
A numerical continuation approach using monodromy to solve the
forward kinematics of cable-driven parallel robots with sagging cables

Aravind Baskara, Mark Plecnika, Jonathan D. Hauensteina, Charles W. Wamplera

aUniversity of Notre Dame, Notre Dame, 46556, Indiana, USA

Abstract

Designing and analyzing large cable-driven parallel robots (CDPRs) for precision tasks can be challenging, as
the position kinematics are governed by kineto-statics and cable sag equations. Our aim is to find all equilibria
for a given set of unstrained cable lengths using numerical continuation techniques. The Irvine sagging
cable model contains both non-algebraic and multi-valued functions. The former removes the guarantee of
finiteness on the number of isolated solutions, making homotopy start system construction less clear. The
latter introduces branch cuts, which could lead to failures during path tracking. We reformulate the Irvine
model to eliminate multi-valued functions and propose a heuristic numerical continuation method based on
monodromy, removing the reliance on a start system. We demonstrate this method on an eight-cable spatial
CDPR, resulting in a well-constrained non-algebraic system with 31 equations. The method is applied to
four examples from literature that were previously solved in bounded regions. Our method computes the
previously reported solutions along with new solutions outside those bounds much faster, showing that this
numerical method enhances existing approaches for comprehensively analyzing CDPR kineto-statics.

Keywords: Cable-driven parallel robot, Numerical continuation, Irvine cable model, Monodromy

1. Introduction

Cable-driven parallel robots (CDPRs) are a class of parallel manipulators in which an end-effector plat-
form is controlled by multiple cables, whose lengths are adjusted to control its movements. These robots
have proven effective for various applications, including visual sensing and manipulation in vast environments
such as agricultural fields, sports stadiums, and theaters. Recently, there has been a resurgence of interest
in designing CDPRs for precision tasks, such as 3D printing of large models [1, 2], construction robotics [3],
and search and rescue missions [4]. Designing CDPRs for such tasks pose an ongoing research challenge
due to the inherent complexity of their kinematics compared to traditional parallel robots with rigid legs.
Cable-driven systems often necessitate redundant cables to fully constrain the end-effector platform, increase
the workspace, and achieve improved distribution of tensions in the cables [5, 6]. Such redundant cables
introduce further complexity into the analysis and design of CDPRs.

Unlike rigid links, cables are elastic and subject to sagging, making kinematic analysis inherently coupled
with static equilibrium analysis, falling under the category of kineto-statics problems. For modeling the
cables, the Irvine cable model [7, 8], which is derived based on Hooke’s law accounting for elasticity and
sagging under self-weight, is more realistic than simplified cable models that assume inelasticity and zero
mass [9, 10, 11]. Recent experimental research indicates that, while such simplified models are practical in
many cable-driven systems, there are outstanding challenges in using them for the design and analysis of
large CDPRs where cable sag is pronounced [4, 12]. Hence, recent works have examined the kineto-statics
in cable-driven robots, employing the more comprehensive Irvine cable model, as reviewed in [13]. Whereas
the algebraic form of the simplified models allows the use of powerful techniques specialized to algebraic
systems [14], these methods do not apply to the Irvine cable model due to its inclusion of non-algebraic
functions such as the inverse hyperbolic sine and square-root function. This presents a challenge which we
aim to address.

Our goal is to solve the forward (a.k.a. direct) kineto-static equilibrium problem for CDPRs with sagging
cables to find all solutions. That is, given a specific CDPR architecture with prescribed unstrained cable
lengths, we seek to identify all potential static equilibrium configurations, which correspond to the roots
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of the kineto-static equations. This work does not delve into the stability considerations of these equilib-
rium configurations, e.g., see [15]. Instead, our current scope is focused on identifying all the equilibrium
configurations. Identifying all possible configurations is much more challenging than finding a single equi-
librium configuration using, for instance, a local Newton’s method, which is already non-trivial for large
systems. Nevertheless, solving the forward kineto-statics globally is crucial for characterizing the compre-
hensive workspace of these systems, which comprise numerous regions called input modes [16]. Input modes
are the separate regions that result after partitioning the configuration space by the singular solutions of
the forward kineto-static problem, which form their boundary sets. These boundary sets, also referred to as
input singularities [16, 17] or Type II singularities [18] or direct kinematic singularities [19, 15], must gen-
erally be avoided since they present transmission trouble. Therefore, it is useful to partition the workspace
via input modes for motion planning.

One might consider the alternative of analyzing the workspace of a CDPR via inverse kinematics. For
example, this is highly effective for rigid-link 6SPS (Gough-Stewart) parallel robots where each end-effector
pose is reached by a unique set of leg lengths. However, for CDPRs having redundant cables, an end-effector
pose is generally reached by a positive dimensional family of unstrained cable lengths. Consequently, the
forward kineto-statics problem is the preferred approach for CDPRs.

To fully analyze the workspace of a CDPR, one seeks to find all equilibrium roots over a set of input
samples, considering that the input modes may change over the input space. Once a sufficient sample set
has been created, local methods may be used to continue the solutions to nearby points in the respective
input modes to generate a large sample set [20]. One may then build a full workspace model by training a
neural network model [21, 22] or a graph-based model [16] on such sets.

While one expects the roots of the forward problem to be isolated, i.e., zero-dimensional, it cannot be
assumed a priori that the total number of roots is finite. This is due to the non-algebraic nature of the
Irvine cable model which, unlike algebraic systems, presents no theoretical bounds on the number of roots
counted over the complex field. However, certain non-algebraic systems are known to yield a finite number of
isolated roots over the real field when they contain Pfaff functions [23] (also called Pfaffian functions). Pfaff
functions are a class of functions that can be written as polynomial functions of their own derivatives and
other Pfaff functions. Polynomials, exponentials, and trigonometric functions are Pfaff functions that give
rise to Pfaff manifolds over some open real domain. The inverse of a Pfaff function is also a Pfaff function
if it does not vanish anywhere within the domain. It happens that even though the Irvine cable model
is non-algebraic, it leads to a system of CDPR kineto-static equations that satisfy the Pfaffian conditions,
hence number of real roots is finite.

In the past, interval analysis methods which exploit appropriately chosen bounds on end-effector config-
uration variables and cable tension have been employed to solve the global forward kinematic problem in
cable-driven robots [24, 11, 25]. These methods exploit Kantorovich’s theorem [26] to guarantee and certify
that all roots within the chosen bounds are found. These methods work by subdividing the initial region
into boxes, then contracting or subdividing each box until each descendant can be verified to either contain
a single root or no root at all. However, for search spaces of large dimension, it can be computationally
expensive to fully complete this subdivision process. While interval analysis methods have demonstrated
effectiveness in solving CDPR forward problems, they face challenges as the number of cables controlling the
end-effector increases. For instance, in a spatial system with eight cables, explored in [25], the search space
encompassed 36 dimensions, and a single case required approximately 24 hours to solve. Further questions
persist regarding the selection of the appropriate bounds for tension forces, which are known to exhibit high
sensitivity to small variations in cable lengths, especially when nearing taut configurations.

Alternatively, numerical algebraic geometry techniques have been employed by researchers to solve for-
ward kinematics for rigid-legged parallel manipulators, involving the resolution of multivariate polynomial
systems [27, 28]. In [29], kineto-statics of a compliant parallel manipulator with spring elements was ad-
dressed by solving a large polynomial system in a similar manner. Typically, numerical polynomial continua-
tion techniques begin by defining a homotopy, a continuous transformation from a known starting polynomial
system to a target polynomial system where the endpoints need to be determined. This defines paths one
must track numerically. Algorithms based on this idea find the complete solution list for moderately large
polynomial systems. See, for example, [27, 30] for a general overview.

