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Abstract

This paper investigates the location of a rigid body such that N spec-
ified points of the body lie on N given planes in space. Variants of this
problem arise in kinematics, metrology, and computer vision, including
some, such as the motion of a spherical four-bar, that are not at first
glance point-plane contact problems. The case N = 6, the minimum
number to fully constrain the body, is of special interest: we give an eigen-
value method for finding all solutions, which may number up to eight. For
N ≥ 7 there are, in general, no solutions, but if the constraints are com-
patible and not degenerate, we show how to find the unique solution by
a linear least-squares method. For N ≤ 5, the body is underconstrained,
having in general 6 − N degrees of freedom; we determine the degree of
the general motion for each case. We also examine the workspace of a
particular three-degree-of-freedom parallel-link tripod mechanism.

1 Introduction

We consider the class of problems in which N points of a rigid body are con-
strained to lie on N known planes. Such problems arise in many guises in the
kinematics of mechanisms, in metrology, and in computer vision. Some geo-
metric constraints not initially formulated as point-plane contacts can be easily
seen to be equivalent to a collection of such contacts: plane-plane contact is
equivalent to constraining three non-collinear points of one body to lie on the
same plane of the other, and similarly, line-plane contact can be modeled as two
points on a plane. A spherical joint is equivalent to constraining a single point
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to lie on three non-parallel planes, and equivalences exist for other common
joints as well. In vision, assuming a pinhole camera model, the position of a
feature point in the image plane constrains the corresponding point of the body
to lie on a line, a situation equivalent to constraining that point to lie on two
known planes. Similarly, the detection of a feature line as an edge in the image
plane constrains all points of that feature line on the body to lie on a known
plane in space, that is, it is equivalent to a line-plane contact. In metrology, it
is common to measure the center point of a sphere touching a planar surface,
which is equivalent to constraining an offset plane of the surface to coincide with
the measured point. From these observations, it appears that an understanding
of multiple simultaneous point-plane constraints has wide applicability.

This paper is an extension of [1], which considered N ≥ 6 general point-plane
constraints. Here, a substantial extension is the treatment of cases with N ≤ 5
constraints. We use continuation techniques from numerical algebraic geometry
to determine the degree of the workspace as an algebraic set and to test if it
can be factored into more than one irreducible piece. We show how this applies
to a three-degree-of-freedom parallel-link tripod mechanism.

For N = 6 general point-plane constraints, the body is exactly constrained.
We will show that there are at most eight locations of the body meeting all the
constraints and give an algorithm for computing them as an 8 × 8 eigenvalue
problem.

For more than six point-plane constraints, if the data are consistent and
the arrangement of points and planes not degenerate, the problem has a unique
answer. We show how to find it by solving a linear system of equations, with
successively simpler formulations applying in the cases of N = 7, 8 ≤ N ≤ 11,
and N ≥ 12. In the likely case that the data contains error, there will be no
exact answer, but one may use linear least squares to find an approximate one.

2 Motivating Examples

To make the discussion more concrete, consider the important case of N = 6,
illustrated in Fig.1. This amounts to the two equivalent problems:

1. determine the location of a rigid body, B, relative to ground, G, by mea-
suring six planes in G, each meeting a known point of B, and

2. solve the forward kinematics of a 6ES parallel-link robot, where “E”
denotes a plane joint and “S” denotes a spherical joint.

If one can solve these problems, then by kinematic inversion, that is, by reversing
the roles of G and B, one can also:

3. determine the location of a rigid body, B, relative to ground, G, by mea-
suring six points in G, each meeting a known plane of B, and

4. solve the forward kinematics of a 6SE parallel-link robot.
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Figure 1: Schematic of locating six points on six planes.
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Figure 2: Schematic of 3-2-1 locating.

These problems generally have multiple solutions; that is, there exists more than
one location of B where all six points lie on their respective planes.

In metrology, it is common to locate a rigid body in space by a so-called “3-
2-1” locating scheme, illustrated in Fig.2, in which the Z-coordinates of three
points, the Y -coordinates of two points, and the X-coordinate of one point are
measured. Since measuring the X-coordinate of a point is the same as measuring
which plane perpendicular to the X-axis meets that point, it is clear that 3-2-
1 locating is a special case of Problem (1) above. Problem (3) arises when a
coordinate measuring machine determines the coordinates of a point on a planar
surface, such as by touching the surface with a probe or by optically measuring
a laser spot projected onto the surface. Note that if the probe is a sphere, then
the center of the sphere lies on a plane parallel to the contact plane, offset by
the radius of the sphere, so this case is also included in the present analysis.

The 6ES forward kinematics problem concerns any robot mechanism that
has unmeasured plane and sphere joints in series on each of six legs. The device
can have any number of other joints, as long as their motions are measured. For
the purposes of determining the relative locations of all the links of a robot, any
measured joint can be temporarily replaced by a rigid connection. In this man-
ner, it can be seen that the forward kinematics of a variety of robot topologies
reduce to analyzing the 6ES structure.
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Figure 3: Viewing a feature point P with a pinhole camera.

