Name:	Version #1	
Instruc	tor:	

Math 20580, Final December 12, 2016

- The Honor Code is in effect for this examination. All work is to be your own.
- Please turn off all cellphones and electronic devices.
- Calculators are **not** allowed.
- The exam lasts for 2 hours.
- Be sure that your name and instructor's name are on the front page of your exam.
- Be sure that you have all pages of the test.

PLEA	ASE MA	ARK Y	OUR A	NSWEI	RS WITI	H AN X,	not a c	ircle!			
1.	(•)	(b)	(c)	(d)	(e)	13.	(a)	(b)	(c)	(•)	(e)
2.	(•)	(b)	(c)	(d)	(e)	14.	(a)	(b)	(•)	(d)	(e)
3.	(•)	(b)	(c)	(d)	(e)	15.	(a)	(b)	(c)	(d)	(•)
4.	(a)	(b)	(•)	(d)	(e)	16.	(a)	(b)	(c)	(•)	(e)
5.	(a)	(b)	(c)	(•)	(e)	17.	(•)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(•)		18.	(•)	(b)	(c)	(d)	(e)
7.	(•)	(b)	(c)	(d)	(e)	19.	(a)	(b)	(•)	(d)	(e)
8.	(a)	(b)	(•)	(d)		20.	(a)	(b)	(c)	(•)	(e)
9.	(a)	(b)	(c)	(d)	(•)	21.	(a)	(b)	(c)	(•)	(e)
10.	(a)		(c)	(d)	(•)	22.	(a)	(b)	(•)	(d)	(e)
11.	(a) (a)	(b)	(c)	(•)	(e)	23.	(a)	(•)	(c)	(d)	(e)
12.		(•)	(c)	(d)	(e)	24.	(•)	(b)	(c)	(d)	(e)
			. 7			25.	(a)	(b)	(c)	(•)	(e)

Please d	lo NOT	write	in	this	box.
Total_{\square}					

Name: _				
Instruct	or:			

Math 20580, Final December 12, 2016

- The Honor Code is in effect for this examination. All work is to be your own.
- Please turn off all cellphones and electronic devices.
- Calculators are **not** allowed.
- The exam lasts for 2 hours.
- Be sure that your name and instructor's name are on the front page of your exam.
- Be sure that you have all pages of the test.

1.	(a)	(b)	(c)	(d)	(e)	13.	(a)	(b)	(c)	(d)	(e
2.	(a)	(b)	(c)	(d)	(e)	14.	(a)	(b)	(c)	(d)	
3.	(a)	(b)	(c)	(d)	(e)	15.	(a)	(b)	(c)	(d)	(e
4.	(a)	(b)	(c)	(d)	(e)	16.	(a)	(b)		(d)	(e
5.	(a)	(b)	(c)	(d)	(e)	17.	(a)	(b)	(c)	(d)	(e
6.	(a)	(b)	(c)	(d)	(e)	18.	(a)	(b)	(c)	(d)	(e
7.	(a)	(b)	(c)	(d)	(e)	19.	(a)	(b)	(c)	(d)	(e
8.	(a)	(b)	(c)	(d)	(e)	20.	(a)	(b)	(c)	(d)	(e
9.	(a)	(b)	(c)	(d)	(e)	21.	(a)	(b)	(c)	(d)	(e
10.	(a)	(b)	(c)	(d)	(e)	22.	(a)	(b)	(c)	(d)	(e
11.	(a)	(b)	(c)	(d)	(e)	23.	(a)	(b)	(c)	(d)	(e
12.	(a)	(b)	(c)	(d)	(e)	24.	(a)	(b)	(c)	(d)	
			. 7			25.	(a)	(b)	(c)	(d)	(e

Please	do NOT	write in	this	box.
Total				

1.(6pts) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation defined by

$$T\left(\left[\begin{array}{c} x \\ y \end{array}\right]\right) = \left[\begin{array}{c} 3x + 2y \\ 3x + 8y \end{array}\right].$$

Find a basis \mathcal{B} of \mathbb{R}^2 such that the \mathcal{B} -matrix of T is a diagonal matrix.