Numerical continuation techniques are often compared to other less sophisticated analytical methods, such
as the multi-start Newton’s method, which may identify numerous distinct root instances. By analytic, we
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refer to complex-analytic functions which are complex differentiable in a neighbourhood of every point in the
entire complex domain [31, p. 69]. Numerous studies involving large systems of nonlinear equations [32, 33]
demonstrate that numerical continuation methods more efficiently exploit complex-analytic functions in
comparison to multi-start Newton techniques. This efficiency is attributed to the guarantee that distinct
starting points will lead to distinct endpoints when path crossings are absent. This approach is facilitated
by including random complex parameters in the formulation of the homotopy so that path crossings are
avoided with probability one.

In [34], a real parameter continuation technique was employed to solve the global kineto-static problem
of CDPRs. In this approach, an idealized cable system with infinite Young’s modulus and zero cable mass
was deformed into an elastic sagging cable system. The idealized system can be modeled as a kinematic
problem instead of a kineto-static one and, hence, solved as a set of polynomial sub-systems to obtain starting
points. Here, each sub-problem corresponds to a different subset of cables in tension. Continuation from the
idealized system into the regime of sagging cables with finite Young’s modulus and non-zero mass relies on
the implicit function theorem, which applies in the neighborhood of the ideal case. However, since there is
no guarantee on the extent of this nonsingular neighborhood, path failures may occur when the parameters
are not sufficiently near the ideal case, as illustrated in [34][§ VII]. This trouble becomes more significant
whenever the cable material of the target system has a low Young’s modulus and/or high density. These
failures primarily arise from encountering special points in the parameter space called branch points where
two or more real paths merge [27, pp. 28]. At these points, the associated paths are not smooth, so numerical
tracking fails due to ill-conditioning.

The limitations of real parameter continuation are applicable more broadly to all real parameterized
systems. For a detailed illustration in a simple univariate root-finding problem, see [27, pp. 25-29]. This
trouble can be avoided by conducting parameter continuation in complex space which can be achieved
by following a random arc between the start and end parameter values in the complex plane instead of
a straight line through real values. When constructed via random complex numbers, e.g., see “gamma
trick” [27, pp. 102-104], such an arc avoids branch points with probability one. It is important to note
that numerical continuation in the complex parameter space does not fully preclude numerical failures, as
a path may yet fail if it passes close enough to a branch point, as ill-conditioning extends into a small
neighborhood of a singularity. Nevertheless, robust predictor-corrector path tracking techniques, especially
ones that adaptively increase precision when necessary [35, 36] effectively mitigate such failures.

One can avoid branch points by moving into the complex domain only if the system under consideration
is analytic. If the system contains multi-valued functions, such as the inverse hyperbolic sine and square-
root functions appearing in the Irvine cable model, analyticity breaks down in any domain that contains
branch cut discontinuities. In any mathematical software implementation, such cuts are necessary to yield a
principal value over the complex domain [31, pp. 69-71]. Without specific measures for switching branches,
predictor-corrector path tracking will fail or perform erratically whenever the path happens to cross a branch
cut. See Section 2.1 for an illustration of such a failure. Our reformulation of the Irvine cable model avoids
the problems of branch cuts by not using the multi-valued functions sinh−1 and

√
·.

Parameter continuation over the complex space presents a distinct challenge. Unlike in real parameter
continuation, where successful path tracking ensures that real starting points conclude in a real endpoint,
complex parameter continuation does not offer such automatic guarantees. In this context, a real starting
point might not necessarily lead to a real endpoint, while a complex starting point may still yield one. This
behavior complicates the construction of a start system for non-algebraic systems, including Pfaff systems,
which may lack a finite upper bound on the total number of complex roots but admit a finite number of
real solutions. It is not only non-algebraic systems that pose challenges as constructing a computationally
affordable start system for large algebraic systems with sharp theoretical upper bounds remains an ongoing
research challenge. Recent attention has turned to heuristic continuation methods to address this issue [37,
38, 39, 40, 41]. These newer methods take a different approach to the challenge by eliminating the need for
constructing a start system. Instead, they are initiated with a lone seed solution often obtained through
Newton’s method. Further discussion and references on this topic can be found in Section 3.1. Indeed, this
is the approach we adopt to solve the global kineto-statics problem of CDPRs.

In the following, we present a new continuation methodology that addresses the aforementioned research
challenges. First, we reformulate the Irvine cable model to remove multi-valued functions through a change
of variables. This enables the use of complex space to define smooth paths that avoid branch points with
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Figure 1: Schematic of a cable-driven parallel robot

probability one. Secondly, for solving non-algebraic systems, especially Pfaff equations, we introduce a novel
heuristic root accumulation strategy using random monodromy loops, eliminating the necessity for a start
system. Using this algorithm, we demonstrate that the forward kinematics of large CDPRs with sagging
cables can be solved in a faster time frame than existing approaches. We present numerical examples and
benchmark the results against an existing data set from the literature for an eight-cable spatial CDPR
system [42, 20]. This algorithm exhibits distinct trade-offs compared to existing interval analysis and con-
tinuation methods. While this heuristic algorithm cannot guarantee the discovery of all possible equilibrium
configurations, numerical experiments across four examples consistently identified all the previously reported
configurations found by interval analysis methods. Since our algorithm does not impose pre-specified search
bounds, it also found additional solutions beyond the bounds specified in the prior literature. Whether these
additional solutions are significant is a matter to be evaluated when building a full workspace model, which is
beyond our present scope. Nonetheless, this method holds significant potential for generating comprehensive
workspace data sets for large CDPRs and for solving the root-finding of other high-dimensional non-algebraic
systems encountered in various applications.

2. Mathematical model of kineto-statics of a generic CDPR with n cables

Consider the schematic of a generic spatial CDPR with n cables as shown in Fig. 1a. Gravity acts
downwards along the z-direction, k̂ = (0, 0, 1)⊤. The end-effector is operated by n-cables, j = 1, 2, . . . , n.
Let P = (Px, Py, Pz)

⊤ be the position of the end-effector platform’s center of mass in the global coordinate
frame. The weight of the platform is W = Mg, where M is the mass of the end-effector platform and g
the acceleration due to gravity. We assume no other external load in this work. The local frame of the
end-effector is affixed to P. Position vector pj represents cable j connection point on the end-effector in
the local frame of the end-effector. Let the orientation of the end-effector in the global coordinate frame
be given by a 3 × 3 rotation matrix [Q]. We use quaternion variables {q0, q1, q2, q3} to represent the 3 × 3
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rotation matrix [Q] as follows:

[Q] =

q02 + q1
2 − q2

2 − q3
2 2 (q1q2 + q0q3) 2 (−q0q2 + q1q3)

2 (q1q2 − q0q3) q0
2 − q1

2 + q2
2 − q3

2 2 (q0q1 + q2q3)
2 (q0q2 + q1q3) 2 (−q0q1 + q2q3) q0

2 − q1
2 − q2

2 + q3
2

 ,
along with a normalization constraint:

q0
2 + q1

2 + q2
2 + q3

2 − 1 = 0. (1)

It is worth noting that other representations for the rotation matrix, such as using Euler angle variables,
Cayley-Klein variables, etc., are equally admissible here. We use quaternions for the standard advantage that
gimbal lock does not appear in the quaternion representation of 3D rotations. Regardless of the choice, for any
given orientation, all representations admit redundant solutions that exhibit a group action, e.g., [43]. This
group action can be exploited to save computational costs during path tracking computations, irrespective
of the chosen representation for the rotation matrix. We will elaborate on this in Section 2.3.