The 6ES forward kinematic problem is related to the well-studied 6SS for-
ward kinematics problem associated to Stewart-Gough platforms. In the 6SS
problem, six points of a body are constrained to fall on known spheres. If we
consider a plane as the limit of a sphere whose center goes to infinity, the 6ES
structure is a special case of the 6SS structure. It is well-known that the 6SS
structure has 40 solutions [2, 3, 4, 5, 6, 7], which sets an upper bound on the
number of solutions that the 6ES structure may have. A somewhat sharper
result appears in Theorem 5.4 of [8], based directly on a result from [2], which
implies that the 6ES problem can have no more than 20 feasible isolated solu-
tions. We will see that the 6ES problem is actually much simpler than this: it
has at most 8 isolated solutions.

Multiple point-plane constraints also arise in machine vision. In particular,
for monocular vision with a pinhole camera, one has two point-plane constraints
for each feature point of a body detected in the image, as illustrated in Figure 3.
We may model this as one plane for the x-coordinate of the image point and
one for the y-coordinate. For k feature points, we have N = 2k constraints, so
three points exactly constrain the body, another instance of the 6ES problem.

A body subject to 1 ≤ N ≤ 5 point-plane constraints retains, in general,
6−N degrees of freedom of motion. This is relevant to the characterisation of the
workspace of three-degree-of-freedom parallel-link tripod mechanisms in which
each of three legs imposes a point-plane constraint on the moving platform.
The resulting constraints are illustrated in Figure 4. This type of arrangement
has received considerable attention; for example, a recent issue of this Journal
contains three papers on it: calibration in [9], the enumeration of equivalent
mechanisms in [10], and dynamics in [11]. We refer to these as a starting point
for accessing the literature on this particular mechanism. We study here the
properties of its workspace imposed by the point-plane constraints, without re-
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Figure 4: Geometric constraints of the tripod mechanism. The triangle is free
to move subject to each vertex remaining on a given plane.

gard for the means by which the points are forced to move in these planes.
Most commonly, each leg is a PRS serial linkage, with the prismatic joint actu-
ated and the rotational and spherical joints passive, but many alternatives are
enumerated in [10].

Finally, consider a spherical mechanism that constrains one point of body
B to coincide with a given point O in the ground link, G. This constraint may
be implemented directly as a spherical joint, but it may also arise as a conse-
quence of multiple rotational joints whose joint axes intersect at O. Examples
include the spherical four bar and spherical parallel-link wrist mechanisms, such
as a tripod mechanism with RRR legs whose axes all intersect. The spherical
constraint is equivalent to constraining a point of B to lie on three indepen-
dent planes intersecting at O. All other points of B must travel on concentric
spheres. For a spherical four-bar, two additional points of B are constrained
to travel on circles whose axes intersect O. Since each point is already con-
strained to a sphere, the circle constraints are equivalent to intersecting a plane
with that sphere. In this way, the motion of B can be modeled as a system
of five point-plane constraints. Similarly, a spherical pentad structure, which
has three additional points of B constrained to circles, can be modeled by six
point-plane constraints, and hence, the eight solutions of the pentad spherical
structure can be calculated using the algorithm given here for N = 6, although
the formulation in [12] is somewhat more direct.

3 The Problem

We are given N points xi ∈ R3, i = 1, . . . , N , of a rigid body B and N planes
[ni, di] ∈ P3, i = 1, . . . , N , in a ground coordinate system, G, where the equation
for the i-th plane is of the form

nT
i X + di = 0. (1)

Here, X ∈ R3 is the coordinate vector of a point in G, ni is a vector normal to
the plane and, if ni is unit length, di is the signed distance of the plane from
the origin. The notation [ni, di] indicates that scaling ni and di by a common,
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nonzero factor does not change the plane. The problem is to determine all ways
of positioning body B in space such that each point xi lies on plane [ni, di].

A rigid body displacement can be described by a 3× 3 rotation matrix R ∈
SO(3) and a translation vector t ∈ R3, whereby point xi in the body coordinates
of B is displaced to point Xi in G according to the transformationXi = Rxi +t.
It is useful to generalize this to include scalars si, i = 1, . . . , N , and write

Xi = Rxi + sit. (2)

In this way, we may set si = 1 to constrain point xi, or instead, we may set
si = 0 to constrain the direction of vector xi without regard to its position.

Accordingly, our objective is to find all (R, t) satisfying the N equations

fi(R, t) = nT
i (Rxi + sit) + di = 0, i = 1, . . . , N. (3)

There are several different ways to represent rotations. Whichever we may
choose, Eq.(3), is a system of N equations on the six-dimensional space of three
rotational and three translational degrees of freedom. The planes [ni, di] and
the points (xi, si) are known quantities. For N = 6 general planes and points, B
will be exactly constrained; that is, there will be only a finite number of isolated
locations that satisfy Eq.(3).

