c) What is the largest interval in which the solution in part (b) is defined?