2.1. Position loop-closure equations

The jth cable’s fixed point is located at Aj . Each cable can be assumed to lie in a vertical plane XjZ
under static equilibrium conditions. Let the cable plane be at a z-rotation of ϕj which is represented
as [Z(ϕj)] with respect to the global coordinate plane XZ. Note that a z-rotation of ϕj + π also represents
the same cable vertical plane with opposing x axes. The span of the jth cable from its fixed point to the
moving platform is represented by a local vector within the cable plane named bj . The position loop-closure
equation associated with cable j = 1, 2, . . . , n is:

P+ [Q] pj − [Z(ϕj)] bj −Aj = 0, (2)

where bj is of the form (bxj , 0, bzj)
⊤ and given by the Irvine cable model in the local vertical cable plane in

terms of the corresponding tension force Fj of the form (Fxj , 0, Fzj)
⊤. In the following, we revisit this model

in detail and derive an equivalent representation made of complex-analytic functions which are amenable for
numerical continuation methods.

Irvine cable model
Consider the schematic of a cable in the vertical plane XZ as shown in Fig. 1b. Let the coiling system of the
cable be assumed at the origin of the cable vertical plane. Acceleration due to gravity g is downwards along
the z-direction. We neglect all lateral static forces on the cable, so the cable lies in a vertical plane. The cable
stretches under tension and sags under self-weight. Let µ,A and E be the properties of the cables, namely,
linear density, cross sectional area, and Young’s modulus, respectively. According to the Irvine model [7]
derived based on Hooke’s law, the kineto-statics equations for a cable of unstrained length L are:

b =


bx

0

bz

 =



Fx

(
L
EA + 1

µg

(
sinh−1

[
Fz

Fx

]
− sinh−1

[
Fz−µgL

Fx

]))
0

FzL
EA − µgL2

2EA + 1
µg

(√
Fx

2 + Fz
2 −

√
Fx

2 + (Fz − µgL)
2

)


, (3)

where F = (Fx, 0, Fz)
⊤ is the tension in the cable at its end, resolved into horizontal component Fx and

vertical component Fz in the cable vertical plane. The y-coordinates of tension and position are both zero
by assumption. Here, Fx > 0 is a necessary operating condition of the Irvine model for the cable to be in
tension. This condition only accounts the configurations in the half-plane bx > 0. Configurations in the
half-plane bx < 0 can be ignored, because they are already accounted for in a z-rotation of the cable vertical
plane by π as noted earlier.

Equation (3) contains branch cuts because of the presence of the inverse hyperbolic sine and square-
root functions which are multi-valued over the complex domain. Branch cuts are defined by convention
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(a) Square-root function f(w) =
√
w (b) Inverse hyperbolic sine function f(w) = sinh−1[w]

Figure 2: Principal branch of multi-valued functions of a complex variable w defined using branch cuts

for a principal definition. See Fig. 2 for one possible such definition for these functions involving branch
cuts (shown in blue). In the case of the square-root function, a branch cut is conventionally defined in
most programming libraries along the negative real axis (−∞, 0), while it is defined along the imaginary
axis (−i∞,−i) and (i, i∞) for the inverse hyperbolic sine function. (Note that the apparent discontinuity
along the negative real axis in Fig. 2b is not a branch cut of sinh−1[w]: it arises from a branch cut in the
Arg[ ] function used for plotting this visualization.) If these standard definitions are used, the branch cuts
cause failures during numerical continuation whenever a path crosses one of these discontinuities. Unless
special branch switching logic is implemented, any robust predictor-corrector path-tracking algorithm slows
down indefinitely upon the approach of such cuts and eventually grinds to a halt upon reaching the maximum
number of steps. These failures do not manifest in the form of ill-conditioning.

Illustration: Consider a simple homotopy equation, H(w[t], t) := w[t] −
√
e2πit = 0, from t = 0 to t = 1

with a start point w[0] = 1, where
√
· is the principal square-root function. Solving this equation using any

certified predictor-corrector tracking algorithm fails as t→ 0.5− where the path encounters a branch cut of
the principal square-root function along the negative real axis at −1. Note that limt→0.5− w

′[t] = −π ̸= 0.
Thus it is not a path crossing failure which are typically caused by branch points where at least two solution
branches of w merge. One way to circumvent this implementation problem is by introducing additional
variables to keep track of which sheet of the multi-valued function the current point of the path lies on. A
simpler approach is to use squaring to write an alternative homotopy that is free of branch cuts: H(w[t], t) :=
w[t]2 − e2πit = 0. While this resolves the issue and allows us to track until t = 1, it introduces a second
branch with a corresponding start point w[0] = −1. This is an unavoidable cost of resolving analyticity.

Change of variables
The illustration above shows how trouble stemming from branch cuts can be eliminated by rewriting a system
to remove multi-valued functions. Similarly, to apply numerical continuation to the forward kineto-statics
problem of CDPRs, we need to reformulate the Irvine cable model get rid of the square-root and inverse
hyperbolic sine functions. To do so, we introduce a change of variables from Fx, Fz to new real variables α, β:

Fz

Fx
= sinh [α] ,

Fz − µgL

Fx
= sinh [β] . (4)

Assuming µ > 0 and L > 0, Fx and Fz can be expressed uniquely in terms of the new variables α and β:

Fx =
µgL

sinh [α]− sinh [β]
, Fz =

µgLsinh [α]

sinh [α]− sinh [β]
. (5)

The next-step is to re-write the square-root functions in the Irvine model given by Eq. (3) in terms of the
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new variables. First consider the following expression:

Fx
2 + Fz

2 =
µ2g2L2cosh2 [α]

(sinh [α]− sinh [β])
2 .

The numerator is always a square of a positive number (∵ cosh [a] ≥ 1, ∀ a ∈ R), but the same is not
generically true for the denominator. However, Irvine cable model requires Fx > 0 which translates to
sinh [α] > sinh [β] based on the definition in Eq. (5). Since the hyperbolic sine function is strictly increasing
over R, this condition reduces to α > β. With this assumption, it follows that the real positive square-root:√

Fx
2 + Fz

2 =
µgLcosh [α]

sinh [α]− sinh [β]
. (6)

Similarly, it can be easily shown that the real positive square-root:√
Fx

2 + (Fz − µgL)
2
=

µgLcosh [β]

sinh [α]− sinh [β]
. (7)

Substituting Eqs. (4-7) into Eq. (3):

b =


µgL

sinh[α]−sinh[β]

(
L
EA + 1

µg

(
sinh−1 [sinh [α]]− sinh−1 [sinh [β]]

))
0

sinh[α]
sinh[α]−sinh[β]

µgL2

EA − µgL2

2EA + L cosh[α]−cosh[β]
sinh[α]−sinh[β]

 .

Since hyperbolic sine function is bijective over R,

b =


L

sinh[α]−sinh[β]

(
µgL
EA + α− β

)
0

sinh[α]+sinh[β]
sinh[α]−sinh[β]

µgL2

2EA + L cosh[α]−cosh[β]
sinh[α]−sinh[β]

 .

