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ABSTRACT
This paper presents a general method for the analysis of any

planar mechanism consisting of rigid links connected by revolute
and slider joints. The method combines the complex plane for-
mulation of Wampler (1999) with the Dixon determinant proce-
dure of Nielsen and Roth (1999). The result is simple to derive
and implement, so in addition to providing numerical solutions,
the approach facilitates analytical explorations. The procedure
leads to a generalized eigenvalue problem of minimal size. Both
input/output problems and the derivation of tracing curve equa-
tions are addessed.

NOMENCLATURE

� Number of kinematic loops.
θj eiΘj , where Θj is an angle, in radians.
z∗ Complex conjugate of z.

1 INTRODUCTION

In 1999, two independent solutions were published
(Wampler 1999, Nielsen and Roth 1999) for the general in-
put/output problem for planar mechanisms composed of
revolute and sliding joints. Wampler also showed how his
method is applicable to the analysis of the curve traced by
a point fixed to one of the links. These methods are no-
table for their uniform treatment of all planar mechanisms
by algebraic elimination.
Traditionally, elimination-based solutions treat individ-

ual mechanism types on a case-by-case basis. Notable ex-

amples are the work on various six-bar mechanisms by
Freudenstein, et al. (1967), and the solution of the basic
seven-link structures (which solve the input/output prob-
lem for eight-bar mechanisms) by Innocenti (1994,1995). [It
could be argued that the coupler-curve equations obtained
by Freudenstein et al. (1967) can also be used to solve the in-
put/output problem for any eight-bar mechanism. See Sec-
tion 6 below.] A recent contribution (Han, Liao and Liang
2000) solves a particular nine-link structure, which may be
viewed as the intersection of a four-bar coupler curve with a
Stephenson six-bar curve. Dhingra et al. (1999) give more
general procedures for solving planar mechanisms and re-
moving extraneous roots. These principles are illustrated
by solving a ten-link input/output problem, equivalent to
solving a nine-link structure. The principles are presented
as a framework within which one carries out the analysis of
any specific mechanism by hand.

An alternative approach is to formulate the problem as
a system of polynomial equations and then apply general
algorithms for computing a Gröbner basis. Lösch (1995)
advocates a two-phase approach: first, a basis is computed
over a finite coefficient field, and then, the critical path
through algorithm is retraced using multiple-precision float-
ing point arithmetic. This is shown to be effective for treat-
ing two nine-link planar structures and one eleven-link pla-
nar structure. Dhingra et al. (1998) follow the computation
of a Gröbner basis with a solution based on a Sylvester-
type determinant. The Gröbner basis methods use sym-
bolic computation extensively, and although in theory the
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algorithms always terminate, in practice the memory space
and computational time required can be hard to predict.
In contrast to the Gröbner methods, the elimination al-

gorithms by Wampler and by Nielsen and Roth are specifi-
cally formulated for the class of problems at hand. The only
symbolic manipulation capability needed is the multiplica-
tion of monomials, which amounts to adding exponents, so
the methods are easy to code without need of a symbolic
computation package. The steps of the elimination are ex-
plicitly laid out, so that upper bounds on the space and
time required are clear.
As an alternative to elimination, there are many numer-

ical approaches to solving planar mechanisms. These range
from using Newton’s method to seek a solution near an ini-
tial guess, to more sophisticated approaches that find all
solutions. Among the latter, polynomial continuation has
proven very effective. Examples of its application to planar
mechanisms can be found in Wampler (1996) and Waldron
and Sreenivasen (1996). Shen, Ting and Yang (2000) show
that among the 33 basic planar structures having four or
fewer loops, 29 can be reduced to one-dimensional numerical
searches. A full listing of the variety of numerical methods
is beyond the scope of this paper.
The method described in this paper uses the Dixon de-

terminant, as did Nielsen and Roth, but applies the tech-
nique to equations formulated by Wampler in the complex
plane. By combining features of both predecessors, we ob-
tain the simplest form yet for the resultant. To establish
the proper context of the new method, we briefly outline
each of the predecessors. Then we proceed to describe the
new method, show its properties, and verify its application
to an eight-link mechanism.