- (a) $\left\{ \begin{bmatrix} 1\\3 \end{bmatrix}, \begin{bmatrix} -2\\1 \end{bmatrix} \right\}$ (b) $\left\{ \begin{bmatrix} 5\\-3 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$ (c) $\left\{ \begin{bmatrix} 5\\1 \end{bmatrix}, \begin{bmatrix} -3\\1 \end{bmatrix} \right\}$

- (d) $\left\{ \begin{bmatrix} 3\\1 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$ (e) $\left\{ \begin{bmatrix} 0\\2 \end{bmatrix}, \begin{bmatrix} 4\\0 \end{bmatrix} \right\}$

- 2.(6pts) Imagine that you just got that great job and opened a retirement account (IRA) with initial balance 0 in which you plan to deposit money continuously at a rate of 15 thousand dollars per year for the next 40 years. If this account earns annual interest rate of 5% compounded continuously, find the amount in your account (in thousands of dollars) at the end of the 40 year period.
 - (a) $300(e^2-1)$
- (b) $500(e^2-1)$
- (c) $300(e^2+1)$

- (d) $400(e^2-1)$
- (e) $150(e^2-1)$

3.(6pts) The least squares solution $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$ of the matrix equation $A\mathbf{x} = \mathbf{b}$ with

$$A = \begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} 2 \\ 1 \\ 6 \end{bmatrix}$$

is given by

- (a) $\hat{\mathbf{x}} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ where $\hat{\mathbf{b}} = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$.
- (b) None of the other answers are correct.
- (c) $\hat{\mathbf{x}} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ where $\hat{\mathbf{b}} = \begin{bmatrix} 0 \\ 1 \\ 12 \end{bmatrix}$.
- (d) $\hat{\mathbf{x}} = \begin{bmatrix} 9 \\ 4 \end{bmatrix}$ where $\hat{\mathbf{b}} = \begin{bmatrix} 5 \\ 9 \\ 13 \end{bmatrix}$.
- (e) $\hat{\mathbf{x}} = \begin{bmatrix} 9 \\ 4 \end{bmatrix}$ where $\hat{\mathbf{b}} = \begin{bmatrix} -1 \\ -3 \\ -5 \end{bmatrix}$.

4.(6pts) If y(t) is the solution to the initial value problem

$$y'' - 4y' + 5y = 0, y(0) = 0, y'(0) = 1$$

then find $y(\pi/2)$.

(a) $e^{\pi/2}$

(b) 0

(c) e^{π}

(d) $2e^{\pi}$

(e) π

 ${f 5.}({f 6pts})$ Find the maximum positive time T (lifespan) for which the solution to the initial value problem

$$\frac{dy}{dt} = \frac{1}{3}y^4, \quad y(0) = 0.1$$

is defined for all t with $0 \le t < T$.

(a) T = 1

(b) T = 3

(c) T = 10

- (d) T = 1000
- (e) T = 300

6.(6pts) Let \mathbb{P}_4 be the space of all polynomials $a_0 + a_1t + a_2t^2 + a_3t^3 + a_4t^4$ with real coefficients. Consider the linear transformation $T: \mathbb{P}_4 \longrightarrow \mathbb{P}_4$ given by

$$T(p(t)) = 2p'(t).$$

Let A be the matrix for the linear transformation T with respect to the basis $\{1, t, t^2, t^3, t^4\}$ of \mathbb{P}_4 . Compute det A.