4 Representing Rotations

Before proceeding further, it is useful to consider how best to represent rotations.
The main candidates are: rotation matrices, Euler angles, Cayley’s formula,
Rodrigues parameters, matrix exponentials and quaternions. While descriptions
of these are widely available (a good summary can be found in [13, Ch.5], for
example), we will review them here to examine their suitability for treating
point-plane constraint problems. The last four of these are intimately related
and give essentially the same formula, as we shall see below.

Direct representation of a 3 × 3 rotation matrix by its nine entries requires
the inclusion of the quadratic orthogonality conditions RT R = I, where I is
the 3 × 3 identity matrix, and the condition detR = 1 to rule out reflections.
Lazard [2] gives a Gröbner basis for this set polynomial relations, showing that
it is dimension 3 and degree 8. From this, one may conclude that three general
linear equations on the elements of R have 8 isolated solutions, which establishes
a limit on the number of solutions for the general case of N = 6. However, it
is not immediately apparent how to convert this observation into a numerical
method for computing the solutions.

Representations by Euler angles, that is, by expressing R as the product of
three successive simple rotations, are familiar to many, but they are not conve-
nient for the task at hand. This is because the elements of R are cubic functions
of sine and cosine of the angles, with the addition of the quadratic trigonometric
identity sin2 θ + cos2 θ = 1 for each of the angles involved. Consequently, we
will not give further consideration to such representations.
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In contrast to the foregoing alternatives, a representation of rotation in terms
of quaternions does not introduce additional relations. A quaternion is a 4-
vector q = (q0, q1, q2, q3), which can also be written as a scalar, q0, paired with
a three-vector, q̂, as q = (q0, q̂). Quaternion multiplication can be conveniently
written using this latter form and the vector dot and cross product operators as

(a0,a) ∗ (b0,b) = (a0b0 − a · b, a0b + b0a + a× b). (4)

The operation of quaternion conjugation is written (q0, q̂)′ = (q0,−q̂). It is a
well-known result that, for a pure vector1 a, the operation q∗a∗q′/(q∗q′) yields
a pure vector that is a rotation of a. Moreover, every possible rotation has a
corresponding quaternion. Expanding this product out, we have the expressions

Ra = q ∗ a ∗ q′/(q ∗ q′) := R̂(q)a/(qT q) (5)

R̂(q) =




q2
0 + q2

1 − q2
2 − q2

3 2(−q0q3 + q1q2) 2(q0q2 + q1q3)
2(q0q3 + q2q1) q2

0 − q2
1 + q2

2 − q2
3 2(−q0q1 + q2q3)

2(−q0q2 + q3q1) 2(q0q1 + q3q2) q2
0 − q2

1 − q2
2 + q2

3


 . (6)

This expression for R is homogeneous; that is, q and αq give the same rotation
for any nonzero scalar α. One may often see this formula employed with the
restriction of q to unit magnitude, i.e., qT q = 1. For our purposes, this would
merely introduce an extra quadratic relation that would double the number of
solutions, since q and −q have the same magnitude and give the same rotation.
It is better to let q be a general quaternion and use Eq.(5). Said another way,
we take q = [q0, q1, q2, q3] ∈ P3 as a point in projective three space and our
equations are homogeneous in q.

Rodrigues parameters and the Cayley formula can both be viewed as deho-
mogenizations2 of the quaternion representation. The Rodrigues form says that
a rotation of vector a through an angle θ about a unit vector v is given in terms
of the scaled vector r = tan θ

2 v as

Ra = a + 2(r× a + r× (r× a))/(1 + r · r).

Expanding this expression and comparing to Eq.(6), one may see that they
are equivalent with the rescaling q = (1, q1/q0, q2/q0, q3/q0) = (1, r1, r2, r3).
Another expression is Cayley’s formula, which gives an orthogonal matrix of
any size as

R = (I−B)−1(I + B), (7)

where B is skew symmetric. When applied in three dimensions with the entries
of B denoted as

B =




0 −r3 r2

r3 0 −r1

−r2 r1 0


 , (8)

1A pure vector is a quaternion whose scalar part is zero.
2A point in projective space is dehomogenized by setting one coordinate, or a linear com-

bination of coordinates, to a constant, thereby removing the freedom to rescale.
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Cayley’s formula is exactly the same as the Rodrigues formula. The Rodrigues
and Cayley forms have a singularity when θ = π, for then tan θ

2 is infinite and,
hence, so is r. These rotations are no trouble for the quaternion representation;
they correspond to q0 = 0.

Finally, we note that the matrix exponential representation of rotation is
again equivalent to the Rodrigues representation. Letting V be the skew sym-
metric matrix formed from a unit vector v in the same pattern as B is formed
from r in Eq.8 and defining the matrix exponential as eA =

∑∞
i=0 Ai/i!, one

may show that the exponential eθV is a rotation matrix. Using the fact that
V3 = −V, one may reduce all cubic and higher powers of V to ±V or ±V2

and thereby rewrite the rotation as

R = eθV = I + sin θV + (1− cos θ)V2.

Half-angle formulas for sine and cosine convert this to the Rodrigues formula,
with r = tan θ

2v and B = tan θ
2 V.