2 FORMULATION OF THE LOOP EQUATIONS

The starting point for both predecessors (Wampler
1999, Nielsen and Roth 1999) is to reference the rotation
angles of all links to a fixed, ground coordinate system. The
basic equations are obtained by setting the sum of the vec-
tors around each independent loop of the mechanism equal
to zero. Wampler formulates these vectors in the complex
plane, so that denoting the angle of link j as Θj , one has �
loop equations of the form

ck0 +
2�∑
j=1

ckje
iΘj = 0, k = 1, . . . , �. (1)

Here, i is the imaginary unit
√−1, the ckj are complex num-

bers describing the shapes of the links, and link 0 is assumed
to be the fixed link. We have assumed that the input an-

gle is given and incorporated into the leading constants ck0,
leaving only the unknown angles in the summation.
The formulation used by Nielsen and Roth can be ob-

tained by taking the real and imaginary parts of Eqs. (1),
thus obtaining two equations for each loop. These are linear
in the sine and cosine of the angles and have real coefficients:

αk +

2�∑
j=1

βkj cosΘj +

2�∑
j=1

γkj sinΘj = 0, k = 1, . . . , 2�,

(2)
Here, αk, βkj and γkj are real quantities that depend only
on the shape of the links. We call Eqs. (2) a Cartesian for-
mulation of the problem, because the real and imaginary
parts correspond to the X and Y Cartesian coordinate di-
rections, respectively. In contrast, Wampler adopts what
may be called an isotropic formulation, in which one intro-
duces the variables

θj = e
iΘj , j = 1, . . . , 2�, (3)

so that the loop equations and their complex conjugates
may be written as

ck0 +
∑2�
j=1 ckjθj = 0,

c∗k0 +
∑2�
j=1 c

∗
kjθ
−1
j = 0,

k = 1, . . . , �. (4)

2.1 Example: Double Butterfly Linkage

To facilitate direct comparison to previous work, we
consider the same example as Nielsen and Roth (1999):
a double butterfly linkage. This type of mechanism was
studied earlier by Waldron and Sreenivasen (1996), using
continuation methods. As shown in Fig. 1, the linkage has
three independent loops. We may choose to write each loop-
closure equation by leaving ground via link 7 and returning
via paths that traverse links 4, 5, and 3, respectively, to get

f1 : a7θ7 + b2e
iγ2θ2 − a4θ4 − a6θ6 + a0e−iγ0 = 0

f2 : a7θ7 + a2θ2 + a1θ1 − a5θ5 + b0 = 0
f3 : a7θ7 + a2θ2 + b1e

iγ1θ1 − a3θ3 − b6eiγ6θ6 + a0e−iγ0 = 0

For each of these, there is a corresponding conjugate
loop equation as follows.

f∗1 : a7θ
−1
7 + b2e

−iγ2θ−12 − a4θ−14 − a6θ−16 + a0eiγ0 = 0
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Figure 1. Double-butterfly mechanism

f∗2 : a7θ
−1
7 + a2θ

−1
2 + a1θ

−1
1 − a5θ−15 + b0 = 0

f∗3 : a7θ
−1
7 + a2θ

−1
2 + b1e

−iγ1θ−11 − a3θ−13
−b6e−iγ6θ−16 + a0eiγ0 = 0

3 REVIEW OF RELATED METHODS

To set the current work in proper context, we briefly
review the two previously-published methods that are most
closely related.

3.1 Wampler’s Sylvester-type Eliminant

The crux of a Sylvester-type elimination procedure is
to generate auxiliary equations by multiplying the original
equations by various monomials. The goal is to make the to-
tal number of equations equal to the total number of mono-
mials appearing in the equations. Wampler (1999) provides
a simple prescription to meet this criterion. The first step
is to use the linear Eqs. (4) and the identities θjθ

−1
j = 1,

j = �+ 1, . . . , 2�, to obtain � equations wherein the θj and
θ−1j , j = 1, . . . , �, appear bilinearly. One variable, say θ�, is
suppressed (considered to be part of the coefficients of the
equations). Then, each equation is multiplied by certain
monomials in θj to get (�+1)

(
2�−1
�

)
sparse equations in the

same number of monomials. This yields a system that can

be written in matrix form as

Qm = (Q1 +Q2θ�)m = 0. (5)

where Q1 and Q2 are square with sparse complex entries and
m is a column vector of monomials. The entries in Q are
just the coefficients of the bilinear equations redistributed
according to the result of multiplication by a monomial.
Although the initial size of these matrices is large, at most(
2�
�

)
columns of Q2 are nonzero, so sparse linear factoriza-

tion techniques can be used to reduce the problem to this
smaller size. Then, the solutions for θ� are found using
standard routines for the generalized eigenvalue problem,
while all other joint values can be found in the correspond-
ing eigenvectors. Since the whole procedure comes down to
distributing the coefficients in a certain pattern in a sparse
matrix followed by the application of standard linear alge-
bra routines, the method is very easy to program.
The main deficiency of this method is that, for all but

the simplest mechanisms, it introduces some extraneous
roots. These are easily detected numerically, since the ex-
traneous roots have one or more of the θj equal to zero.
However, it would be preferable not to include such roots,
both to keep the eigenvalue problem smaller and to provide
the actual resultant for the problem, which can be useful in
further analysis. A more minor criticism of the approach
is that it uses complex numbers throughout, which are not
supported in some computer languages.

3.2 Nielsen and Roth’s Dixon Determinant Method

The Dixon determinant is a method of finding the elim-
inant of a system of polynomial equations. (A description of
the general approach appears in the next section.) Nielsen
and Roth (1999) adapt this method in an ingenious way to
handle their initial equations, which are trigonometric, not
polynomial, being linear sine-cosine equations in the angles
Θ1, . . . ,Θ2�. Nonetheless, through a series of trigonometric
manipulations, they derive an equation of the form

(A cos Θ2� + B sinΘ2� + C)m = 0, (6)

where A,B, C are square constant matrices and m is col-
umn of sines and cosines involving sums and differences of
the half-angles of Θ1, . . . ,Θ2�−1. The next step in the solu-
tion method is to use tangent-of-the-half-angle formulas to
rewrite Eq. (6) as a polynomial function of t = tan(Θ2�/2),
whereupon the solutions to the problem can be found using
generalized eigenvalue routines or by expanding the deter-
minant as a single polynomial. Unfortunately, the tangent-
half-angle substitution doubles the degree of the equations,
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and the solution set includes multiple extraneous factors of
t = ±i.
It can be seen that Nielsen and Roth’s procedure gener-

ates a matrix of size at most 22�−1 and hence the eigenvalue
problem is size 22�. This size is larger than the size of

(
2�
�

)
obtained by Wampler’s Sylvester-type eliminant. However,
the bound on the size for Nielsen/Roth is loose: the size
obtained in actual examples is smaller due to sparsity in
the sine-cosine equations.
If matrices A,B, C in Eq.(6) were general, there would

be no roots of the special type t = ±i, hence there must be
some hidden internal structure to the matrices. A feature
of the procedure developed below is that all such structure
is clearly revealed, and as a consequence, the size of the
eigenvalue problem is kept to a minimum.

4 THE DIXON DETERMINANT

The basic technique of both the current paper and
the method of Nielsen and Roth is the Dixon determinant
(Dixon 1909), which is formulated as follows. GivenN poly-
nomials, f1, . . . , fN in N − 1 variables θ1 , . . . , θN−1, one in-
troduces new variables α1, . . . , αN−1 and forms the determi-
nant

∆ =

∣∣∣∣∣∣∣

f1(θ1, θ2, . . . , θN−1) · · · fN (θ1, θ2, . . . , θN−1)
f1(α1, θ2, . . . , θN−1) · · · fN (α1, θ2, . . . , θN−1)

· · · · · ·
f1(α1, α2, . . . , αN−1) · · · fN (α1, α2, . . . , αN−1)

∣∣∣∣∣∣∣
.

(7)
In the ith row of this equation, variables θ1, . . . , θi−1 are
replaced by α1, . . . , αi−1. If for any i we let θi = αi, then
row i and row i+1 will be identical and so the determinant
is zero. Cancelling out such factors, one obtains the Dixon
polynomial

δ(θ1 , . . . , θN−1, α1, . . . , αN−1) = ∆/
N−1∏
i=1

(θi − αi). (8)

When this determinant is expanded and like terms collected,
it can be put into the form δ = aW t, where a is a row vec-
tor of monomials in the αi variables, t is a column vector
of monomials in the variables θi, and W is a function of
the coefficients of f1, . . . , fN . It is clear that for a common
solution of the original equations, the first row of the de-
terminant is zero, so δ must also be zero. Moreover, this
will be true for arbitrary values of the auxiliary variables αi.
Consequently, solutions must satisfy the matrix equation

W t = 0. (9)

It happens that W is square, so a necessary condition that
f1, . . . , fN have a common root is det(W ) = 0.