It can be observed that this modified kineto-static equation is a function of ν = µg
EA , a combined material

constant of the cable with units of reciprocal length. It defines the strain of a vertically hung cable under
its self-weight normalized by its unstrained length.

Reformulated sagging cable model
In summary, through a change of variables from Fx, Fz to α, β under the assumption that µ > 0 and L > 0,
we present an equivalent sagging cable model:

b =


bx

0

bz

 =
L

sinh [α]− sinh [β]


ν L+ α− β

0

(sinh [α] + sinh [β]) ν L
2 + cosh [α]− cosh [β]

 , (8)

where ν = µg
EA . The corresponding cable tension in the vertical plane is given in Eq. (5). Equations (5,8)

define the Irvine model in terms of the new real variables α, β with a necessary operating condition that
α > β. In some systems with metallic cables, it may be a reasonable approximation to neglect elasticity
by setting ν → 0 as E → ∞. This system is complex-analytic disregarding the inequality condition α > β.
Note that hyperbolic sine and cosine functions are single-valued over the complex domain. The equations
cannot be made algebraic as they contain both algebraic and exponential forms of α and β. However, as
noted earlier, this system defines Pfaff manifolds.

7



Note from Eq. (4) that the magnitudes of α and β grow in a slow logarithmic manner with respect to the ratio∣∣∣Fz

Fx

∣∣∣. In addition to removing multi-valued functions, this new formulation may offer an advantage when

numerically solving CDPR systems subjected to large magnitude forces. In particular, when the payload is
suspended between horizontally taut cables so that |Fx| ≫ |Fz|, the new variables α and β remain small in
magnitude. Although for brevity we omit a derivation, we note that the cable profile in the vertical plane
can be derived in terms of the new variables, following [7], in parametric form s ∈ [0, 1]:

L

sinh [α]− sinh [β]


s ν L+ sinh−1 [s sinh[α] + (1− s) sinh[β]]− β

0

(s sinh [α] + (2− s) sinh [β]) s ν L
2 +

√
1 + (s sinh[α] + (1− s) sinh[β])

2 − cosh [β]

 , (9)

where s = 0 corresponds to the origin of the cable and s = 1 corresponds to the end-effector connection
point given by Eq. (8).

As an additional note, refer to Appendix A for a further modification that proves advantageous in the
context of inverse kineto-statics and also provides a geometric understanding of the revised model.

2.2. Force and torque equilibrium equations

With the relation between tension forces and cable displacement in hand, our next task is to form
equations for force and torque balance. Let Fj = (Fxj

, 0, Fzj )
⊤ represent the tension force in cable j at the

end-effector point. Fxj
and Fzj are written in terms of the modified variables αj and βj following Eq. (5).

Expressed in the world coordinate system, the sum of all forces on the end-effector including each cable
reaction force −Fj and the weight of the platform W = Mg acting along the negative z-direction gives the
condition for force equilibrium:

n∑
j=1

[Z(ϕj)] (−Fj)−W k̂ = 0. (10)

The torque equilibrium equations with respect to P are written as:

n∑
j=1

([Q] pj)× ([Z(ϕj)] (−Fj)) = 0. (11)

Assuming all cables have identical linear density, µ > 0, the force and the torque equilibrium equations can
be simplified slightly by dividing out the constant µg. Equations (1,2,10,11) amount to 1+3n+3+3 = 3n+7
kineto-statics equations. For the forward kinematic problem, the variables are {αj , βj , ϕj} for j = 1, 2, . . . , n
along with the position of the center of mass P of the platform and the quaternion variables {q0, q1, q2, q3},
which also totals to 3n+ 7 in number. For generic architecture parameters, this leads to a well-constrained
system of equations defining the forward kinematics.

2.3. Discussions

The following discussions on the mathematical model are pertinent:

1. The material constants of the kineto-statics system appear only as the ratios ν = µg
EA and λ = W

µg = M
µ .

2. Over the complex field with imaginary unit i, one may see that if {αj , βj , ϕj} satisfy Eqs. (2,10,11)
so does {αj + iπN1, βj + iπN1, ϕj + π(N1 + 2N2)}, for any two integers N1, N2. These group actions
derive from our reformulation to eliminate branch cuts in favor of many-to-one functions and the fact
that every vertical plane has two z-rotational representations with respect to the global coordinate
frame. Similar to the examples in [43, 38], these group actions also apply to the homotopy paths we
consider, so we only track one member of each group. When recording roots, we consider subsequent
occurrences of members of the same group as repeat instances, and in particular, for real roots, we
record the principal representation with real-valued αj , βj and ϕj ∈ (−π, π].
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3. The quaternion variables admit two representations for any given [Q], namely, {q0, q1, q2, q3} and
{−q0,−q1,−q2,−q3}. This group action can be exploited similarly to Item 2.

4. A question remains on how best to involve the necessary inequality constraint, αj > βj , ∀ j. Handling
this inequality upfront is cumbersome for an n-cable system because there arise n such inequalities
and they cannot be evaluated over the complex field. More importantly, numerical continuation paths
starting from a real root which violates these inequalities can result in a valid real root and vice versa.
Hence, we ignore them during computations and compute all possible roots of the system including
those which violate these inequalities. During post-processing, an additional check identifies the valid
roots.

Remark on the planar case. When one applies this model to planar n-cable CDPRs, the number of
variables can be reduced. For a system lying in the XZ-plane, the rotation [Q] simplifies to just a y-rotation.
The y-components of the position loop-closure equations as well as the force equilibrium equations identically
vanish. The same is true for the x and z components of the torque equilibrium equations. Further, ϕj can
only admit 0 or π for all j = 1, 2, . . . , n in the planar case. This results in 2n sub-systems considering all
combinations. Unexpectedly, these 2n sub-systems are equivalent to each other because of the group action
associated to N1. For instance, a real solution with cable j in the form {αj , βj , π} also occurs as a complex
one {αj + iπN1, βj + iπN1, 0} for odd N1. Hence, it is sufficient to solve one of the 2n sub-systems, for
example, the one with ϕj = 0, ∀ j, in order to obtain all of the valid configurations.

3. Solving non-algebraic, complex-analytic systems via monodromy loops

In preparation for solving the global forward kinematic problem of CDPRs with sagging cables, we
next propose a heuristic numerical continuation algorithm that exploits monodromy to solve non-algebraic,
complex-analytic systems.

Numerical continuation is an effective technique to solve nonlinear system of equations which are complex-
analytic in nature [44]. This technique works through predictor-corrector path tracking which continuously
deforms the start point(s) of a known system into the end point(s) associated with a target system of interest.
Specifically for finding all isolated roots of polynomial system of equations, theory on the construction of
efficient start systems is well-developed exploiting the Bézout bounds [27, 28] as well as the sparse structure of
these polynomial systems [45, 46]. For non-algebraic systems without any theoretical bounds on the number
of roots, construction of efficient start systems for numerical continuation is an open research question. Start
systems constructed through a simplified polynomial approximation of the original system is an option as
done in [34] in the context of kinematics of CDPRs. However, this presents its own challenges, and in general,
a reasonable polynomial approximation may not always be possible in other physical systems.

In many polynomial systems which arise in kinematic design and analysis, it is noted that the actual
number of roots is only a small fraction of the number of start points of a well-constructed start system,
e.g., [47]. Most of the paths in such a homotopy diverge, making such methods computationally expensive
in disproportion to the actual root-count. An increasingly popular approach for countering this effect is to
abandon the construction of exhaustive start systems and instead implement heuristics that involve random
processes with the goal of obtaining most or all solutions probabilistically [37, 38, 39, 40, 41]. Among these,
[38, 39, 40, 41] all use a monodromy approach, where monodromy describes how roots of a parameterized
system of equations change as loops are traced in the parameter space around branch points.