In summary, the quaternion representation leads us directly to a homoge-
neous polynomial formulation for the rotation matrix. The Rodrigues and Cay-
ley forms are just dehomogenized quaternions. Matrix exponentials expressed as
an infinite series are of no use to us in formulating a polynomial system to solve
the N plane system, and when converted to polynomials by the skew-symmetric
property V3 = −V, we again get the Cayley form. So from this point on, we
will only speak of the quaternion formulation.

Using quaternions as in Eq.(5) and clearing qT q from the denominator, the
point-plane constraints Eq.(3) become for i = 1, . . . , N

Fi(q, t) = [nT
i R̂(q)xi + qT qdi] + qT qsinT

i t = 0 (9)

= qT Miq + qT qNit, (10)

where Mi is a 4 × 4 symmetric matrix of constants that depend on the given
data ni,xi, di and where Ni = sinT

i is a 1×3 row of constants. Each point-plane
constraint is a cubic equation that is quadratic, homogeneous in q and linear,
inhomogeneous in t.

5 Cases with Free Translation

Let N denote the N × 3 matrix whose rows are Ni from Eq.(10). When rankN
is less than three, B may translate freely in directions in the right null-space
of N. This must happen, of course, if N < 3, but it may also come about if
the normals to the planes do not span three space. If rankN = 2, we can find
a nonzero vector v with Nv = 0 to describe the free translational direction.
Then, the motion of B may be understood by initially adding the constraint
vT t = 0, analyzing the remaining motion of B, and then reintroducing the free
translation. The new constraint is a point-plane condition applied to the origin
of B, so we may proceed as if the mechanism had N +1 point-plane constraints.
If rankN is one, we work in a similar way, adding two translational constraints,
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respectively. In the case rankN = 0, which occurs only if all the constraints are
directional (si = 0 for all i), one may introduce three translational constraints.

If after adding translational constraints, there are a total of six or more
constraints, we will treat the problem with the methods for N ≥ 6 below.
Generally, the mechanism will have a finite number of orientations it can attain,
and in each of these orientations, it can translate freely within the null space of
N. If on the other hand, we still have N < 6, there are extra degrees of freedom
that involve coordinated motion in orientation and translation. We will address
this in the next section.

6 Incompletely Constrained Mechanisms

For N ≤ 5, B has, in general, 6 − N degrees of freedom. For any particular
mechanism, one could map out its motion in various ways. For a one-degree-
of-freedom mechanism, one might create an animation of the motion or plot
the paths in space of selected points of B. For two degrees of freedom, points
generally sweep out a surface in space, so one might study these surfaces. For
higher degrees of freedom, one might plot the motion of points when the ori-
entation is constrained in various ways. One often sees, for example, plots of a
manipulator’s reachable volume when the orientation is held constant. Because
they can be plotted and visualized, the sets swept out by points of B under vari-
ous orientation constraints are appealing. They have the shortcoming, however,
that the orientational motion and its coupling with the translational motion are
only sampled roughly. An alternative is to investigate the entire motion as a
(6−N)-dimensional subset of the 6-dimensional space of translation and rota-
tion. Although this set cannot be visualized directly, we can determine some of
its properties.

Since the point-plane constraints are algebraic, the curves or surfaces swept
out by a point or the entire motion set will all be algebraic sets. Two basic
properties of an algebraic set are its degree and the number of irreducible com-
ponents that it contains. A reducible algebraic set, for example, a collection of
lines, consists of more than one irreducible piece, which meet each other in com-
plex space only at singularities. After removing singularities, those sets which
remain connected are irreducible.

To compute these properties, it is helpful to first dehomogenize the quater-
nion representation of rotations by choosing an arbitrary patch on P3 via the
linear form w(q) := a ·q, where a ∈ C4 has been chosen generically. The motion
for N point-plane constraints is the algebraic set

VN := {(q, t) ∈ C7|F1(q, t) = 0, . . . , FN (q, t) = 0, w(q) = 1}.

We would like to assess the degree and irreducibility of VN for N < 6 point-plane
constraints.
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6.1 Determining Degree and Irreducibility

To determine the degree of an algebraic set of dimension greater than zero (i.e.,
a “positive dimensional set”), we may use the approach propounded in [14] and
explained further in [15, 16] of intersecting the set with a generic linear space of
commensurate co-dimension. The slice so obtained consists of isolated points,
called witness points, whose number is equal to the degree of VN . Moreover,
the paths swept out by the witness points as the linear slicing space is moved
continuously reveal whether or not the set is irreducible. Monodromy loops,
formed by moving the slicing space around a closed path and tracking the paths
of the witness points, can find witness points that connect without encountering
a singularity, thereby showing that they are on the same irreducible component
[16, 17]. When the number of witness points is not too large, or after monodromy
has reduced the number of possible groupings, the decomposition into irreducible
components can be completed by exhaustive testing of linear traces [16, 18,
19, 20]. In the problems at hand, it turns out that the number of witness
points is never greater than 15, so exhaustive trace testing is feasible without
preprocessing by monodromy.