Notice that the procedure as just described has one
more equation fi than unknown θi. This does not preclude
the possibility that the coefficients of the polynomials fi
might depend on an additional variable θN , which will then
appear in the eliminant matrix. This is the method Dixon
developed for solving polynomial equations.

5 THE NEW METHOD

We proceed by applying Dixon’s method to Eqs (4),
formulated in the complex plane. This can be done in a
straightforward manner, avoiding the complicated trigono-
metric maneuvers that are at the heart of the Nielsen/Roth
method. The result is an eliminant for the problem in sim-
ple form.

5.1 Forming the determinant

Without loss of generality, we may renumber the links
so that the output is the final link, 2�. We suppress the
associated rotational variable, which for notational conve-
nience we rename as x = θ2�. Then, following Eq. (7), we
form the Dixon determinant ∆, placing the first loop equa-
tion and its conjugate in the first two columns, and likewise,
forming successive pairs of columns from the remaining loop
equations. The determinant ∆ is unchanged if we subtract
each row from the one above it, that is, replace each row
i, for i = 1, . . . , 2�− 1, with row i minus row i+ 1. After
this modification, the kth loop generates a pair of columns
in the Dixon determinant as




ck1(θ1 − α1) c∗k1(θ
−1
1 − α−11 )

ck2(θ2 − α2) c∗k2(θ
−1
2 − α−12 )

...
...

ck,2�−1(θ2�−1 − α2�−1) c∗k,2�−1(θ
−1
2�−1 − θ−12�−1)

ck0 + ck,2�x+
∑2�−1
j=1 ckjαj c∗k0 + c

∗
k,2�x

−1 +
∑2�−1
j=1 c

∗
kjα

−1
j




(10)
There are � such pairs of columns in the 2�× 2� matrix.
This determinant contains roots of the form θj = αj,

which must be removed. This could be done either by fac-
toring out (θj−αj) or (θ−1j −α−1j ). Both accomplish exactly
the same thing, but the latter makes the writing a little
simpler, so we choose it. Recall that rescaling a row of a
matrix rescales the determinant by the same factor. Noting
that (t− a) = −ta(t−1 − a−1), we rescale row j by dividing
through by (θ−1j −α−1j ) to get for loop k the pair of columns
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(V2k−1 V2k ) equal to




−ck1θ1α1 c∗k1
−ck2θ2α2 c∗k2
...

...
−ck,2�−1θ2�−1α2�−1 c∗k,2�−1

ck0 + ck,2�x+
∑2�−1
j=1 ckjαj c∗k0 + c

∗
k,2�x

−1 +
∑2�−1
j=1 c

∗
kjα

−1
j




(11)
All of these columns may be gathered into one 2�×2�matrix
V = (V1 · · · V2� ), whereupon the Dixon polynomial can
be written as

δ = det(V ). (12)

5.2 Expanding the determinant

The next step is to expand the Dixon polynomial and
collect terms. The determinant of a n×nmatrix is a sum of
terms, each a product of n elements taken one from each row
and column, with the appropriate sign attached. From this,
it can be seen that the monomials that appear in t of Eq.(9)
have either degree � − 1 or �, since by Eqs.(11,12) each of
the odd columns in V must contribute a factor of θi (some
i), unless its bottom element is chosen. But the bottom
element can be chosen from at most one column. Moreover,
the θi’s in such a monomial must all be distinct, since θk
only appears in row k. A similar statement holds for the
monomials in the αi, which is most easily seen by rewriting
δ, starting by subtracting each row from its successor in ∆.
This results in columns similar to Eq.(11) with the roles of
θi and αi interchanged.

It is beneficial to organize the monomials in a certain
way. First, find all the combinations of choosing �− 1 dis-
tinct variables from the set {θ1, . . . , θ2�−1}. The number of
such monomials is, by definition, the binomial coefficient(
2�−1
�−1
)
. Order these in any arbitrary way in a column vector

t1. For each monomial in t1, we may say that its comple-
ment is a monomial of degree �, given by choosing the com-
plementary set of variables. For example consider the case
of a 3-loop mechanism, so that, disregarding the suppressed
variable x = θ6, the variables in question are θ1, . . . , θ5.
Then, for one of the monomials in t1, say θ2θ5, the com-
plementary monomial in t2 is θ1θ3θ4. We may define row
vectors a1 and a2 in a similar fashion, such that the mono-
mial obtained by replacing each θi with αi is in the same
location. The abbreviated notations t = ( tT1 tT2 )

T and
a = (a1 a2 ) are useful. With these definitions, we arrive
at the main result, as follows.