(a) 12

(b) -1

(c) 1

(d) 0

(e) 24

7.(6pts) If the method of undetermined coefficients is to be used, then a suitable form for determining a particular solution y_p to the differential equation

$$y'' - 4y' + 4y = 2e^{2t} + \sin t + t$$

is given by:

(a)
$$y_p = At^2e^{2t} + (B\sin t + C\cos t) + (Dt + E)$$

(b)
$$y_p = Ate^{2t} + C\sin t + Dt$$

(c)
$$y_p = Ate^{2t} + (B\sin t + C\cos t) + (Dt + E)$$

(d)
$$y_p = At^2e^{2t} + B\sin t + (Ct + D)$$

(e)
$$y_p = Ae^{2t} + B\sin t + Ct$$

8.(6pts) A mass m hanging at the end of a vertical spring causes an elongation L of the spring equal to 1/2 ft. Assume the mass is started in motion from the rest position with a velocity 16 ft/sec in the downward direction. What is the equation for the distance u(t) (in feet) the mass is **below** the rest position at time t (in seconds)? (Use g = 32ft/s² for the acceleration due to gravity and neglect air resistance.)

(a)
$$u(t) = 2\sin 16t$$

(b)
$$u(t) = 2\sin 4t$$

(c)
$$u(t) = 2\sin 8t$$

(d)
$$u(t) = \sin 4t$$

(e)
$$u(t) = \sin 64t$$

9.(6pts) Let

$$A = \begin{bmatrix} 0 & 1 & -1 & 3 & -2 \\ 0 & 3 & -3 & 2 & 4 \\ 0 & 2 & -2 & 3 & 1 \end{bmatrix}.$$

Which of the following sets of vectors is a basis of the null space of A?

$$\begin{pmatrix}
\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}
\end{pmatrix}$$

$$(b) \left\{ \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \right\}$$

$$\begin{pmatrix}
\begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 2 \\ 0 \\ 0 \end{bmatrix}
\end{pmatrix}$$

$$\left\{
 \begin{bmatrix}
 1 \\
 0 \\
 0 \\
 0
 \end{bmatrix},
 \begin{bmatrix}
 0 \\
 1 \\
 1 \\
 1 \\
 0 \\
 0
 \end{bmatrix},
 \begin{bmatrix}
 1 \\
 -1 \\
 -1 \\
 0 \\
 0
 \end{bmatrix}
 \right\}$$

(e)
$$\left\{ \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\0\\0 \end{bmatrix} \right\}$$

10.(6pts) Consider the system of linear equations

$$\begin{cases} (s-4) x + 2y = s \\ (2s-7) x + 4y = 1 \end{cases}$$

for x and y. What is the value of y in the solution?

(a)
$$-2s^2 + 8s - 4$$

(b)
$$\frac{4s-2}{8s-30}$$

(c)
$$2s - 1$$

(d)
$$\frac{s^2 - 4s + 2}{8s - 30}$$

(e)
$$s^2 - 4s + 2$$

11.(6pts) Let

$$A = \left[\begin{array}{ccccc} 1 & -1 & 2 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array} \right].$$

If $r = \dim \operatorname{Col} A$, $s = \dim \operatorname{Nul} A$, and $t = \dim \operatorname{Row} A$, then

- (a) (r, s, t) = (2, 3, 2) (b) (r, s, t) = (5, 0, 1)
- (c) (r, s, t) = (3, 2, 4)

- (d) (r, s, t) = (3, 2, 3) (e) (r, s, t) = (2, 3, 3)

12.(6pts) Which number is **not** an eigenvalue of the following matrix?

$$\left[\begin{array}{ccccc}
1 & 0 & 0 & -2 \\
0 & 4 & 0 & 0 \\
0 & 3 & 1 & 3 \\
0 & 0 & 2 & -4
\end{array}\right]$$

(a) 1

(b) -1

(c) 4

(d) 2

(e) -5

13.(6pts) Given that $y_1 = t$ and $y_2 = t^{-1}$ is a fundamental set of solutions for the differential equation $y'' + t^{-1}y' - t^{-2}y = 0$, the variation of parameters method gives a particular solution y_p to the corresponding nonhomogeneous equation

$$y'' + t^{-1}y' - t^{-2}y = t^{-1}, x > 0,$$

of the form

$$y_p = tu_1 + t^{-1}u_2.$$

Which of the following functions can be $u_1(t)$?