The idea of linear trace testing is illustrated in Figure 5 for a single quartic
equation that factors into two ellipses. When the pair of ellipses are cut by a
generic line, four witness points are obtained. The figure has been arranged
so that these are all real, although in general, we would take random lines in
complex space so as to avoid singularities. When the slicing line is translated
parallel to itself, the centroid of a witness set must travel in a straight line. For
the entire witness set, the centroid follows line L0, but we see that the centroids
for the two irreducible pieces also travel on lines, marked as L1 and L2. An
irreducible decomposition may be found by checking all possible subsets of the
witness paths to see which centroids follow lines. If it is true only for the entire
set of witness paths and not for any of the subsets, we know the algebraic set
is irreducible.

6.2 General Cases N ≤ 5

To compute a witness sets for a k-dimensional component, we append k linear
equations in (q, t), which we may write in matrix notation as Aq+Bt+C = 0.
The complete set of equations to be solved are

GN,k(q, t) =




F1(q, t), . . . , FN (q, t)
a · q− 1

Aq + Bt + C


 = 0, (11)

where the linear slicing equations are given by A ∈ Ck×4, B ∈ Ck×3, and C ∈
Ck×1, all random complex matrices. When we are considering general point-
plane constraints, we expect to find solution components only at dimension
k = 6 − N . To be certain, however, we checked also for higher-dimensional
solution components, using randomization to square up these systems, as they
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L1

L2

L0

Figure 5: Linear traces. Under parallel translation of the slicing line, the cen-
troid of a witness set must follow a line. This is true for a composite set (L0)
and for each of its irreducible pieces (L1, L2).

N 1 2 3 4 5
deg(VN ) 3 7 15 14 12

Table 1: Degree of the motion variety VN = V (F1, . . . , FN ) for N ≤ 5.

have more equations than unknowns, see [14, 16]. No finite higher-dimensional
components were present in any case.

For k = N − 6, we have the same number of equations as variables, and we
may solve them with continuation. Doing so for each N ≤ 5 with randomly
generated point-plane constraints gives a witness set for each of the associated
motion varieties. The witness points were in every case nonsingular. Their
number, given in Table 1, is the degree of the motion set. While these results
were obtained numerically, we explain them analytically in Appendix A.

We next compute the witness paths generated as the constants C in the
slicing equations are moved linearly, that is, we replace C by C + C ′t for a
random C ′ ∈ Ck×1 and vary t ∈ [0, 1]. In every case, the linear trace test shows
that the motion set is irreducible.

These results are for general point-plane constraints. If the constraints are
specially situated, then the degree of VN may decrease, it may factor into sub-
components, or both. We will return to this later when we study the tripod
mechanism.
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7 Completely Constrained Mechanisms

We consider now cases of N ≥ 6 in which B is completely constrained, ignoring
degenerate cases in which B has a positive-dimensional motion. As discussed in
Section 5, a mechanism having free translational motions may become nonde-
generate for our purposes after the translation is artificially constrained.

Under these assumptions, we have that matrix N has full rank three. In
Eq.(10), the quantity t̂ := qT qt appears linearly, so it can be easily eliminated
from the equations, for example, by using Gaussian elimination to get N − 3
equations of the form

qT M̃iq = 0, i = 1, . . . , N − 3. (12)

where each M̃i, i = 1, . . . , N−3 is a linear combination of the Mi, i = 1, . . . , N ,
from Eq.(10). Once we solve these for q, we can use the results of the Gaussian
elimination stage to backsolve uniquely for t̂. Each solution q with qT q 6= 0
gives a unique, finite value of translation as t = t̂/qT q; otherwise, the solution
is a degenerate one at infinity.

7.1 Case N = 6

For the case N = 6, we have three quadratics on P3, so by Bézout’s Theorem,
there are at most 23 = 8 isolated solutions over the complex numbers. If the
planes and the points are special, it could happen that the problem simpli-
fies and the number of roots decreases. It could also happen that the problem
becomes degenerate, so that the solutions are not isolated but instead form a so-
lution curve or surface. We will not explore these possibilities in this article; we
only treat the case where the problem is general and has 8 isolated roots. Con-
sequently, what remains to be done is to apply any of several existing methods
for solving three quadratic equations. The next section addresses this issue.

7.1.1 Solving Three Quadratics

The solution of three general quadratics is a classical problem with many possi-
ble avenues of attack. A common approach is to seek an elimination procedure
that produces a single octic polynomial in one variable. An early result of this
sort is the method of Dixon [21]. A more modern approach is to compute a
Gröbner basis for the system of polynomials [22] and then derive an eigenvalue
problem from it [23, 24]. Since one of the best ways to solve a polynomial of
degree less than about 50 in one variable is to solve an eigenvalue problem for its
companion matrix [25], we take the approach of forming an eigenproblem in the
most direct, numerically stable way that we can find. The detailed derivation
of the following algorithm is given in [1], including an interpretation of it as a
“numerical Gröbner basis.” The approach is similar to the one used in [26, 27].