Main Result. The Dixon polynomial for Eqs.(4) may
be written as

δ = aW t

= (a1 a2 )

(
D1x+D2 AT

A s(D∗1x
−1 +D∗2)

)(
t1
t2

)
= 0,

(13)

where s = (−1)�−1, D1 and D2 are diagonal and the ele-
ments of A obey the relation aij = sa

∗
ji. Moreover, each

column of A contains at most � nonzero elements.
The sparsity of W can be seen from the row-expansion

algorithm for computing a determinant. Recall that the
determinant of an n× n matrix V can be written as

det(V ) =

n∑
i=1

(−1)r+ivri det(Vri), (14)

where vri is the element in the rth row and ith column of V ,
and Vri is V with the rth row and ith column struck out. In
our particular case, by selecting r = n = 2� as the bottom
row, det(Vni) is a sum of monomials in which only factors of
the form αjθj appear, containing �− 1 such factors when i
is odd and � such factors when i is even. Since vni is a sum
of terms, we must consider what happens when det(Vni) is
multiplied by each of these. For i odd, each term in vni is a
coefficient times one of the following: {1, x, α1, . . . , α2�−1}.
The factors x and 1 place a contribution on the diagonal in
D1 and D2, respectively. The factors in αk push the contri-
bution down the same column into the lower-left sub-matrix
A. But only the αk that do not appear in det(Vni) can con-
tribute, as argued in the first paragraph of this section, so
only � elements in the column of A can be nonzero. Simi-
larly, even values of i give entries in the right-hand blocks of
W . Since the coefficients in the even columns of V are the
conjugates of those in the odd columns, entries in the right-
hand blocks of W are conjugates of those on the left, with
appropriate adjustment of the sign. The symmetry within
A is due to the fact that each coefficient cki appears twice
in column i: once in row i and once in the bottom row. A
rigorous analysis is tedious, so we opt instead to illustrate
the phenomenon by an example in Appendix A.
The row-expansion algorithm just discussed can be im-

plemented directly as a computational tool. It is sufficient
to expand only the odd elements along the bottom row to
compute the left-hand side of W . The right-hand side is
then easily derived by symmetry, thus saving half the work.
The work might be reduced even further if the symmetry
within A were used to advantage, although an easy method
to do so is not immediately apparent.
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If any column in δ is zero, we may of course omit it.
Because of the symmetry relations, if the column is in the
left-hand side of W , then there is a corresponding zero col-
umn in the right-hand side. Moreover, there must also be
corresponding rows that are zero. When these are all omit-
ted, the matrix is still square with its symmetries intact.
Consequently, although the size of the matrix is at most(
2�
�

)
, it is often some multiple of two less than this number.
A computational alternative to row expansion of the

determinant is to evaluate the elements of W by fitting.
That is, for sample numerical values of θ1, . . . , θ2� and
α1, . . . , α2�−1, the value of δ can be computed from Eq.(12).
On the other hand, Eq.(13) shows that δ is a linear function
of the elements in D1, D2, and A. So after collecting enough
sample values of δ, these elements can be found by solution
of a set of linear equations. At each sample, V is just a
matrix of numerical values, so its determinant is efficiently
evaluated by a triangular decomposition of V , rather than
by row expansion. The minimal number of samples needed
is the number of distinct non-zero elements D1, D2, and
A, so the sparsity and symmetries of these matrices greatly
reduce the amount of computation needed.

