new logo

Thanks to generous donations from the Boler and Parseghian families we are now the Boler-Parseghian Center for Rare & Neglected Diseases

photo 89

Members of the Boler and Parseghian families with Center Director Dr. Kasturi Haldar and Dean Greg Crawford (College of Science) during the dedication ceremony, Saturday Oct. 11th. 

thank you letter

_______________________________________

flyer2

_______________________________________

Clinical and Translational Seminar Series:

 

Dr. Meg Phillips

Professor - University of Texas Southwestern

pic of studentsFrom left to right:
Niraja Suresh, Francisco Fields, Stefan Freed, Katelyn Carothers, Micah Ferrel, Matthew Krusen, Dr. Meg Phillips, Lucy Smith, Trevor Kane and Nicholas Deason.

The Clinical and Translational Seminar Series organized by CRND hosted a presentation by Dr. Meg Phillips on October 3rd, 2014. Dr. Phillips is a leading researcher in the field of malaria drug development.  She shared the story of an emerging drug that targets a particular parasite enzyme with little toxicity to humans. During her seminar, Dr. Phillip described the unique journey of taking the process of drug discovery from a simple concept based in rational design in the test tube and following through all the way to studies in humans. This effort, which pulled in the expertise of a number of collaborators, has resulted in a promising new strategy for treating malaria, a disease that affects more than 300 million people globally and results in nearly a million deaths annually.
During her visit, Dr. Phillips met with students from the “Topics in Pathobiology” class, which is tied to the Seminar Series. Throughout the semester, the students read, present and discuss papers by the visiting speakers, and get a chance to meet with each visiting scholar over pizza.

Find out more about the Fall 2014 CRND seminar series

_______________________________________

Thank you to all who participated in

 

The 2014 Rare Disease Research Symposium


Friday, October 10th 2:00pm – 5:00pm
DeBartolo Hall – Room 207

Click here for program

______________________________________

CRND Seminar Series

Fall - 2014

 

college

 

TYrevised

____________________________

CRND Professor Receives American Cancer Society Grant

Schafer Lab From left to right:
Dr. Zach Schafer, Sydney Shuff, Josh Mason, Kelsey Weigel, Raju Rayavarapu and Cassie Buchheit

Dr. Zach Schafer, Biological Sciences, has recently received a grant from the American Cancer Society to continue ongoing work in his lab on breast cancer research. Dr. Schafer is particularly interested in metastasis, a process whereby cancer cells depart from the primary tumor and spread to other parts of the body. Typically, normal cells that depart from their organs die. However, cancer cells tend to survive and spread to other organs. By studying the molecules that prevent cancer cell death and enable its spread, Dr. Schafer and his group hope to bring about the knowledge to develop new therapies that prevent the spread of cancer, which is essential to the treatment of aggressive cancers. Dr. Schafer's lab also conducts similar studies in inflammatory breast cancer, a rare and highly deadly type of breast cancer with very few treatment options. 

Click here to see Dr. Schafer’s most recent interview with WNDU

__________________________

CRND Professor

Fighting Ebola Virus

http://harpercancer.nd.edu/assets/38035/stahelin.jpg

Dr. Robert Stahelin was recently interviewed by ABC57 News and WSBT News and Sports Radio regarding his research on the Ebola virus.  Dr. Stahelin provided various facts regarding the Ebola virus and reassured that the U.S. has no reason to be concerned at this time.  Currently his lab is identifying how the virus replicates in cells with the goal of using small molecule therapy to prevent its replication while better understanding the virus and to see what can be done to stop it.
Dr. Stahelin is a Professor of Biochemistry and Molecular Biology at the Indiana University School of Medicine-South Bend also an Adjunct Associate Professor of Chemistry and Biochemistry at Notre Dame. To watch the interview with Dr. Stahelin click ABC57 News or listen to the full interview at WSBT News and Sports Radio.

 

Dr. Robert Stahelin talks with the Notre Dame Alumni Association about his research on the treatment of the Ebola virus.


_______________________________

 

In Remembrance of: Dr. Guillermina Estiu

Dr. Guillermina

It is with a heart full of sadness that we let you know Dr. Guillermina Estiu, spouse of Guillermo Ferraudi of the Rad Lab, passed away on Friday, May 9th 2014 after several months of illness.


Dr. Estiu was a research assistant professor (Chemistry and Biochemistry).  CRND owes her a special debt because as founding member, she launched a highly successful computational modeling and chemistry core within the Center, which was then transitioned to a University Core on Computer Assisted Molecular Design, with Guille as Managing Director.   We are grateful for her dynamic and enthusiastic support to all members of the CRND and the University at large.   She had over 20 years of experience in computational chemistry, which she used to manage CRND and CAMD core operations.  She will be greatly missed for her vast knowledge base,  passion for chemistry and selfless personality.

________________________

logo

See our Video on Malaria Research

 

Local Middle School Students Visit Notre Dame to Learn about Rare Diseases

rarend2\

On Thursday March 6th, a group of students from Lake Shore Middle School student council visited Notre Dame to learn about rare diseases. The students had lunch with Dean Greg Crawford (College of Science) and toured the Notre Dame campus. During their visit at CRND, Notre Dame students from the RareND club demonstrated how difficult it can be for rare disease patients to find diagnosis and expert care through an interactive game.

rareND1

photo7

Dr. Md. Suhail Alam (Haldar lab) introduced the students to his research in Niemann-Pick Type C (NPC) disease, which is a neurodegenerative rare disease that affects children and teens. A discussion between the visiting students and Notre Dame researchers demonstrated how interested and enthusiastic they are about learning and raising awareness for rare diseases. They also shared their plans for a 5K fundraising marathon to benefit rare disease awareness.