Assume we have three quadratics, pi(x, y, z), i = 1, 2, 3 and we wish to
find their common zeros. There are ten possible monomials appearing, namely
{1, x, y, z, x2, xy, xz, y2, yz, z2}. Do the following:
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1. Multiply each pi by the nine monomials

{1, x, y, z, x2, xy, xz, y2, yz}
to produce an expanded set of 27 polynomials. This expanded set of
polynomials has exactly the same zero set as the original three, as it
consists of those three and multiples of them.

2. The expanded system has 34 possible monomials, consisting of all mono-
mials of degree 4 or less, except z4. List these in a column vector, m, and
order them as m = {m1,m2} so that m2 is the “normal set” of 8 mono-
mials {xz, z, xy, y, x3, x2, x, 1} and m1 is the other 26 monomials. Write
the system in the form Am = A1m1 + A2m2 = 0, where A is a sparse
27× 34 matrix. Matrix A has just ten nonzero entries in each row; these
are copies of the coefficients in the original polynomials.

3. For general quadrics p1, p2, p3, it turns out that rankA1 = 26. If for a
particular set of quadrics the rank is lower, the method fails. If this is
due to having isolated solutions at infinity, then we can get around the
problem by using a new projective patch, as we discuss further below.
If this is due to the presence of a positive dimensional solution set, an
alternative approach must be sought. We do not address that here.

4. Since A1 is full column rank, we may solve for m1 in terms of m2 as m1 =
−A†1A2m2, where A†1 is the pseudoinverse of A1. This is a convenient
way of writing the solution, but the actual computation can be done with
Gaussian elimination or any other stable linear solution method.

5. Choose random α0, α1, α2, α3 and let λ(x, y, z) = α0 + α1x + α2y + α3z.
When fully expanded, the monomials appearing in λ(x, y, z)m2 are all in
m, that is, λ(x, y, z)m2 = Bm = B1m1 + B2m2. Matrix B is a sparse
8 × 34 matrix with four nonzero entries per row, these being copies of
α0, α1, α2, α3 appropriately arranged.

6. Using the expression derived in Step 4, eliminate m1 to obtain the ex-
pression λm2 = (−B1A

†
1A2 +B2)m2. This is an eigenvalue problem, with

eigenvalue λ and eigenvector m2.

7. Solve the eigenvalue-eigenvector problem using a standard routine from
linear algebra. Eigenvectors have arbitrary scaling, but the proper scaling
is easily determined, as one of the entries in m2 is defined to be 1. After
rescaling to make this so, we may read off x, y, z where they appear in m2.

7.2 A Word on Homogenization

In the above presentation, we discussed solving three inhomogeneous quadrat-
ics in three variables. In contrast, the system of Eq.12 consists of homogeneous
equations in four variables. One approach is to simply dehomogenize the equa-
tions by setting q0 = 1, which is equivalent to employing the Rodrigues form.
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This is undesirable if there is a possibility for one of the solutions to be a rotation
of 180◦.

Such trouble is easily circumvented. Before initiating the solution of the
three-quadratic system, we may make a change of coordinates by letting q = P q̄
for some nonsingular matrix P and solve the transformed equations

q̄T Miq̄ := q̄T (PT M̃iP )q̄ = 0, i = 1, . . . , N − 3. (13)

We now dehomogenize in the new variables via the substitution q̄ = (1, x, y, z).
If we choose P at random, the dehomogenization operation sets a random com-
bination of q0, q1, q2, q3 to one. There is a zero probability that the combination
so selected will be zero for the solutions of the problem at hand. Sometimes
called a “projective transformation,” this maneuver has proven very effective
in numerical work and is regularly employed in polynomial continuation codes
to avoid degeneracies [28]. If by rare chance we pick an inauspicious deho-
mogenization, we may pick a different P and try again. As reported in [1],
numerical experiments on 1000 randomly generated examples of case N = 6
gave just 15 trials whose numerical error was greater than 10−6, but with a
second run of the algorithm (with a new P ), no result had an error greater than
10−7. These trials, which were computed in Matlab using double precision on
a 2Ghz Xeon processor under Windows, averaged 6msec per trial, including
back-solving for t.

8 N ≥ 7 Points on N Planes

For N ≥ 7 general points and planes, the system of equations will be incom-
patible, having no solutions. But if the coefficients derive from a compatible
situation, for example, from measuring points on N different planar faces of a
real object, then the equations should be compatible, within measurement error.
The extra constraints will, in general, exclude all but one of the eight solutions
we would find for, say, the first six constraints. Since the answer is unique,
we may expect that it can be found from solving a linear system of equations.
This is indeed possible. Let us again start with Eq.(13), considered as N − 3
quadratics in x, y, z. The most efficient formulation changes as N increases, as
follows.

• For N = 7, we proceed just as in the N = 6 case, but now the augmented
system Am = 0 has 9 · 4 = 36 equations in 34 monomials. For compatible
equations, A has exactly rank 33 and m is its unique null vector. Whether
A is compatible or not, its singular value decomposition can be used to
find the unique vector m∗ which minimizes the two-norm ‖Am‖/‖m‖.
We scale it so that monomial 1 has the correct value and then read off
x, y, z.