5.3 Solving for the output variable

Since Eq.(13) must hold for arbitrary values of
α1, . . . , α2�−1, we have the matrix equation

W t =

(
D1x+D2 AT

A s(D∗1x
−1 +D∗2)

)(
t1
t2

)
= 0. (15)

This can be converted to a standard generalized eigenvalue
problem by multiplying the lower block of equations by x
to get

[(
D1 0
A sD∗2

)
x+

(
D2 AT

0 sD∗1

)](
t1
t2

)
= 0. (16)

Note that the two matrices in the eigenvalue problem are
triangular, so that the rank is the number of non-zero ele-
ments on the diagonal. Considering the matrix which mul-
tiplies x, one sees that for each zero element on the diagonal
of D1 or D

∗
2 , there is an eigenvalue of x at infinity, which is

of no interest. The same zeros will show up in the second
matrix and lead to trivial eigenvalues of x = 0, also not of
interest. Accordingly, the number of finite, nonzero eigen-
values decreases by two for each such zero element on the
diagonal. In such cases, the size of the eigenvalue problem
can be reduced by linear methods.
A consequence of the form of the equations is that if x

is a root, then y = 1/x∗ is also a root. This is easily seen

by writing the conjugate of each equation in Eq.(15). For
roots of unit magnitude, xx∗ = 1, this gives y = x. These
are the “real” roots of the equation, since we are looking for
unit-magnitude rotations. All other roots appear in pairs.
These pairs are the equivalent of complex-conjugate root
pairs that appear in equations with real coefficients.
Instead of solving the generalized eigenvalue problem,

one may set the determinant of W to zero. Although this
is not a wise choice numerically, it does give the resultant
of the problem in the form

kdx
d+ kd−1xd−1 + · · ·+ k1x+ k0 +

k∗1x
−1 + · · ·+ k∗d−1x−d+1 + k∗dx−d = 0, (17)

where 2d is the number of finite, non-zero roots and k0 is
real.

5.4 Backsolving

If the output variable is obtained using the general-
ized eigenvalue approach, the remaining rotations are found
easily from the eigenvectors. The procedure is most sim-
ply described with an example. Suppose the mechanism in
question has three loops. Then, one of the monomials in
t1 is θ1θ2 and one of the monomials in t2 is θ1θ2θ3. Since
eigenvectors are only defined up to scale, the numerical rou-
tine returns elements µθ1θ2 and µθ1θ2θ3, for some unknown
scaling factor µ. So, one finds the value of θ3 by division:
θ3 = (µθ1θ2θ3)/(µθ1θ2). Solutions for all of the variables
can be found in the same manner.

5.5 Sliding Joints

In the formulation of Wampler (1999), if a loop of a
mechanism includes a sliding joint, the corresponding loop
equation includes a term of the form siθj , where si is the
sliding distance (a real number) of link i and θj is the ro-
tation of the prior link j. The conjugate loop equation
contains a corresponding term siθ

−1
j , because conjugation

of a real number does not alter it. Because both si and θj
still appear linearly, the factors (θj − αj) and (si − αi) are
readily removed from the Dixon determinant. Accordingly,
the methodology proceeds in much the same way as for the
case of all rotational joints, although the exact form of δ
will vary from that given in Eq.(13).

5.6 Relative Angles

We have used a formulation in terms of absolute angles.
One could, however, develop a similar procedure using rela-
tive angles. For example, suppose that in Fig.1, the rotation
of link 1 is measured relative to link 2, so that the absolute
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rotation of the link is Θ1 + Θ2. Then, a monomial of the
form θ1θ2 would appear in the loop equations instead of θ1.
Similar to the case of sliding joints, the individual variables,
θ1 and θ2, still appear linearly, so the application of Dixon’s
method is again straightforward.

5.7 Example Solution

The double-butterfly mechanism of Fig. 1 will be used
as an example of application of the foregoing method. In
particular, assume that θ7 is the input and x = θ6 is the out-
put. Since the mechanism has three loops, at most

(
5
2

)
= 10

monomials appear in t1, being all the monomials formed by
choosing two distinct variables from {θ1, . . . , θ5}. However,
since not every variable appears in every loop equation, one
of these monomials, namely θ2θ4, does not appear in δ. By
the same token, its complement θ1θ3θ5 does not appear in
t2. Thus, the size of matrix W in Eq.(13) is 18× 18. More-
over, the element of D1 which multiplies θ3θ4 is zero. This
same zero appears again on the diagonal in D∗1. From these
observations, it is clear that the input/output problem with
θ6 as output has 16 nonzero, finite solutions. The combina-
torics involved are simple enough to carry out by hand.