In a polynomial system that has a finite root-count, a monodromy action permutes the set of all isolated
roots as smooth paths of a homotopy are tracked around a closed loop in a parameter space. Given at
least one root of the target system, one may seek to accumulate additional roots by tracking nontrivial
monodromy loops. Although it is difficult to know ahead of time which loops in parameter space will land
on new roots versus which ones will return to roots already known, a well-tested root accumulation strategy is
to execute random monodromy loops [41, 48]. Under certain assumptions of independence, the accumulation
of roots follows the Lincoln-Petersen mark-and-recapture model, where the computational expense is roughly
proportional to the total number of finite roots.

For a non-algebraic system, the total root count in complex space cannot be assumed finite, so the process
of accumulating roots might not terminate. However, if a non-algebraic system defines a Pfaff manifold, its
real root count is finite. By modifying the way random monodromy loops are generated and recording only
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real solutions, we can create an algorithm that has a chance of finding all the real roots, terminating when
slow progress indicates that most real roots have likely been found. This is the approach we apply here to
the CDPR forward kinematics problem.

3.1. Random monodromy loops

In this section, we present an algorithm using random monodromy loops and a heuristic root accumulation
strategy to solve non-algebraic, complex-analytic systems. It is based on a common strategy for treating
non-algebraic systems, wherein a homotopy is formed by adding an array of random constants to the given
system. For example, see the so-called Newton homotopies in [32, 49].

Consider a nonlinear complex-analytic system of equations f(w) = 0 of n equations in n unknowns, w,
for which numerical approximations of many or all real roots w are sought. We construct a parameter
homotopy with an artificial parameter array τ of dimension n and path parameter t ∈ R:

H(w[t], t) := f(w[t])− τ (t), (12)

where τ (t) is defined such that τ (0) = 0. A random monodromy loop may be constructed then as:

τ (t) = γ(1− e2πit), (13)

where γ is a random vector of non-zero complex numbers of dimension n. This circular monodromy loop
is chosen for ease of implementation. (There exist other multi-nodal constructions such as a triangular
segmented loop, petal shaped loop made of two different segments, etc., which may be equally preferable [50].)
As the path parameter t varies along the real line, w traces a curve implicitly defined by H(w[t], t) = 0.
Every integer value of t gives τ (t) = 0, thereby leading w to a root of f(w) = 0. All solutions of f(w) = 0,
including all real solutions, lie in the fiber over τ = 0, but for a fixed γ, one cannot be assured that they
all lie on one connected component, referred to as circuit from hereon. We may increase the chances of
connecting to all real solutions by repeating the procedure using different random vectors γ.

It is worth mentioning that this circular monodromy loop may also be constructed in a native parameter
space p of the system if the system is of the form f(w,p) = 0. In the context of CDPR kineto-statics, the
parameter space comprising of unstrained cable lengths Lj , j = 1, 2, . . . , 8, and/or the material parameters ν
and λ corresponds to such a native parameter space. However, these native parameters do not appear in a
linear manner in the kineto-static equations unlike the artificial parameter space τ . Performing monodromy
loops in a parameter space that appears linear can help improve the local conditioning of the system during
path tracking, which justifies the introduction of artificial parameters. The native parameters are set as true
constants during the numerical experiments.

With this construction, an algorithm for computing the real roots of the non-algebraic system f(w) = 0
is outlined as follows:

1. Initialization: We start by finding an initial starting solution w[0] = w∗ using a local Newton’s
method with an initial guess over the complex field. Note that finding a real starting root using
Newton’s method, while preferable, is non-trivial, especially in large systems. Hence, we rely on
complex starting roots which are fairly easy to obtain within say 200 trials. Care must be taken to
ensure that the starting root satisfies the system of equations within a small tolerance, say 10−8, and is
also a non-singular root of the system with a singular value no smaller than, say 10−16. The algorithm
allows for the possibility of starting with a user-defined initial point if it represents a good numerical
approximation of a root.

2. Monodromy Construction: A random vector γ is initialized to define a monodromy loop for the
current iteration. In order to track the curve defined by H(w[t], t) = 0, an equivalent ordinary
differential system of equations (ODEs), referred as Davidenko equations [44, 27], are derived from
Eq. (12,13) as follows:

[fw]w′[t] = −2πi γ e2πit, w[0] = w∗. (14)

This ODE system poses the path/curve tracking problem as an initial value problem (IVP). In this,
we start from t = 0 with the initial point w∗ and march forward in t. The IVP at hand cannot
be effectively solved using a straightforward integrator due to the tendency of numerical errors to
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accumulate over time. Hence, predictor-corrector path tracking techniques are commonly employed
to resolve such problems in numerical continuation [44, 27]. More details on the predictor-corrector
follow.

3. Path Tracking: Each step involves a coarse prediction half-step followed by an active Newton’s
correction half-step, which solves H(w[t], t) = 0 using the coarse prediction as the guess. We employ
an adaptive step-size mixed precision tracker similar to the ones in [51, 52]. It uses double precision
for numerical computations typically but boosts the precision if required up to 32 decimal digits.
We largely adopt Algorithm 3 from [52] with slight modifications. For the prediction half-step, this
algorithm employs a Padé predictor, a rational function approximation with a numerator polynomial of
order 2 and a denominator polynomial of order 1. Because Padé rationals provide local approximations
for both the function and the nearest pole(s) [51], this predictor is effective at navigating near path
crossing scenarios, i.e., when |[fw]| ≪ 1. Note that this Padé predictor requires computing local
derivatives up to the fourth order, denoted as w(j)[t] for j = 1, 2, 3, 4 at each step. The local derivatives
up to the third order are useful to predict w at the next step, while the fourth order derivative is
used to estimate the approximation error, as is standard in ODE predictors. When computing these
derivatives, it is not recommended to use finite difference schemes as the results are impacted by
catastrophic cancellation. Instead, we employ chain rules derived symbolically at time t to evaluate
them numerically. Here, the first order derivative w′[t] is given by Eq. (14). For computing the higher
order derivatives w(j)[t], j = 2, 3, 4, the following linear systems are derived:

[fw]w(j)[t] = rj [t],

where rj [t] = −

((
d

du

)j

f

(
w +

j−1∑
k=1

1

k!
w(k)[t] uk

))∣∣∣∣∣
u=0

− (2πi)
j
γ e2πit.

Refer to [53] for more information about the derivation of these rules from Eq. (14). Note that the same
coefficient Jacobian matrix [fw] applies to all the linear systems associated with all orders j = 1, 2, . . . .
The symbolic expressions for [fw] and rj [t] can be derived using any symbolic computer algebra system
such as WolframMathematica [54]. Using these rules, one can numerically compute the local derivatives
in a sequential manner, starting from the first order w′[t]. These computations are cost-effective,
employing LU decomposition to solve the associated coefficient matrix [fw] once and applying it for
different vectors rj [t] determined by the chain rules. The local derivatives not only assist in making
local predictions but also play a crucial role in estimating an appropriate step length, taking into
account approximation error estimates and the distance to the nearest pole.
For the correction half-step, this algorithm uses Newton’s corrector as suggested in [52] to improve the
results of the predictor. This algorithm incorporates a certification test given by Newton-Kantorovich [26]
based on an approximation of the contraction rate of the successive Newton iterates. The purpose of
this test is to ensure that the prediction is within the trust region and free of path jumps at all times.
If this test fails at any step, the corresponding prediction is rejected. The step size is then reduced, and
numerical precision is increased if necessary before proceeding again. The step size may be reduced up
to a lower limit such as 10−16 upon which the path is truncated. Due to the iterative nature and the
involvement of random processes in the overall algorithm, any root may often be uncovered multiple
times through alternative paths in subsequent iterations. Hence, the significance of each individual
path diminishes. This aspect of the algorithm allows for a more aggressive reduction in step size com-
pared to the step reduction rule suggested in [52], facilitating the prompt truncation of numerically
challenging paths to save compute time.