Suhail

__________________________________________

 

CRND Welcomes New Outreach Coordinator

The Center for Rare and Neglected Diseases welcomes Barb Calhoun as the new outreach coordinator. Barb’s main role will be to assist patient families with resources and information regarding rare diseases.photo\Barb is a pediatric nurse practitioner with previous experience in school health, hospital nursing and research. She really enjoys meeting/working with families and her goal is to become a valuable resource for the rare disease patient community. In addition, Barb will be working closely with Notre Dame Students involved in the Rare ND club and Dr. Kasturi Haldar’s class, “Clinical Research in Developing Health Networks for Rare and Neglected Diseases.”  If you or a family member is interested in learning more about a rare disease, finding specialists, support groups or other resources, please contact Barb Calhoun. bcalhoun@nd.edu.

________________________________________

 

World Rare Disease Day Celebration 2014

group photo

 

Notre Dame celebrates World Rare Disease Day

 

Published: February 24, 2014          

Author: Stephanie Healey

 

The Center for Rare and Neglected Diseases (CRND) and the Rare Health Exchange (RHE) celebrated World Rare Disease Day on Saturday, Feb. 15 at the Notre Dame Conference Center.  World Rare Disease Day is a global event that was first launched in 2008 to raise awareness among the general public and decision-makers about rare diseases and their impact on patients’ lives.


“We began celebrating rare disease day in 2009,” said Shahir Rizk, director of external programs for the CRND and research assistant professor of biological sciences. “Last year, we tried out the public forum format and found it to be well received. It gives Notre Dame a chance to be engaged with the local community and to provide a forum for rare disease patients and families to interact with researchers, physicians and students.” The daylong symposium was dedicated in memory of Tylor White-Richardson and Riley Smith, two patients who recently passed away from Niemann-Pick Type C (NPC) disease, a rare cholesterol storage disorder that affects approximately one in 100,000 people.


Elizabeth Berry-Kravis ’79, M.D., Ph.D., professor of pediatrics, neurology, and biochemistry at Rush University Medical Center in Chicago, participated in a panel about experimental drug treatments.  She works with families whose children have NPC. Berry-Kravis explained that for many years, the only option for NPC treatment was to provide supportive care to help alleviate the symptoms, but “thanks to the Parseghian Foundation, there has been a significant increase in NPC research in the last 20 years.”

1
Berry-Kravis was able to get approval from the FDA through the Investigative New Drug (IND) Program to provide an experimental treatment for her patients using cyclodextrin, a small molecule therapy, which is also being tested at other clinical sites.  “These diseases have ups and downs so you need to look at trends over time, but we are seeing early subtle, but promising results,” said Berry-Kravis.

1
Several attendees shared their experiences in open forum focused on living with rare diseases.  Coley Mrozcek shared his experience with X-Linked Hypophosphatemia (XLH), a disease that disrupts the assimilation of vitamin D and phosphorus in his body and causes bone malformation. His mother, three siblings, and daughter all have XLH.  “It is different being a patient of XLH, and having a child with it,” Mrozcek explained. “My daughter is 12 years old. She has difficulty running because of the way her legs have formed and other children are starting to notice. A better form of treatment is a priority for me and the way the research is going is encouraging for me as a parent.”


Cindy Riemersma came with her 21 year old daughter, Jyl, who was diagnosed with Glucose Transporter Deficiency Syndrome at the age of four. Jyl was only the 15th person in the world diagnosed with the syndrome. There are now more than 250 people diagnosed worldwide, indicating the importance of diagnosis.  

5

A major theme that emerged from the discussion was that all of the patients and families present had taken ownership of their situations and worked tirelessly to get the answers and treatments they needed because information and resources are much more limited with rare diseases. Muriel Finkel of the Amylodosis Support Groups Inc., a member of the National Organization of Rare Diseases, stressed the importance of service organizations that cater to specific rare diseases. These organizations can help connect patients to resources, such as treatment options, counseling and other patient families.

1
The second half of the day included a poster session and research presentations from Notre Dame students and faculty.  ESTEEM students Bianca Fox and Yuan Gao described the RHE program, a collaboration of students and patient families working together to develop a database to help rare disease patients and their caregivers.  Over the last five years, many families including the White-Richardson and Smith families have visited with Notre Dame students and faculty to help develop the RHE.   

2

Four Notre Dame researchers discussed their work on various lysosomal storage diseases. Shaun Lee, assistant professor of biological sciences, and Tony Serianni, professor of chemistry and biochemistry, described their research collaboration on Sanfilippo syndrome, a disease which prohibits an enzyme from properly breaking down complex sugars. In addition to developing new therapies, their work also helps predict whether a patient will respond to two major types of treatments that are currently being developed for this disease.  Md Suhail Alam, a postdoctoral associate in biological sciences who works with Kasturi Haldar, the Rev. Julius Nieuwland, C.S.C. Professor of Biological Sciences and James C. Parsons and Carrie Ann Quinn Director of the Center for Rare and Neglected Diseases, reported on the first plasma biomarker for neurodegeneration that can be used to monitor whether NPC patients on a therapy are improving in brain disease. Olaf Wiest, professor of chemistry and biochemistry, discussed how he uses powerful computers to find FDA-approved drugs that can be repurposed to treat rare diseases like NPC.

photo20
The second research session focused on rare cancers, which are often difficult to diagnose and have a poor prognosis. Başar Bilgiçer, assistant professor of chemical & biomolecular engineering and concurrent assistant professor of chemistry and biochemistry, described his work on developing nanoparticles to target multiple myeloma and Laurie Littlepage, Campbell Family Assistant Professor of Cancer Research, explained how her work is trying to compare the biology of a rare breast cancer that affects Kenyan women with cancers found in North America. In addition, Cassandra Buchheit, a graduate student in biological sciences who works with Zachary Schafer, Coleman Assistant Professor of Cancer Biology, spoke about her work with a rare inflammatory breast cancer that is often misdiagnosed as an infection.

photo21

Mike Hamerlik, CEO of WPS Health Insurance joined one of the patient family representatives to explain how new health insurance laws will impact rare disease patients. This panel was particularly informative to the families who have traditionally had few options when it comes to health insurance.