• For 8 ≤ N ≤ 11, it is sufficient to generate the augmented system by
multiplying the quadratics by just the monomials {1, x, y, z}. One obtains
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4(N−3) equations in the 20 monomials of degree 3 or less in three variables
which can be solved by linear methods.

• For N ≥ 12, we have at least nine equations and only 10 monomials, one
of which is 1. For N = 12, we solve the equations directly as a linear
system, and for N > 12, we proceed using linear least squares.

In any of these cases, when the data are not perfect, one cannot expect the
monomials in m∗ to exactly obey the appropriate interrelationships. For exam-
ple, x and x2 as elements of m∗ will not exactly satisfy x ·x = x2. Nevertheless,
the agreement should be close, and we can extract an approximate solution from
the linear monomials in m∗. If desired, this can be used as the initial guess for
iterative refinement of the estimate of the body’s location. The refinement can
be posed as a maximum likelihood estimation problem taking into account the
statistical properties of the measurements. The procedures above can be viewed
as a way to generate a good initial guess for the refinement.

Numerical experiments verify that these methods are valid, and in partic-
ular, that the linear systems formed in the algorithms have the required rank
conditions for general point-plane constraints. The implementations run pro-
gressively faster up to N = 12, averaging just 2msec in that case.

9 Special Cases

So far, we have considered general point-plane constraints. In many practical
situations, the points and planes are arranged in special configurations. A few
such arrangements are considered next.

9.1 3-2-1 Locating

Figure 2 illustrates the common 3-2-1 locating scheme. This special case has
only four solutions instead of eight. This causes no special trouble for the N = 6
algorithm: in addition to the desired solutions, the algorithm gives four solutions
with tiny values of qT q. These are mathematical figments of the formulation
having no physical meaning and can be considered to be numerical approxima-
tions of solutions “at infinity.”. Indeed, if one carries on with backsolving, these
give large values of t. If one wishes to solve 3-2-1 problems frequently, it might
be better to design an algorithm especially for that purpose in a manner that
generates only the four finite solutions at the outset.

9.2 Monocular Vision

As illustrated in Figure 3, each feature point found in the image is equivalent
to two point-plane constraints. A line segment feature is also equivalent to
two point-plane constraints. With 3 such features, we have an instance of the
N = 6 problem, and there are at most 8 solutions. For three point features,
these appear in four symmetric pairs, related by reflection through the eye-point.
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These are easiest to spot if the origin of coordinates of the body is in the plane
of the three points, for then the translation t appears in sign-symmetric pairs.
As the object must be in front of the camera (or eye), at most four solutions
are feasible. The symmetry can be used to reformulate the problem as a degree
four system.

For four or more features, there will be a unique answer, computable using
the algorithms specified above for N ≥ 8. For six or more features, we already
have the simplest case of N ≥ 12.

9.3 Tripod Mechanism

Consider next the case of the tripod mechanism, whose point-plane constraints
are illustrated in Figure 4. We assume that the planes all intersect in a common
line and that they are spaced evenly at 120◦ intervals. Moreover, the three
points of the moving body are assumed to form an equilateral triangle.

Let us choose a coordinate system in the ground with the z-axis aligned with
the line of intersection of the planes. Clearly, the body has a free translation
along this direction, so we analyze the rest of the workspace motion by adding
a fourth constraint [0 0 1] · t = 0. From the analysis above for general N = 4
point-plane constraints, we know that the workspace is an algebraic set of degree
at most 14.

To investigate the workspace, we proceed as in Section 6 by slicing it with
two hyperplanes in C7 and then translating the slice to compute linear traces.
The result is that the workspace is degree 14, but it factors into two degree 7
components. Examination of the witness points reveals that on one component,
the z element of q is zero, while on the other, the scalar part of q is zero. In
other words, the first component consists of rotations about a vector in the
(x, y)-plane, while the second component is the composition of such a rotation
with a 180◦ rotation around the z direction. Notice that if we had formulated
the problem using Rodriques parameters, instead of using a random patch on
P3, the second component would be trouble.

In complex space without limits on the extent of the constraint planes, the
two components may meet, but only in singularities. In practical construction,
where the planes are limited and where, as always, only real solutions matter,
the device will only operate in one of the two components. With this restriction,
we may say that the workspace of the device is degree 7.

9.4 Tripod inverse positions

We may further investigate the tripod by considering its use as a positioning
robot. Select a point, say xE , where E is for “endpoint,” of the moving body
B and use the three degrees of freedom of the device to position that point in
three-space. Denoting the specified position as (px, py, pz), this is equivalent to
constraining [1 0 0] ·XE = px, [0 1 0] ·XE = py, [0 0 1] ·XE = pz, where XE is
the position of xE in the ground coordinate system. In other words, we have a
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case of N = 6 and we expect 8 solutions. By symmetry, we expect four each of
these to be on the two workspace components.