- (a) $u_1(t) = t^2 \ln t$
- (b) $u_1(t) = t \ln t$
- (c) $u_1(t) = -\frac{1}{2}t^2$

- (d) $u_1(t) = \frac{1}{2} \ln t$
- (e) $u_1(t) = 2t + 5t^{-1}$

- **14.**(6pts) The Gram-Schmidt process applied to the basis $\left\{ \begin{bmatrix} 0 \\ 4 \\ 2 \end{bmatrix}, \begin{bmatrix} 5 \\ 6 \\ -7 \end{bmatrix} \right\}$ yields an orthogonal basis that when normalized gives the orthonormal basis
 - (a) $\left\{ \begin{bmatrix} 0\\ 2/\sqrt{5}\\ 1/\sqrt{5} \end{bmatrix}, \begin{bmatrix} 5/\sqrt{110}\\ 6/\sqrt{110}\\ -12/\sqrt{110} \end{bmatrix} \right\}$ (b) $\left\{ \begin{bmatrix} 0\\ 2/\sqrt{5}\\ 1/\sqrt{5} \end{bmatrix}, \begin{bmatrix} 1/\sqrt{5}\\ 8/5\sqrt{5}\\ -16/5\sqrt{5} \end{bmatrix} \right\}$
 - (c) $\left\{ \begin{bmatrix} 0\\ 2/\sqrt{5}\\ 1/\sqrt{5} \end{bmatrix}, \begin{bmatrix} 5/\sqrt{105}\\ 4/\sqrt{105}\\ -8/\sqrt{105} \end{bmatrix} \right\}$
- $(d) \left\{ \left| \begin{array}{c} 0 \\ 2 \\ 1 \end{array} \right|, \left[\begin{array}{c} 5 \\ 4 \\ -8 \end{array} \right] \right\}$
- (e) $\left\{ \begin{bmatrix} 0\\2/\sqrt{5}\\1/\sqrt{5} \end{bmatrix}, \begin{bmatrix} 5/\sqrt{5}\\4/\sqrt{5}\\8/\sqrt{5} \end{bmatrix} \right\}$

- 15.(6pts) Which of the following numbers can **not** be the dimension of the null space of a 3×5 matrix?
 - (a) 2

(b) 5

(c) 3

(d) 4

(e) 1

16.(6pts) Given that $y_1(t) = e^t$ is a solution to the differential equation

$$ty'' - (2t+1)y' + (t+1)y = 0$$

then the reduction of order method gives a second solution of the form

$$y_2(t) = e^t u(t),$$

where u(t) satisfies a simpler differential equations. Which of the following is this simpler differential equation?

- (a) u'' + u' = 0
- (b) tu' u = 0 (c) u' 2t = 0

- (d) tu'' u' = 0
- (e) u'' 3u' + 2u = 0

17.(6pts) Using the Existence and Uniqueness Theorem for second order linear differential equations, find the maximal interval of existence of the solution to the initial value problem

$$(t^3 - 9t)y'' - 8ty' + (t+4)y = t^2 - 9,$$
 $y(2) = 5,$ $y'(2) = -1.$

$$y(2) = 5, \quad y'(2) = -1$$

(a)
$$(0,3)$$

(b)
$$(3,\infty)$$

(c)
$$(-3,0)$$

(d)
$$(-\infty, -3)$$

(e)
$$(0,3)$$

18.(6pts) For which value of k is the following linear system for x and y consistent:

$$\begin{cases} k x + y = 1 - k \\ k x + 2 y = 2 - 2k \\ (1 + k) x + y = -k. \end{cases}$$

(a)
$$k = 0$$

(b)
$$k = 1$$

(c)
$$k = -1$$

(d)
$$k = 2$$

(e)
$$k = -2$$

19.(6pts) Let

$$A = \begin{bmatrix} 2 & 3 \\ 2 & 4 \\ 1 & 1 \end{bmatrix} \quad \text{and} \quad Q = \begin{bmatrix} 2/3 & -1/3 \\ 2/3 & 2/3 \\ 1/3 & -2/3 \end{bmatrix}.$$