4

To conclude the seminar, the group completed a rare disease quiz prepared by the newly minted RareND club, which reminded the audience how much still needs to be done to raise awareness for rare diseases.  They also sang a new version of the Notre Dame fight song to rally the fight against rare diseases.

Please visit our 2014 RDD Photo Gallery

 

 

open CRND

2014 Agenda.... CLICK HERE

__________________________________

 

Riley Smith

Riley pix

 

It is with a heavy heart that we let you know that Riley Smith, daughter of Trent and Julie Smith, passed away, January 19th after a brave battle with Niemann-Pick Disease, Type C.  Riley and her family represented many individuals with the disease and helped raise awareness and funds.  They also helped Notre Dame start developing undergraduate studies on rare diseases and collaborative programs like Rare Health Exchange.   Riley loved sports and her strength and perseverance were always inspirational to us at ND.

You can also view here a short version of the video CRND made with the Smith family in 2011. Filmed at the University of Notre Dame by Liz Hodge (Foundation for Biomedical Research), SurvivorTales: Niemann-Pick Type C tells the story of Riley Smith and her brother Keaton Smith suffering from a rare and fatal genetic disease and research that could save their lives. It stars the Smith Family, Dr. Kasturi Haldar and Cindy Parseghian. The show won a Telly Award in 2011

If you wish to see the full version please email plingle@nd.edu

 

________________________________

 

 

Tylor White-Richardson

(9/11/1996 – 12/12/2013)

 

Tylor Pics


On December 12th, 2013, Tylor White-Richardson passed away after a brave battle with Niemann-Pick Type C (NP-C) disease. Tylor was a budding ball player till he was struck by symptoms that took six years to diagnose as NP-C http://fight4tylor.blogspot.com.  He and his family represented many individuals with the disease and helped raise awareness and funds. Tylor and his family helped Notre Dame undergraduates better understand NP-C from a patient perspective and learning the challenges of having a rare disease. His outgoing personality and sense of humor helped all of us at CRND to see the importance of seeking treatments no matter the challenge. Our thoughts and prayers go out to Tylor’s family in this difficult time.

 

In remembrance of Ty’s life please feel free to post caring memories. Please click here

 

________________________________

 

CRND Scientist’s Publication Featured in News Story

Dr. Basar Bilgicer was recently featured in a news article describing his lab’s latest publication. The work highlights efforts to engineer a new type of inhibitor that can prevent type-I hypersensitive reactions, which can be life-threatening, to common food and drug allergens, such as peanuts & shellfish.

Dr. Bilgicer , who serves on the CRND steering committee, is an assistant professor at the Notre Dame department of chemical and biomolecular engineering and holds an appointment in the department of chemistry and biochemistry.

Basar Bilgicer

Dr. Basar Bilgicer

 

Thank You 1

Thank You 2

 

Thank You 3

__________________________________

 

 

CRND Faculty Named IUSM Showalter Scholar

pic

Congratulations to Dr. Robert Stahelin for being selected as an Inaugural Showalter Scholar by the Indiana University School of Medicine. Dr. Stahelin is an assistant professor of Biochemistry and Molecular Biology and an adjunct professor of Chemistry and Biochemistry at Notre Dame. He is an active member of CRND with his research focused on understanding of lipid processing in a number of deadly pathogens including the Ebola virus and the parasite that causes malaria. Dr. Stahelin will hold the title of “Inaugural Showalter Scholar” for three consecutive years along with funds for his laboratory research.

Please join us in congratulating Dr. Stahelin on this outstanding achievement!

 

CRND Releases new video on "Malaria Research"

 

Malaria from CRND on Vimeo.

CRND Launches a New Computational Core

pic1

 

 

 

 

 

 

 

The Center for Rare and Neglected Diseases announced the launching of the computer aided molecular design (CAMD) core facility. The CAMD core will be a state-of-the-art facility for computational chemistry.  The core is based on a pilot project that was initiated to assist drug discovery and development in CRND. However, many groups in a variety of research areas ranging from chemistry, biochemistry, molecular, cell and environmental biology and computer sciences, both at Notre Dame and other universities also have needs for computer assisted molecular design, often in critical, and early stages of a project.  Hence, the CAMD core will be a valuable resource for all to use computational approaches to study the complex interactions of small molecules in medicinal, industrial or environmental applications.

In spring 2011, the CRND launched two pilot projects to assist drug and insecticide discovery and development. The first arose as a need for computational analysis of the results from a screen of chemical libraries from Eli Lilly & Co to discover and develop new drugs against the malaria parasite. This project is in partnership with the Medicines for Malaria Venture (MMV), a virtual pharma agency based in Switzerland, supported by the Bill and Melinda Gates Foundation and multiple governments.   The second project was the study of receptors known as G-protein coupled receptors (GPCRs) as insecticide targets. This work is supported by the Army to develop a new family of insecticides.  It has fostered collaborations with the University of Michigan and Stanford University including the Nobel Laureate Dr. Brian Kobilka. GPCRs are crucial proteins in human health, targeted by approximately 40% of all drugs currently on the market. GPCRs have the potential to provide the same promise as targets for insecticides. 

pic1

 

 

 

 

 

 

 

 

 

Dr. Guillermina Estiu, a research assistant professor (Chem & Biochem) will be the managing director of the CAMD core. Dr. Estiu has already been an active member of the CRND pilot projects, and she will utilize her experience of over 20 years in computational chemistry to manage the CAMD core operations. 