4. Root Accumulation: As the path parameter t crosses a positive integer, we record the corresponding
root, which is already certified based on the Newton-Kantorovich theorem as mentioned before. Among
all the recorded roots in each iteration, we append only the distinct real ones to the list of starting
points. Retaining all the complex roots would quickly become unmanageable, as these tend to vastly
outnumber the real roots. We declare a root to be real if every imaginary component is smaller than a
threshold, which in the present work was set to 10−8. This threshold may be informed by an analysis of
the distribution of imaginary components of the roots of the system under consideration. Sharpening
of the numerical approximation via Newton’s method using high precision can increase the robustness
of such checks. An alternative to naive thresholding could be certified reality tests based on interval
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methods [24] or Smale’s α-theory [55, 56]. Following this, care must be taken to ensure that duplicate
instances of roots are rejected, including alternative representations according to group actions if any.
Each path continues until one of the following criteria is met:

• A circuit is completed, meaning that we return to the initial root w∗.

• A previously known real start point or an alternate member of its group is recorded.

• A path fails due to numerical issues.

• A path proceeds without yielding any real roots for m successive instances of t crossing a positive
integer.

The truncation parameter m may be tuned specific to the system for addressing cases when paths
proceed indefinitely picking up complex roots especially in non-algebraic systems. Paths which are
curtailed for the latter two reasons may be pursued along the negative t direction as well before
initiating the next iteration.

5. Iterative Refinement: The above steps are repeated with different randomly generated γ and an
updated list of real start points after each iteration. Hence, as more roots are found through the
iterations, the number of paths tracked in an iteration also increases progressively. These paths may be
tracked simultaneously in a parallel implementation. This process continues until either very few or no
new real roots are found for, say, ten successive iterations, or a preset maximum limit of iterations/roots
is reached. For better exploration of the variable space, we reseed a new random complex start point
for each iteration using the Newton’s method, along with the current set of real start points. We may
also tune the magnitude of the elements of the randomly generated vector γ as a hyper-parameter to
increase the yield. Further details regarding the generation of this vector and other algorithmic aspects
specific to CDPR forward kineto-statics will be discussed in Section 4.2.

The algorithm described here employs a simple strategy for terminating the algorithm based on negligible
or zero returns. This termination check is computationally efficient but lacks sophistication, yet no better
alternatives exist for non-algebraic systems at this time. In the case of polynomial systems with a finite set
of isolated roots, a computationally inexpensive second-order local linear trace test exists [57], which proves
sufficient to conclude if all the roots belonging to a numerically irreducible set have been discovered. A
termination criterion based on the mark-and-recapture model [41], utilizing likelihood estimates based on
diminishing returns, also exists for polynomial systems. Another validation method for determining if all
roots within a given variable bound have been found is through the application of multi-variate generalizations
of Rouché’s theorem [31, p. 153]. For an illustration of this technique in polynomial systems, refer to [58].
However, the challenge lies in the generalization of any such termination criteria to non-algebraic systems
while maintaining computational affordability. This is beyond our present scope.

3.2. Illustration

Let us consider a root-finding problem of a non-algebraic equation:

f(w) = 0.84− 1

w
− cos [w]− 10

3
cos

[
10w

3

]
= 0.

This equation represents the stationary points of an objective function taken from [59]. For solving this
equation, we construct a homotopy as given by Eq. (12,13). The algorithm is initiated from a real start
point w = 2.261490 found through Newton’s method with an initial guess. During the first iteration, the
algorithm uses a randomly generated complex number γ1 = −44.6510 + 22.5008i of magnitude 50. The
corresponding monodromy loop τ1 = γ1(1− e2πit) is shown as an Argand diagram in Fig. 3a. When t ∈ Z,
τ1 = 0. The path proceeds from t = 0; picks up a new root w = 1.411244 at t = 1; and completes a circuit by
returning to the start point at t = 2. This progression is illustrated in Fig. 3b. The real-valued function f(w)
is shown as an overlay on the same plot, with scale on the right, for correspondence of the roots of f(w)
when t ∈ Z. The next iteration is initiated with a different random complex number γ2 = 22.1502+44.8260i,
see Fig. 3c. In this case, the two start points found already are seen to follow distinct circuits, each picking
up new roots in process before completing the respective circuits as shown in Fig. 3d. The supplementary
material contains two animations visualizing these iterations. Note that the number of unique roots within
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Figure 3: Illustration of random monodromy loops algorithm in a 1D root-finding problem

a circuit can vary widely depending on the system and may not be known a priori. Furthermore, these
roots need not all be real. This example showcases that two roots which belong in the same circuit in one
monodromy may belong in different circuits in another. Such randomly permuted maps allow the algorithm
to proceed and compute new roots efficiently with subsequent iterations. It is worth noting that the function
considered has a pole at w = 0. This impacts path tracking in iteration 2 between t = 3 and t = 4 as the
path goes very near to the pole, but successfully navigates it. As this example shows, numerical continuation
techniques may even be used in some non-analytic systems with isolated poles because the probability of any
random path reaching an isolated pole is nearly zero. This is unlike a branch cut, which is not an isolated
discontinuity. In the following section, we apply this technique to solve the forward kineto-statics of CDPRs
and benchmark our results against the existing ones from literature.

4. Numerical examples

In this section, we solve the forward kineto-static problem of an eight-cable CoGiRo CDPR [42, 20] via
the heuristic random monodromy loops algorithm. This CDPR system has an end-effector platform with six
DOF which is controlled by eight cables. The forward kinematic problem as per the formulation in Section 2
results in a non-algebraic system of 31 equations in 31 unknowns.

4.1. System Specifications and Material Properties

The cable properties are as follows:

µ = 0.079 kg m−1, E = 100 GPa, A = 4π · 10−6 m2.
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Acceleration due to gravity is assumed a constant g = 9.81 m s−2. The coordinate points of the cable
base points in the global frame and the end-effector points in the local frame are listed in Table 1. The
end-effector center of mass is assumed to coincide with the origin of the local frame and it carries M = 1 kg.
Based on these specifications, the material constants of this system evaluate to ν = 0.616717 · 10−6 m−1

and λ = 12.658228 m. We analyze four distinct data sets, namely Data Sets A, B, C, and D, which contain
unstrained cable lengths for the forward kinematic problem, as listed in Table 2. In the following section,
we present additional details regarding the implementation of the heuristic algorithm that are specific to the
present study.