When the method is carried out on a numerical exam-
ple, the existence of zero elements on the diagonal can be
used to reduce the eigenvalue problem to size 16× 16. But
the efficiency to be gained by this is minor, so we proceed
to solve the problem as a generalized eigenvalue problem
of size 18 × 18. We have tested the method on the same
example used by Nielsen and Roth (1999), namely

a0 = 7.0 b0 = 13.0 γ0 = 36.87
◦

a1 = 7.0 b1 = 6.0 γ1 = 22.62
◦

a2 = 5.0 b2 = 3.0 γ2 = 53.13
◦

a3 = 7.0 a4 = 9.0 a5 = 12.0
a6 = 3.0 b6 = 2.0 γg = 36.87

◦

a7 = 11.0 Θ7 = 116.2
◦

(18)

The general method has been implemented in Matlab,
which uses double-precision arithmetic. The generalized
eigenvalue problem is solved using the eig command. When
applied to this example, the two expected degenerate roots
are reported with magnitudes 1.017e+32 and 1.002e-16,
which are clearly distinguishable from the nondegenerate
roots. The 16 nondegenerate roots are reported in Table 1,
where the output angle Θ6 is computed, in radians, from
the rotation variable θ6 as Θ6 = −i log θ6. Four of the roots
are real. All these numerical results are in agreement with
Nielsen and Roth.

A direct comparison shows that for this problem Nielsen
and Roth’s method leads to an eigenvalue problem of size

θ6 |θ6| Θ6 θ6 |θ6 | Θ6

-6.657,12.555i 14.211 2.058,-2.654i -0.995,-0.100i 1.000 -3.041,0.000i

-8.083,-7.094i 10.755 -2.421,-2.375i -0.773,-0.634i 1.000 -2.455,0.000i

2.100, -1.599i 2.640 -0.651,-0.971i -0.646, 0.192i 0.674 2.852,0.394i

0.977, 1.497i 1.788 0.992,-0.581i 0.306, 0.468i 0.559 0.992,0.581i

-0.583,-1.493i 1.603 -1.943,-0.472i -0.227,-0.581i 0.624 -1.943,0.472i

-1.422, 0.423i 1.484 2.852,-0.394i 0.301,-0.229i 0.379 -0.651,0.971i

0.998, -0.067i 1.000 -0.067, 0.000i -0.070,-0.061i 0.093 -2.421,2.375i

0.553, -0.833i 1.000 -0.985, 0.000i -0.033, 0.062i 0.070 2.058,2.654i

Table 1. Solutions to the example problem

36, Wampler’s Sylvester-type eliminant leads to size 20 (re-
ducible to 18 by linear factorization methods), and the cur-
rent method leads to size 18 (reducible to 16 by linear fac-
torization). All give good numerical results on this problem.

6 TRACING CURVES

As noted in previous papers (Wampler 1996,1999),
there is a close relationship between input/output problems
and the curves traced out by points affixed to a mechanism.
This relationship is even more strikingly revealed when the
method of this paper is applied. Let p be the position of the
tracing point. Then, in addition to the loop equations for
the mechanism, we may write one more equation expressing
p in terms of a chain of links from ground up to the tracing
point:

b0 +

2�+1∑
i=1

biθi + p = 0, (19)

where as in the case of loop equations, the coefficients
b0, . . . , b2�+1 are known constants describing the shapes of
the links. There is a corresponding conjugate equation

b∗0 +
2�+1∑
i=1

b∗i θ
−1
i + p

∗ = 0. (20)

Now, the method proceeds exactly as before with both p
and p∗ suppressed. The size of the problem is the same as
for an input/output mechanism having �+1 loops, and the
only change is that p and p∗ appear in place of x and x−1,
respectively. The Dixon polynomial thus becomes

δ = (a1 a2 )

(
D1p+D2 AT

A s(D∗1p∗ +D∗2)

)(
t1
t2

)
= 0,

(21)
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Figure 2. Input/output and tracing curve equivalence

where the structure of the sub-matrices is exactly as given
in Eq.(13). The degree and circularity of the tracing curve
are readily gleaned from the number of nonzero elements on
the diagonal of D1.

The equivalence is illustrated most clearly by consider-
ing a particular example. Figure 2a shows an input/output
problem for a Stephenson six-bar mechanism, scaled so that
the output link is unit length and translated to place the
output joint at the origin. Figure 2b shows a related four-
bar linkage whose tracing point is on the coupler link. We
see that the input/output problem is exactly the same as de-
termining points where the coupler curve intersects the unit
circle centered at the origin, that is, points where pp∗ = 1.
This is equivalent to p∗ = p−1, which when substituted into
Eq.(21) gives exactly Eq.(13).