Dr. Olaf Wiest (Chemistry and Biochemistry) and Dr. Jesus Izaguirre (Computer Science) will oversee the operations of the CAMD core facility. Both Dr. Wiest and Dr. Izaguirre were key to nucleating the pilot project within CRND.  The success of the pilots as well as requests for assistance for other projects laid the groundwork for developing the core.  Its launch was made possible by the support of the CRND Steering Committee and the Office of the Vice President of Research, Dr. Bob Bernhard.

Pilot funds are available for investigators who have not used computer assisted molecular design, but feel it will assist with their research. Professors Wiest, Izaguirre and Estiu will review and prioritize project requests. They can also assist with proposal writing/project development and will be available for consultation on a range of CAMD methodology.  

http://www.crc.nd.edu/~kfurse/CAMDsite/about.html

 

World Rare Disease Day 2013

On Saturday February 23rd, CRND organized a daylong event to commemorate World Rare Disease Day. The event brought together Notre Dame researchers and students with physicians, patients and their families to discuss the everyday challenges and the most recent breakthroughs in managing rare diseases. The event, which is open to the public, was designed to give a voice to all the different groups involved with panels that interact with the audience. We heard from researchers and students about the new developments in drug design. We heard from patient families about the challenges of having a member with a rare disease and possible ways to address these challenges. Additionally, Dr. Carrie Quinn, MD, along with ND students, touched on some ethical questions that face physicians and patients in managing rare diseases. The event was successful in bringing together diverse groups who share the common goals of raising awareness and finding cures for rare diseases.

Join CRND for WORLD RARE DISEASE DAY

 

The New SPRING 2013 Issue of Signal - CRND 's Newsletter

Congratulations To The New 2012 -AAAS Fellows

Professors Jeffrey Schorey, Crislyn D'Souza-Schorey, Jeffrey Feder, and Olaf Wiest have been named Fellows of the American Association for the Advancement of Science in 2012. The CRND expresses its warmest congratulations to these distinguished investigators on their achievements and recognition.

Dr. Jeffrey Schorey has been cited for “notable contributions to the field of mycobacterial pathogenesis, particularly to our understanding of the dynamic interaction between mycobacteria and its host cell, the macrophage.” The goal of Dr. Schorey's investigation of the immunology and cell biology related to mycobacteria in host-cell interactions is to advance our ability to control mycobacterial infections such as M. tuberculosis (TB), M. avium (an infection seen in later stage AIDs and the elderly), and M. leprae. (Hansen's disease).

Dr. Crislyn D'Souza-Schorey has been cited for “distinguished contributions to the field of cancer cell biology, particularly for studies on membrane traffic and ARF proteins in cell motility and tumor invasion.” The goal of Dr. D'Souza-Schorey's work is to discover information on the pathogenesis of cancer, which will ultimately serve in the development of novel diagnostic and therapeutic strategies for cancer treatment.

 

Dr. Jeffrey Feder has been cited for “distinguished contributions to evolutionary biology in advancing our understanding of ecological adaptation and speciation, and in particular to speciation occurring with gene flow.” Dr. Feder's research in ecological genetics and evolution traces the processes involved in the division of evolutionarily distinct gene pools as species adapt environmentally and give rise to new species.

Dr. Olaf Wiest has been cited for “contributions to interdisciplinary studies in computational chemistry, inorganic chemistry and drug design.” Dr. Wiest's interests extend to computational and physical organic chemistry, computational drug design, biophysical chemistry, enzyme mechanisms, transition metal catalyzed reactions and design of ligands for enantioselective catalysis. Among his accomplishments are discoveries that have advanced NPC research and the potential use of human histone deacetylases (HDACs) inhibitors in fighting cancer.

 

 

The Clinical-Translational Seminar Series -Dr. Padmini Salgame

(Above, from the left) November 30, 2012. Drs. Padmini Salgame. Patricia Champion, and Shahir Rizk enjoy a moment on the quad following Dr. Salgame's seminar at Geddes Hall.

On her recent visit to the University of Notre Dame's Center for Rare and Neglected Diseases, Professor Padmini Salgame addressed students and faculty on the topic of "Intrinsic and Extrinsic Factors Regulating Host Anti-tuberculosis Defense." Dr. Salgame's seminar focused on two central stories. The first part of her lecture disclosed her lab's examination of both innate and acquired immune responses to Mycobacterium tuberculosis (MTB) and the role of T-regulatory cells. Salgame highlighted some of what is and is not known about the functioning of the tuberculosis granuloma, memory T-cells, and biosignatures associated with individual adaptive immune responses and the susceptibility to infection.

The second part of Salgame's talk looked at research on co-infections of MTB and helminthic parasites. Salgame described her investigation into the pathogenesis of both diseases in co-infection, particularly how the effects of the immune responses related to one infection effects the progression of infection in the other disease. For example, helminthic infection raises Th2 cell responses. and those in turn, have the effect of down regulating the Th1 responses that are so critical in resisting MTB infections. The timing of infections is crucial to determining the interplay between the body's immune responses to the two diseases. TB has a high prevalence in many regions where helminthic diseases are endemic, and it is critical to discover how these co-infections modulate the course and outcome of MTB infections. Salgame's current examinations of helminth infections and the actions of immune responses in impeding MTB progression, together with her work in innate and acquired immunity, are providing significant insights that will aid in the the development of vaccines and treatments for TB.