This can be understood another way. First, restrict the origin of B to z = 0.
Now, the mechanism has just two degrees of freedom and xE sweeps out a
surface SE in three-space as the device moves through its range of motion. If
we find the configurations such that xE meets the vertical line [1 0 0] ·XE = px,
[0 1 0] · XE = py, we can then translate along the z direction to attain the
desired position. In general, the surface SE and the vertical line intersect in
four points (over the complexes) on each of the two workspace components.
If we subsequently translate the vertical line in a vertical plane and compute
traces, we find that these two sets are each irreducible.

The upshot is that if we restrict the mechanism to just one workspace com-
ponent, say the one where the z element of q is zero, then it is possible to
formulate the inverse position problem as a degree four eigenvalue problem.
Just formulate the quadratics as in Eq.(12) but set the last element of q to
zero. We have 3 quadrics in just two variables, but they are linearly dependent,
so the total degree is just 22. Solving the pair of quadrics gives the four desired
roots. A similar procedure works for the four solutions on the other workspace
component.

9.5 Pointing plus z-translate

We might prefer to use the tripod as an orientational mechanism, in which we
orient the normal direction of the plane of B and control the position of its
centroid in the z direction. Suppose we pick xE as (0, 0, 1) in body coordinates.
Then, we want to specify (XE − t) in ground coordinates as a given unit vector
along with [0 0 1] · t = 0. The direction constraints may be imposed using
si = 0, i = 4, 5, 6, as allowed in Eq.(2), which with the z = 0 constraint and
the three point-plane pairs of the device itself makes a total of seven point-
plane constraints. For seven general compatible constraints, we expect a unique
solution, but these constraints are not general. There is, in fact, one solution for
each of the two workspace components. Restricting to one of the components,
the solution is unique, and there should be a linear formulation for it. Lacking
this, we may solve it by applying the procedure for the positioning case to six
of the constraints (i.e., ignoring one of the pointing coordinate directions) and
then picking out the one solution of the four that satisfies the final constraint.

10 Conclusion

We have shown how to efficiently and reliably solve the generalized locating
problem of placing N given points of a rigid body on N known planes, a prob-
lem that is relevant to metrology, monocular vision, and to certain parallel-link
platform robots. The case N = 6 is reducible to a set of three quadratic equa-
tions having 8 solutions in general, and we give an algorithm to compute them
via eigenvalue routines. For N ≥ 7, we show how to reduce the problem to
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solving a set of linear equations. For N ≤ 5, we use continuation methods to
reveal the degree and irreducibility of the workspace as an algebraic set. This
approach is particularly revealing when applied to the tripod mechanism, where
it shows that the workspace can be factored into two degree-seven pieces. We
also discuss the special situations arising when the tripod mechanism is applied
to just position or to pointing a vector in a given direction.
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Appendix A: Degree of VN

To analytically determine the degree of VN , it is advantageous to modify Eq.(11)
by introducing a new variable ξ = qT q and appending its defining equation.
After homogenizing with the variable w, the new system is

HN,k(ξ,q, t, w) =




qT Miq + ξnT
i t, i = 1, . . . , N

qT q− ξw
a · q− w

Aq + Bt + Cw


 = 0, (14)

where Mi is as defined in Eq.(10). The trailing set of linear equations is size
k = 6 − N , so we have in total 8 equations for the homogeneous variables
[ξ,q, t, w] ∈ P8. The total degree is 2N+1. For all N , the point at infinity
[ξ,q, t, w] = [1, 0, 0, 0] is a solution. For N = 1, 2, 3 and general constraints and
general linear slice, this point is nonsingular, as can be verified by forming the
Jacobian matrix. This proves that the number of finite, isolated solutions is
at most 2N+1 − 1 for N = 1, 2, 3. The numerical results give this many roots,
so the bound is seen to be sharp. For N = 4, the situation is more difficult.
The root [1, 0, 0, 0] is now singular and there is also a solution [0, 0, nullB, 0].
It is not easy to analytically determine the multiplicity of these points, but the
numerical results show that the multiplicities to be two and 16, respectively,
leaving 14 finite witness points.

For N = 5, the solution [ξ,q, t, w] = [0, 0, nullB, 0] is one-dimensional, so
proper counting in the approach above becomes even more difficult. It is better
to reformulate again, this time defining variables t̂ = (qT q)t so that the system
becomes

HN,k(ξ,q, t, w) =




qT Miq + nT
i t̂, i = 1, . . . , 5
a · q− w

(qT q)Aq + Bt̂ + (qT q)Cw


 = 0, (15)

For N = 5, k = 1, the last row is a single hypersurface equation. Using Gaussian
elimination, we may use the first three equations to express the elements of t̂ as
quadratics in q. Substituting this to eliminate t̂ from the remaining equations,
the remaining two point-plane constraints are quadratic while the final linear
slice equation has become cubic. So the total degree of this reduced system is
2 · 2 · 3 = 12. This proves an upper bound of 12 for the degree of V5, and since
the numerical results give 12 distinct, nonsingular witness points, we see that
this bound is sharp.
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