Table 1: Coordinate Points for an Eight-Cable Cable-Driven Parallel Robot (CDPR) System

Base Points (Aj, Global Frame)
Label x (m) y (m) z (m)
A1 -7.175120 -5.243980 5.462460
A2 -7.315910 -5.102960 5.472220
A3 -7.302850 5.235980 5.476150
A4 7.182060 5.347600 5.488300
A5 -7.160980 5.372810 5.485390
A6 7.323310 5.205840 5.499030
A7 7.301560 -5.132550 5.489000
A8 7.161290 -5.269460 5.497070

End-Effector Points (pj, Local Frame)
Label x (m) y (m) z (m)
p1 0.503210 -0.492830 0.000000
p2 -0.509740 0.350900 0.997530
p3 -0.503210 -0.269900 0.000000
p4 -0.503210 0.492830 0.000000
p5 0.496070 0.355620 0.999540
p6 0.499640 -0.340280 0.999180
p7 0.502090 0.274900 -0.000620
p8 -0.504540 -0.346290 0.997520

Table 2: Unstrained Lengths (m) of Eight Cables (Lj , j = 1, 2, . . . , 8) - Four Data Sets (A, B, C, D)

Data Set L1 L2 L3 L4 L5 L6 L7 L8

A 10.538225 11.963397 10.135355 7.703723 10.615617 8.537152 9.969606 8.555879
B 8.306209 7.608231 11.163294 12.406223 11.380175 11.947601 9.495229 8.985027
C 12.192125 11.247648 9.199310 7.929109 8.596630 7.311818 10.839055 10.721407
D 12.924710 11.785460 10.720089 8.037326 10.425254 6.715571 10.163088 9.316678

4.2. Key Considerations

The random vector γ used to construct monodromy loops in the artificial parameter space τ is of
dimension 31, matching the number of equations. Given that the kineto-static equations — quaternion
constraint equation, position equations, force and torque equations — encompass various units, the elements
of γ are generated within ranges that appropriately scale each component of the monodromy loops. Let
γq,γp, and γf represent the set of elements corresponding to these equation types, respectively, such that

the random vector γ = (γq;γp;γf)
⊤ is a composition of these sets. The element of the γ vector corresponding

to the unit quaternion equation, namely γq, is intentionally set to be identically zero, requiring only 30 non-
zero random complex numbers in each iteration. This is done to preserve the unit quaternion constraint
equation without modification throughout the numerical computations, thereby maintaining the regularity
assumptions of the underlying physical system during monodromy loops. For generating the other 30 random
complex numbers in γ, a magnitude limit of 0.5 is set on elements of γp, and 5 for those of γf. These values
were obtained through a one-time coarse tuning to align with the scale of terms in the respective equations.
The primary purpose of this tuning is to prevent trivial circuits, where starting points map onto themselves
due to disproportionately small elements in γ. Recall that the elements of γ correspond to the radii of the
circular monodromy loops. Excessive magnitudes adversely affect computation time; thus, an optimal limit
is maintained. While these values generally perform well for different cable length inputs in a specific CDPR
system, their universal applicability to other CDPR systems with varying architectures, scales, and platform
masses may be limited and should be adjusted accordingly.

Initial guesses for the Newton’s method used to find start points are also crucial. The position coordinates
of the end-effector can be chosen as complex values within a magnitude limit appropriate for the CDPR
operating range’s scale. Complex-valued guesses are selected for α and β with a magnitude limit of 10−3,
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Table 3: Computational Summary of forward kinematics for a CDPR with eight cables

# Valid Roots # Valid Roots of
Data Set # Iterations # Real Roots (αj > βj ∀ j) Benchmark [20] Compute Time (hr)

A 207 4306 14 11 2.64
B 117 6717 22 21 3.33
C 105 7301 28 19 3.22
D 394 6119 12 8 3.46

while ϕ is set within a magnitude of π for all cables. Guess values for quaternion variables are normalized
such that the unit quaternion equation is satisfied.

During monodromy path tracking, as described earlier in Section 3.1, a path is truncated if no real root
is found for four consecutive instances of the homotopy path parameter t crossing an integer. While it
is possible that the path might still find a real root if pursued further, we have determined through trial
and error that the trade-off between computation time and yield is poor beyond four for this system. The
total number of complex roots for this non-algebraic system is theoretically unbounded, and some paths are
observed to proceed indefinitely, always landing on complex roots, necessitating this truncation limit.

As for overall algorithm termination criteria, we define the algorithm to terminate when the percentage
increase of real roots from successive iterations falls below 1% and the number of valid roots remains constant
for 10 consecutive iterations. To prevent premature termination, we set a minimum limit of 1000 real roots
initially.

4.3. Results
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Figure 4: Progression of the number of roots plotted against the iterations for the kineto-statics of an eight-cable CDPR

Table 3 reports a summary of the computations performed in the four data sets chosen from [20]. All the
computations for each of the four data sets were carried out using the Wolfram Mathematica software [54]
on a dual 24-core Intel® Xeon™ 2.30 GHz system in the Center for Research Computing at the University
of Notre Dame. In all four cases, the algorithm converged with both the percentage increase of real roots
diminishing below 1% and the number of valid roots stalling for 10 consecutive iterations. In all cases,
the heuristic numerical continuation algorithm found all the valid roots reported in the existing benchmark
set [20] and more. In Data Sets C and D, the algorithm identified up to 50% more configurations, with the
majority of the newly discovered configurations exhibiting one or more cable tensions significantly higher than
those reported in the benchmark. Although these newly found configurations may be practically unfeasible,
they could still prove useful in generating workspace points through local continuation methods. All the
valid configurations found in our numerical experiments are made available to the reader via supplementary
material along with their visualizations. For each configuration, the numerical values are reported in the
following order of variables: Px, Py, Pz, q0, q1, q2, q3, {αj , βj , ϕj}, j = 1, 2, . . . , 8. Figure 4a illustrates the
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algorithm’s progression across iterations in all four data sets. The initial iterations are computationally
inexpensive, and a critical mass of start points is reached before the algorithm accelerates in finding real
roots as seen in Fig. 4a. The point at which this critical mass is reached can vary between runs due to the
randomness associated with the technique, and it is not guaranteed to occur at the same iteration number
or close. However, because of the low computational cost of the initial iterations, this variability does not
pose a significant issue.

taut cables

Figure 5: An equilibrium configuration (#16) to the forward kinematic problem associated with Data Set C with four cables in
high tension

As mentioned earlier, during the monodromy runs, the inequality condition αj > βj ∀ j is disregarded.
While post-processing after each iteration, we check for this condition to identify the valid roots among
the real roots found. Figure 4b records the progression of the number of valid roots against the number of
iterations. It illustrates that in Data Set B, all the valid roots are found in just a few iteration sequences.
This is because all 22 roots found represent well-behaved configurations close to each other in the variable
space, with relatively small tension forces in all the sagging cables. For example, see Fig. 6 for one such
configuration. The cable profiles are drawn using Eq. (9). In the other data sets, which contain taut cable
configurations with large cable tension forces (see Fig. 5) besides well-behaved ones, the number of valid
roots increases in steps with batches of configurations occurring in iteration sequences. This has implications
for computation time incurred. For instance, we selected an intensive termination criterion resulting in
approximately three hours of computation time in each case (see Table 3). However, the majority of well-
behaved configurations are discovered within the first hour of computation. Thus, it is important to note
that the reported computation time depends on the desired level of diminishing returns. Furthermore, the
computation time reported in Table 3 should be linked to the number of real roots, which ranges in the
thousands, rather than to the number of valid roots. The latter represents only a small fraction of the total
real roots in the context of CDPRs. The real roots undergo post-facto filtering through inequality checks to
determine the valid roots, unrelated to the algorithm itself. Thus, in applications where such checks are not
relevant, the heuristic algorithm demonstrates the potential to uncover and compute thousands of roots in
large non-algebraic systems.