Following her seminar, the gracious Director of Graduate Medical Research for the University of Medicine and Dentistry of New Jersey warmly welcomed graduate students in Drs. Champion and Lee's class for lunch and a relaxed discussion on a variety of topics (see photo below of the students with Dr. Salgame).

(Below, from the left) Graduate students from Drs. Champion and Lee's Topics in Pathobiology class - from the left, Rachel Schluttenhofer, Emily Williams, George Kennedy, Jennifer Zupkosky, Victoria Smith, Dr. Salgame, Jerome Fru Cho. (Photos: C Stackowicz, 2012)

 

The Clinical-Translational Seminar Series -Dr. Vernon Carruthers

(Above) Dr. Carruthers addressing the CRND CTSS audience. (Photo: C Stackowicz, 2012)

November 16, 2012. CRND's Director, Kasturi Haldar introduced Dr. Vernon Carruthers as "someone who knows more about the biology of cells and parasitic invasion than anyone I can think of." High praise considering that Drs. Carruthers and Haldar both share decades long careers investigating the mechanisms of parasitical infections. Carruthers and Haldar also enjoy alumnus status from The Rockefellar University, where they completed their postdoctoral work in Dr. George A.M. Cross's Laboratory of Molecular Parasitology. Carruthers was there in the early 1990's and Haldar completed in the late 1980s. Since then, each has pursued the study of the pathogenesis of a disease caused by a parasite. Carruther's identifies his protozoan parasite Toxoplasma gondii as "a cousin of the malaria parasite", which has been the focus of Haldar's investigations for many years. Both parasites are responsible for billions of infections annually, although Toxoplasma gondii creates a serious disease condition in only tiny percent of the 2 billion people who contract the infection. Generally, adults with healthy immune status manage to keep the parasite in an encysted state in the body and most of the people who become seriously ill from Toxoplasma gondii are infants or people who are immunocompromised due to another condition (e.g., HIV, organ transplant recipients, or chemotherapy patients).

Dr. Carruthers is currently a Professor in the Department of Microbiology and Immunology at the University of Michigan Medical School where his lab is focused on the study of Toxoplasma gondii as a "model" pathogen. A model pathogen is an organism that is extensively researched with the hope that discoveries about its biological functioning may also be extrapolated to understand the workings of similar organisms. According to Carruthers, the Toxoplasma gondii model works as a model for intracellular paracitism "because of its genetic and biochemical tractability, well defined cellular structure, and the availability of excellent rodent models of disease" (Carruthers Lab page).

Carruther's seminar was entitled, "Infection strategies of the highly successful neurotrophic parasite Toxoplasma gondii."

 

The Clinical-Translational Seminar Series -Dr. Timothy Grese

(Above, ND graduate student Stefan Freed and Dr. Timothy Grese)

November 2, 2012. Dr. Timothy Grese, Chief Scientific Officer for Lead Generation and External Innovation Discovery in Chemistry Research and Technology at Eli Lilly and Company, was welcomed to the CRND's Clinical Translational Seminar Series where he presented, "Open Innovation Drug Discovery (OIDD): A New Platform for Academic-Industrial Collaboration." The platform for collaboration discussed by Dr. Grese addressed a problem that is all too familiar to investigators in rare and neglected diseases research; the lack of financial incentives for the drug industry to invest in finding therapeutics for small or poor populations and the lack of resources available to non-profit universities to advance major projects in drug development. The new model for collaboration described by Grese can allow universities to use Lilly resources for their academic research into areas such as drug design, data analysis, and assay development.
 

The Clinical-Translational Seminar Series -Dr. George Dimopoulos

"Basically, no one had published on the circadian biology of the mosquito for a very long time. Finally, Dr. Dimopolous published his paper on photic inhibition of blood-feeding in Anapheles gambiae. This paper was crucial to my own research. Dr. Dimopoulos' work and generous advice to me over the years was really valuable to my project and eventual publication with Dr. Duffield."

-- Sam Rund, Ph.D. Cand. in Biology at Notre Dame

 

(Above: George Dimopoulos and Samuel Rund . Photo: C. Stackowicz, 2012)

October 26, 2012. Dr. George Dimopoulos presented his cutting-edge seminar for CRND to a delighted gathering of faculty and students whose research is focused in infectious diseases and global health. Dr. Dimopoulos's discoveries in vector control at Johns Hopkins Malaria Research Institute are very exciting because of their potential to use the mosquito's own immune system and gut microflora as means of attenuating its transmission of deadly diseases, namely malaria and dengue fever.

Dr. Dimopoulos began with maps. The first illustrated the gradual contraction of malaria endemic areas around the world. Dimopoulos pointed out the key role targeting the vector had played in elimination over 100 years. In the second illustration, Dimopoulos described the emerging growth pattern of dengue fever. According to Dimopoulos, his group works on understanding the processes of infection and immune response to both diseases, in projects that are distinct, but synergistically related. The synergy arises in the broadening of the overall knowledge about the biological processes comprising the mosquito's defense against pathogens, the understanding its genetic structures, and the development of specialized tools that serve a variety of purposes.

Dimopoulos' lab has made significant progress utilizing advanced gene expression analysis methods and technology to analyze the mosquito's functional genomics and characterize pathways, which regulate immune response and resistance to infection. In fact, the Dimopoulos group's project page reports "the first full genome microarrays for Anopheles gambiae, Aedes aegypti, Culex pipiens and Plasmodium berghei" were developed by his lab.