Note that Col A = Col Q. Find R for the QR factorization of A

- (a) No such R exists.
- (b) $R = \begin{bmatrix} 1 & 0 \\ -5/3 & 1/3 \end{bmatrix}$ (c) $R = \begin{bmatrix} 3 & 5 \\ 0 & 1 \end{bmatrix}$

- (d) $R = \begin{bmatrix} 3 & 0 \\ 5 & 1 \end{bmatrix}$ (e) $R = \begin{bmatrix} 1/3 & -5/3 \\ 0 & 1 \end{bmatrix}$

20.(6pts) The solution of the differential equation

$$(y - 3x^2 + 4) + (x + 4y^3 - 2y)\frac{dy}{dx} = 0$$

is given by the (implicit) relation:

(a) $yx - x^3 + 4x + y^4 = c$

- (b) $yx x^3 + 4x y^2 = c$
- (c) $y x^2 + 4x + y^4 y^2 = c$
- (d) $yx x^3 + 4x + y^4 y^2 = c$

(e) $yx - x^3 + 4x = c$

- **21.**(6pts) Let A be a 3×4 matrix and **b** be a column vector of length 3. Assume that the linear system $A\mathbf{x} = \mathbf{b}$ is consistent. Let $B = [A|\mathbf{b}]$ be the augmented matrix, of size 3×5 , of that linear system. Which of the following statements **must** be true?
 - (a) rank(A) = 4

(b) $\operatorname{rank}(A) = 3$

(c) $\operatorname{rank}(B) = \operatorname{rank}(A) + 1$

(d) rank(B) = rank(A)

(e) b = 0

- **22.**(6pts) Let $\mathcal{B} = \left\{ \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \end{bmatrix} \right\}$ and $\mathcal{C} = \left\{ \begin{bmatrix} 3 \\ -1 \end{bmatrix}, \begin{bmatrix} 4 \\ -2 \end{bmatrix} \right\}$ be two basis of \mathbb{R}^2 . Find the matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$, i.e., the change-of-coordinate matrix from \mathcal{B} to \mathcal{C} .

 - (a) $\begin{bmatrix} 8 & -11 \\ 5 & -7 \end{bmatrix}$ (b) $\begin{bmatrix} 5/2 & 7/2 \\ 2 & 4 \end{bmatrix}$ (c) $\begin{bmatrix} 6 & -7 \\ -4 & 5 \end{bmatrix}$
 - (d) $\begin{bmatrix} 11 & -15 \\ -5 & 7 \end{bmatrix}$ (e) $\begin{bmatrix} -2 & -5 \\ -1 & -3 \end{bmatrix}$

- **23.**(6pts) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ denote the linear transformation given by counterclockwise rotation about the origin by $\pi/4$ (radians). Let A be the matrix of T with respect to the standard basis of \mathbb{R}^2 . Which of the following matrices is equal to A^2 ?
 - (a) $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$
- (b) $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$
- (c) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

 $(d) \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$

(e) $\begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}$

24.(6pts) Assume that the population p(t) (in millions) of puffins (a type of seabird) at any time t (in years from now) is modeled by the differential equation

$$\frac{dp}{dt} = -0.15p(1 - \frac{p}{15})(1 - \frac{p}{100}).$$

Find the population of puffins in the distant future (i.e., $\lim_{t\to\infty} p(t)$) if currently there are 10 million puffins.

(a) 0

(b) 20

(c) 15

(d) 1

(e) 100

- **25.**(6pts) Which of the following sets are vector spaces with the usual addition and scalar multiplication?
 - I. The set of all polynomials of the form $p(t) = a + t + bt^2$ for all $a, b \in \mathbb{R}$.
 - II. The set of vectors \mathbf{v} in \mathbb{R}^2 such that $\mathbf{v} \cdot [3, 2]^T = 0$.
 - III. The set of all vectors \mathbf{v} in \mathbb{R}^3 that are *not* scalar multiples of $[2,1,1]^T$.
 - IV. The set of functions that are solutions to $y'' + e^t y' (\sec t)y = 0$.
 - (a) I, II and IV.
- (b) III and IV.
- (c) I and II.

- (d) II and IV.
- (e) I and III.