In Fig. 7, we present a breakdown of all the real roots based on the number of cables in each root that
satisfy the valid cable condition α > β. The numbers indicated correspond to the observed distribution,
which is depicted as a histogram in red. The last bar in the histogram signifies the valid roots where all eight
cables satisfy this condition. The histogram reveals an intriguing trend: as more real roots are discovered,
we observe the emergence of an approximate binomial distribution in all four cases. If one assumes an equal
probability σ ∈ [0, 1] for satisfying each valid cable inequality condition in a real root, then the expected
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Figure 6: A previously unreported equilibrium configuration (#14) to the forward kinematic problem associated with Data
Set B

binomial probability mass function for a real root having k valid cables is given by

P (X = k) =
8!

k! (8− k)!
· σk · (1− σ)8−k, k = 0, 1, . . . , 8. (15)

The binomial distribution in Fig. 7 is not symmetric; in other words, σ skews slightly lower than 0.5 in all
four cases, approximately around 0.45. The corresponding expected binomial distributions, derived using
a maximum likelihood estimator are shown side-by-side in green in the respective figures. However, it is
important to note that a Pearson chi-square goodness-of-fit test yielded significant results, indicating a bad
distribution fit, in three out of the four cases, except for the first one when using a one-sided significance level
of 0.05 and seven degrees of freedom. This choice of seven degrees of freedom for the chi-square goodness-
of-fit test is appropriate due to the estimation of a single parameter, σ, using the maximum likelihood
estimator in a scenario with nine categories. It remains to be studied whether this binomial distribution
trend occurs across various CDPR systems and whether it can be employed to establish a goodness-of-fit-
based termination criterion for the random monodromy loops algorithm applied in the context of global
kineto-statics for CDPRs.

5. Properties and Relations

Numerical continuation via random monodromy loops was shown to be computationally efficient for
solving the global kineto-statics of large CDPRs in comparison with existing approaches. The primary focus
of the present work is not to provide a real-time routine but to offer a robust way to discover nearly all
possible configurations for a handful of unstrained cable lengths. This will facilitate the generation of data
sets of workspace points in conjunction with local parameter continuation methods. Ultimately, this will
aid in the creation of full workspace models that may be useful for real-time implementation [22, 16]. In
this regard, the current approach is similar in scope to previous approaches [25, 34] but presents different
trade-offs as summarized below.

Interval analysis methods [25], when implemented properly, can guarantee the discovery of all roots
within set variable bounds due to their exhaustive search. However, in large systems with many cables, these
methods encounter the ‘curse of dimensionality’, especially when expanding the search bounds, highlighting
a level of uncertainty in determining the optimal choice of these bounds. Unlike these search methods,
analytic continuation techniques such as the one in the present work can seamlessly traverse the variable
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Figure 7: Comparison of observed distribution (red) vs. expected distribution (green) of the number of real roots based on the
number valid cables within each root

space unrestricted by variable bounds. This flexibility could also be a drawback if the variable bounds are to
be strictly defined. Nevertheless, in the current technique, the dimensionality problem manifests differently
in the form of invalid real roots that violate the cable inequality condition α > β. As a rule of thumb,
for an n-cable system, one can generally expect that only a small fraction of the real roots will be valid.
For example, assuming equal probability for a real root to satisfy each valid cable inequality condition, this
fraction would be 2−n. Thus, this is a trade-off we must accept since, during monodromy runs, real roots
may transition from invalid to valid and vice versa.

Unlike classical continuation methods [34], this heuristic continuation method employing monodromy
eliminates the necessity of constructing start systems. This removes a significant overhead as the method can
be easily initiated using local Newton’s method. However, due to the heuristic nature of root accumulation,
this method, by itself, does not guarantee the discovery of all possible roots globally or even within set
variable bounds. The diminishing returns in the total number of real roots found over the iterations offer
weak indications towards the near completeness of the solution set. Nevertheless, numerical experiments
indicate that these heuristics are robust and consistently uncover all reported solutions in the literature faster.

In terms of computation time, almost all of it is spent on path tracking, with a negligible amount al-
located to data processing within and in between iterations. Therefore, improving path tracking routines
and implementing efficiency enhancements can further reduce computation time. Smarter root accumula-
tion strategies that promptly discard sufficiently explored start points as the iterations progress may be
considered. By not retaining all the real roots indiscriminately, this can help save compute time.
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6. Conclusion

We describe a numerical continuation method to solve the global forward kineto-statics of large CDPRs
with sagging cables. As a first step, we reformulate the popular Irvine cable model to eliminate all multi-
valued functions, enabling effective analytical continuation for studying these systems. This new kineto-static
model depends on two consolidated material constants, in addition to the geometric parameters, and offers
computational advantages for modeling and solving CDPR systems with large tension forces in the cables.
Next, we present a novel strategy for root accumulation utilizing random monodromy loops in an iterative
manner to find roots for nonlinear, non-algebraic, and complex-analytic systems. This strategy involves
tracking circuits while performing monodromy loops instead of following lone paths, potentially identifying
multiple roots in the process. The rationale behind this approach is that multiple valid roots are often
closely located in the variable space and this continuation technique can efficiently uncover them. With this
technique, we solve the global kineto-static problem of an eight-cable spatial CDPR system comparatively
faster than existing interval analysis methods. We employ a termination criterion based on diminishing
returns across iterations so that this technique cannot, in theory, guarantee the finding of all real roots of the
system. Despite this, in the considered numerical examples, the algorithm not only discovered all previously
reported solutions within predefined variable bounds mentioned in the literature but also identified several
additional solutions outside these bounds. This method can augment existing local parameter continuation
methods to generate large workspace data sets, which may be used to build workspace models for CDPRs
with sagging cables. The heuristic numerical continuation technique presented here also holds potential
relevance for other applications dealing with high-dimensional non-algebraic systems.
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Appendix A. Alternative Representation of the Irvine Cable Model

Equations (5, 8), which define the Irvine cable model in terms of the variables α and β, can be further
revised using the following linear change of variables:

α = χ+ ψ, β = χ− ψ.

Using this transformation, the cable model simplifies into the following:
bx

0

bz

 =
L

sinh [ψ]


(
νL
2 + ψ

)
sech [χ]

0(
νL
2 cosh [ψ] + sinh [ψ]

)
tanh [χ]

 ,

where ν = µg
EA . The necessary inequality condition α > β reduces to ψ > 0 under this transformation.

In [60], we demonstrate that this modification facilitates the real-time determination of cable tension and
profile in elastic sagging cables uniquely for any valid set of geometric and material parameters.

This model also presents a geometric understanding of the Irvine cable model. Here, ψ > 0 directly gives
a measure of cable sag. The greater the value of ψ, the greater the cable sag for a given χ, with ψ → 0+

approaching a fully taut configuration. Moreover, the variable χ ranges from −∞ to ∞ and roughly indicates
the orientation of the cable axis within the cable half plane considered, bx > 0. In this context, the term
‘cable axis’ refers to the line joining the cable endpoints. When χ = 0, the cable axis is horizontal. Positive
values of χ correspond to cable configurations in the quarter where bz > 0, while negative values correspond
to configurations in the quarter where bz < 0. The limits at ±∞ represent vertical orientations of the cable
axis.
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