Dimopoulos' discussion of the role of mosquito's own innate immune system, which has evolved to protect it from the malaria parasites it ingests while feeding, summarized a number of experiments leading to the characterization of the "Imd pathway." This pathway plays a crucial role in mediating the mosquito's biological ability to fight off infection. The Dimopoulos Lab's success in describing the progressive immunological responses of the mosquito at the level specific genetic transcriptions is a powerful advance towards gene-based interventions. These interventions will eventually assist the mosquito in resisting infection and consequently reduce it's transmission of the disease to humans. Dimopoulos is careful to underline that the current approach his research aims at is a kind of genetic jumpstart of an existing immune response against the infection based on the mosquito's innate characteristics. The idea, according to Dimopoulos, is to "make the gene turn on earlier" in the infection response and to "not introduce something new."

A key finding of the Dimopoulos group is that specific microflora in the mosquito's gut are critical to its defense against parasitic invasion and the production of sporozoites. It is these sporozoites that infect the salivary glands of the insect and eventually find their way into new hosts when the mosquito feeds.

Visit the Dimopoulos groups project page to read about their advances in vector control research, many of which were described by Dr. Dimopoulos in his brilliantly accessible presentation. Indeed, a number of international students and researchers commented with pleasure on how easy it was to follow Dimopoulos's comprehensive and detailed exposition. In the words of Leonardo DaVinci: “Simplicity is the ultimate sophistication.”

George Dimopoulos, Ph.D., M.B.A. is a Professor in the Department of Molecular Microbiology and Immunology at Johns Hopkins University. He is also the Director of the Parasitology Core Facility and Deputy Director of the Malaria Research Institute, which are part of Hopkins' Bloomberg School of Public Health.

- Building Discovery In Vector Control -

Rund SS, Hou TY, Ward SM, Collins FH, and Duffield GE. (2011). Genome-wide profiling of diel and circadian gene expression in the malaria vector Anopheles gambiae. Proc Natl Acad Sci USA. 2011 Aug9; 108(32):E421-30.

Das, S., and Dimopolous G. (2008). Molecular analysis of photic inhibition of blood-feeding in Anopheles gambiae. BMC Physiology 16; 8(1):23.

 

Md. Suhail Alam et al. publish in PLoS One on NPC Biomarkers- 10/19/12

(Left, Dr. Suhail Alam. Photo, Rizk, 2012)

Dr. Md. Suhail Alam, together with researchers from the Center for Rare and Neglected Diseases/ Haldar Lab and the Indiana University School of Medicine – South Bend, has published the first study to identify 12 genes in the brains of NPC mice, whose protein expressions have the potential to function as plasma markers for lysosomal storage disorders, including Neimann Pick Type C. The identification of these potential markers promises to assist in the development of diagnostics for early blood-based detection of lysosomal storage diseases. The study also shows that a type of immune cell, called a neutrophil, builds up abnormally in the liver and spleen of NPC mice. This occurrence was not previously suspected as a factor in NPC (or related disorders), but may worsen disease progression, especially in the liver.

Niemann-Pick type C disease (NPC) is a rare genetic disorder, which results from the inheritance of defective copies of either of the Npc1 or the Npc2 gene. NPC is a lysosomal storage disorder characterized by the accumulation of cholesterol and glycolipids in lysosomes of cells in the body. Lysosomes function inside cells to digest materials taken in from the outside and to clear degraded materials following internal processing. In NPC, this process is disrupted as the protein products of the defective NPC genes fail to transport lipids across the lysosmes. The accumulation of these lipids in the lysosomal compartments effects the brain, liver and spleen, resulting in severe neurological dysfunction, morbidity and mortality.

The study by Alam et al., sought to identify factors associated with NPC disease severity stages (asypmptomatic, early-, and late-) using genome-wide gene expression analysis in the sentinel (disease indicating) organs associated with the disease: brain, liver, and spleen. The researchers found a noticeable increase in the gene expressions related to a dozen genes primarily related to innate immunity, with the expression steadily increased with age in the brain, liver, and spleen. The elevation of neutrophil in NPC mice was also found to be associated with tissue damage in the liver and spleen.

The diagnosis of NPC, as well as other lysosomal storage disorders, has often been delayed because of the lack of simple blood tests for the diseases. In this study, the identification of genetic biomarkers (proteins produced as a result of genetic encoding) further illuminates the biochemical processes of the disease and its stages. The identification of these biochemical markers may make it possible to determine the presence of the disease through a relatively simple blood test in the future. Early diagnosis of NPC and lysosomal disorders is linked to earlier treatment and better outcomes for patients.

To read the paper in PLoS ONE (open access)...

(Left) The paper's second author, Ms. Michelle Getz, research technician for the Haldar Lab, contributed her expert skills and understanding of the mouse model and labratory methods to achieve critical portions of the experimentation. (Photo, Rizk, 2012)

Genomic Expression Analyses Reveal Lysosomal, Innate Immunity Proteins, as Disease Correlates in Murine Models of a Lysosomal Storage Disorder. Md. Suhail Alam 1,2, Michelle Getz 1,2, Innocent Safeukui 1,2, Sue Yi 1,2, Pamela Tamez 1,2, Jenny Shin 1,2 , Peter Velázquez 1,3 , Kasturi Haldar 1,2* (2012) PLoS ONE 7(10): e48273. doi:10.1371/journal.pone.0048273

 

The Clinical-Translational Seminar Series -Dr. Dara Frank

(Above) Dr. Dara Frank met with graduate students in the Clinical Translational Seminar and Readings in Pathology Course. From the left, Jeannie Hoang, George Kennedy, Victoria Smith, Professor Frannk, Rachel Schluttenhofer, Emily Williams. (Photo: C Stackowicz, 2012)

On October 12, 2012, Dr. Dara Frank visited the CRND and delivered a fascinating lecture on her lab's penetration of the opportunistic strategies of a pathogen, which is responsible for significant morbidity and mortality in humans and animals. Dr. Frank's seminar, "Molecular and Cellular Analyses of the Pseudomonas aeruginosa Cytotoxin, ExoU" further illuminated the work she described a 2011 paper outlining her team's discovery of the role of Ubiquitin in the toxic effects of P. aeruginosa (Anderson et al., Molecular Microbiology 82(6) 1454-1467). Graduate students of Drs. Patricia Champion and Shaun Lee had read Frank's paper in preparation for the study's principal investigator's visit. Dr. Frank is a Professor of Microbiology and Molecular Genetics at the Medical College of Wisconsin and the Director, Center for Infectious Disease Research.

Dr. Frank's research is focused on the interaction between hosts and bacterial factors involved in infections with Pseudomonas aeruginosa and Francisella tularensis. She explores the genetic regulation of exotoxin synthesis, examining the relationship between the expression of toxins (e.g., toxins injected into eukaryotic cells that compromise the innate immunity in hosts), the pathogenesis of the bacterium, and host responses.

In her seminar, Dr. Frank described the process by which the common bacterium, P. aeruginosa, carries the effector protein, ExoU, in an inactivated state where it cannot harm the bacterium. Once the bacterium infects a host cell, however, a protein in the host, Ubiquitin, activates ExoU and allows it to degrade the membrane of the host's eukaryotic cells. Commenting on Dr. Frank's seminar, Dr. Shahir Rizk praised her "very elegant experiment" for demonstrating that the host protein is indeed required for the toxic effect of this dangerous bacterial protein to take effect.

Pseudomonas aeruginosa is an opportunistic pathogen found in skin flora, as well as soil, water, and a variety of human environments. In humans and animals with compromised immunity, the bacterium may gain entry and colonize body organs with potentially fatal consequences. In medical facilities, the bacterium may be found in medical equipment or implements and have disastrous results, particularly in the case of biofilms of P. aeruginosa, which are particularly resistant to treatment with antibiotics.

Dr. Frank's lab played a leading role in the discovery and characterization of the "P. aeruginosa type III system," which mediates the delivery of toxins. Her lab continues to explore enzyme inhibitors, antibody reagents, and vaccines, which may potentially neutralize these damaging toxins.

 

The New Fall 2012 Issue of the Signal - CRND 's Newsletter

The new issue of CRND's Signal (vol 2, is 1) for the Fall of 2012 covers the 2nd Annual Midwest Neglected Infectious Disease Meeting, Dr. Patrick Duffy's Clinical-Translational Seminar, the CRND Data Club meeting with Dr. Zach Schafer and Cassie Buchheit's presentation on inflammatory breast cancer research, ND undergraduate and Rare Health Exchange projects with the National Organization of Rare Diseases, ND malaria, rare cancer and tuberculosis research updates, publication news for Dr. Innocent Safeukui and Dr. Patricia Champion's group, and a faculty spotlight on Dr. Shahir Rizk of the CRND.
 

The Clinical-Translational Seminar Series - Dr. Carole Long -

(Above) Dr. Carole Long, Chief of the NiAID/NIH Laboratory of Malaria and Vector Research's Malaria Immunology Section and Director of the PATH Malaria Vaccine Initiative Growth Inhibition Assay-Reference Center. (Photo: C Stackowicz, 2012)

October 5, 2012. Dr. Long's seminar to CRND faculty and students entitled, "Progress toward development of a malaria vaccine" provided a comprehensive overview of the current status of vaccine development for various stages of malaria infection. Her presentation reviewed considerations for evaluating new vaccine targets and engaged the audience in an intriguing reflection on what is already known about the acquisition of immunity in endemic areas.

Dr. Long applauded the recent progress in vaccine development due to an expansion of funding and new technologies that have accelerated research. Dr. Long cited the significant advance represented in 2011 with the publication of "First results of phase 3 trial of RTS,S/AS01 malaria vaccine in African children" by Agnandji et al. (NEJM 365(20); 1863). This publication by a group from the Albert Schweitzer Hospital in Lambarene, Gabon, reports on an ongoing phase 3 study of over 15,000 children in seven African countries with respect to the malaria vaccine RTS,S/AS01. Dr. Long is the director of the PATH Malaria Vaccine Initiative, which together with GlaxoSmithKline Biologicals, is funding this research. Agnandji et al. conclude in their NEJM article: "The RTS,S/AS01 vaccine provided protection against both clinical and severe malaria in African children."

Following her presentation, Dr. Long joined ND graduate students for lunch and a lively informal discussion of her research and the extraordinary scope and achievement of the PATH Malaria Vaccine initiative.

 

The Clinical-Translational Seminar Series - Dr. Jose Bufill-

(Left) Jose A. Bufill, M.D., F.A.C.P. Director, Cancer Genetics Program, St. Joseph Regional Medical Center, South Bend. Clinical Investigator, Northern Indiana Cancer Research Consortium. Private practice in Hematology-Oncology, Elkhart & South Bend, In.

September 21, 2012 - Dr. Jose Bufill's contribution to the CRND Clinical-Translational Semininar Series, "Preliminary observations using N-acetylcysteine for refractory TTP: An opportunity for new management strategies?" engaged both students and faculty in an exciting translational discovery underway in their own community. Dr. Bufill has been treating a patient in South Bend with refractory, relapsing thrombotic thrombocytopenic purpura (TTP), a rare disorder of the blood-coagulation system. Using N-acetylcysteine (NAC), Dr. Bufill has observed noteworthy temporary therapeutic benefits without significant side effects.

Dr. Bufill's presentation described the pathophysiology of TTP, a serious and life-threatening disorder caused by dysfunction of the normal metabolism of the Von Willibrand factor (VWF). According to the National Heart, Lung, and Blood Institute: "In TTP, blood clots form in small blood vessels throughout the body. The clots can limit or block the flow of oxygen-rich blood to the body's organs, such as the brain, kidneys, and heart. As a result, serious health problems can develop." (To read more from the NHLBI website).

TTP may be either a congenital or inherited condition and is prone to relapse since the standard therapy of plasma exchange does not remedy the underlying cause. Recently, N-acetylcysteine (NAC) has shown promise in animal models. Dr. Bufill discussed further laboratory and clinical studies projected for NAC related compounds and their potential benefits for patients with this rare disorder.

 

Dr. Patricia Champion Publishes in Molecular and Cellular Proteomics

September 2012 - Dr. Shahir Rizk, CRND's Director of External Programs, recently spoke to UND's Dr. Patricia Champion about her new publication in Molecular & Cellular Proteomics. Dr. Rizk describes the core finding, "identifying key features of tuberculosis infection and the development of a new method for identifying important factors that tuberculosis bacteria use to infect human cells" in the upcoming CRND newsletter, The Signal. Seed funding was provided by a CRND proteomics grant. See the abstract for Champion's innovative study below. (Left, Dr. Patricia Champion)

"Direct Detection of Bacterial Protein Secretion Using Whole Colony Proteomics." Matthew M. Champion, Emily A. Williams, George M. Kennedy, and Patricia A. DiGiuseppe Champion. Molecular & Cellular Proteomics. First Published on May 10, 2012. OA publication: September 1, 2012 Molecular & Cellular Proteomics, 11, 596-604.

Abstract
Bacteria use a variety of secretion systems to transport proteins beyond their cell membrane to interact with their environment. For bacterial pathogens, these systems are key virulence determinants that transport bacterial proteins into host cells. Genetic screens to identify bacterial genes required for export have relied on enzymatic or fluorescent reporters fused to known substrates to monitor secretion. However, they cannot be used in analysis of all secretion systems, limiting the implementation across bacteria. Here, we introduce the first application of a modified form of whole colony MALDI-TOF MS to directly detect protein secretion from intact bacterial colonies. We show that this method is able to specifically monitor the ESX-1 system protein secretion system, a major virulence determinant in both mycobacterial and Gram-positive pathogens that is refractory to reporter analysis. We validate the use of this technology as a high throughput screening tool by identifying an ESAT-6 system 1-deficient mutant from a Mycobacterium marinum transposon insertion library. Furthermore, we also demonstrate detection of secreted proteins of the prevalent type III secretion system from the Gram-negative pathogen, Pseudomonas aeruginosa. This method will be broadly applicable to study other bacterial protein export systems and for the identification of compounds that inhibit bacterial protein secretion.

 

The Clinical-Translational Seminar Series- Dr. Patrick Duffy -

September 7, 2012 -(Above) Patrick E. Duffy, M.D., Chief of the Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH presented "Translating Malaria Immunity into Malaria Vaccines." (Photo, K. DeCloedt, 2012)

About The Inaugural CTSS Seminar

This fall, the CTSS seminar series was kicked off with an exciting presentation by Dr. Partick Duffy, discussing the recent progress in the fight against malaria. Dr. Duffy is a clinical researcher, whose work at the National Institutes of Health has taken him all around the world to malaria endemic areas where help is most needed. Often, such areas experience high levels of poverty and political turmoil. Most recently, Dr. Duffy found himself in the midst of a coup d’etat in Mali while training a group of students.

Dr. Duffy’s talk gave a taste of what’s to come. Several speakers are lined up throughout the semester with topics ranging from the study of infections by parasites, bacteria and viruses, to the characterization of the immune response to those infections, as well as the work carried out in developing novel therapeutic agents.

~ Dr. Shahir Rizk, Director of External Programs for the CRND

 

The Rare Health Exchange - RHE

The Rare Health Exchange (RHE) website is a web-based student collaboration to advance research, education, advocacy and patient support for the rare disease community. The RHE initiative has been supported from incubation to launch by a diverse group of sponsors including the Deans of the Colleges of Science and Engineering, the Office of the Vice-President of Research, the FISH non-profit organization, the Center for Social Concerns and the leadership of the CRND. Visit the Rare Health Exchange website.

 

 

About The Center for Rare and Neglected Diseases

Science for Society

Around the globe, people are suffering and dying from diseases that have generally been ignored by major pharmaceutical companies because the potential financial rewards for developing new drugs and vaccines to treat them are insignificant. These are the rare and neglected diseases of the world. There are thousands of rare diseases, typically defined as those, which afflict less than 200,000. Among them are cystic fibrosis, thalassemia, Niemann-Pick C disease, and several of the rare forms of cancer. Neglected diseases, by contrast, can affect billions, but like their rare counterparts, have been ignored by researchers. This is especially prevalent in the developing world and in pockets of grinding poverty in developed nations, where the populations suffering from illnesses such as tuberculosis, malaria, and lymphatic filariasis do not have the money to buy drugs and vaccines, giving pharmaceutical companies little incentive to develop treatments that cost far more than could ever be recouped through reasonable prescription prices. The result is a gaping hole in healthcare—one which Notre Dame is uniquely positioned to fill.

 

Rare Diseases: those which afflict less than 200,000. Examples are cystic fibrosis, thalassemia, Niemann-Pick Type C Disease, adrenolekodistrophy and several forms of cancer.

Neglected Diseases: diseases of poverty, lymphatic filariasis disease pathologies of TB and Malaria.

 

Where We Are:

University of Notre Dame
Center for Rare and Neglected Diseases
Galvin Life Science Building
Notre Dame, IN 46556
Email at: crnd@nd.edu
Phone (574) 631-3372
Fax (574) 631-9788

 

© University of Notre Dame

site author:Lingle.

 

 

 

free web counter

 

 

 

 

 

new logo

Of Interest...