7 CONCLUSIONS

In this paper, a solution procedure is given for solv-
ing input/output problems for planar linkages having rev-
olute or sliding joints. Although inspired by the method
of Nielsen and Roth, also based on the Dixon determinant,
the method presented in this paper is a significant improve-
ment. The difference in the methods is the use here of loop
equations formulated in the complex-plane, which are poly-
nomial, instead of equations in Cartesian coordinates, which
are trigonometric. This complex-plane approach gives a re-
sultant matrix that is both sparse and highly structured.
The derivation of the matrix is simple and avoids any of the
extensive trigonometric manipulations required in a Carte-
sian approach. When numerical solutions are sought, the
complex-plane formulation leads to an eigenvalue problem
that is half of the size as that obtained in Cartesian coor-
dinates.

The method also applies to the derivation of the equa-
tion for the curve traced out by a point affixed to a planar
linkage. The connection between input/output problems
and tracing curves is simple and fundamental. In spite of
this, outside of Wampler (1996), this relation has seemingly
gone unnoticed.
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A SYMMETRY EXAMPLE

The symmetries spelled out in Eq.(13) are most easily
seen by an example. Consider a general 2-loop mechanism
having loop equations

ci0 + ci1θ1 + ci2θ2 + ci3θ3 + ci4x = 0, i = 1, 2, (22)

where x = θ4 is the variable which we will suppress.
Then the Dixon polynomial δ is expressed in terms of
the monomials t1 = {θ1, θ2, θ3} and their complements
t2 = {θ2θ3, θ1θ3, θ1θ2}, and the corresponding monomials
a1 = {α1, α2, α3} and a2 = {α2α3, α1α3, α1α2}. For pur-
poses of illustration, it will be sufficient to show how spe-
cific terms within this 2-loop example display the claimed
symmetries. Note that for � = 2, the sign factor in Eq.(13)
is s = (−1)�−1 = −1.
There are two types of symmetry: terms that appear

in the diagonal matrices D1 or D2 and terms that appear
in the off-diagonal matrix A. Let us first consider terms of
the diagonal type. Two such terms are

∣∣∣∣∣∣∣
0 c∗11 0 0
0 0 −c22α2θ2 0
0 0 0 c∗23
c10 0 0 0

∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣
−c11α1θ1 0 0 0
0 0 0 c∗22
0 0 −c23α3θ3 0
0 c∗10 0 0

∣∣∣∣∣∣∣
.

With the definition d = c10c
∗
11c22c

∗
23, these two terms evalu-

ate to dα2θ2 and −d∗(α1α3)(θ1θ3), respectively. These ap-
pear in the 2-2 and 5-5 positions in the resultant matrixW ,
and the latter is the negative conjugate of the former, as
expected. All other terms on the diagonal follow a similar
pattern.

Terms entering the off-diagonal matrix A appear in sets
of four, illustrated by the following:∣∣∣∣∣∣

0 c∗11 0 0
0 0 −c22α2θ2 0

0 0 0 c∗23
c13α3 0 0 0

∣∣∣∣∣∣ ,
∣∣∣∣∣∣

0 c∗11 0 0
0 0 −c22α2θ2 0

−c13α3θ3 0 0 0
0 0 0 c∗23α

−1
3

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
−c11α1θ1 0 0 0
0 0 0 c∗22
0 c∗13 0 0
0 0 c23α3 0

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
−c11α1θ1 0 0 0
0 0 0 c∗22
0 0 −c23α3θ3 0
0 c∗13α

−1
3 0 0

∣∣∣∣∣∣ .

With a = c13c
∗
11c22c

∗
23, these evaluate to a(α2α3)θ2,

aα2(θ2θ3), −a∗(α1α3)θ1, and −a∗α1(θ1θ3), respectively. The

contributions of these four terms and the two terms de-
scribed in the previous paragraph appear in the following
positions within W




θ1 θ2 θ3 θ2θ3 θ1θ3 θ1θ2

α1 · · · · −a∗ ·
α2 · d · a · ·
α3 · · · · · ·
α2α3 · a · · · ·
α1α3 −a∗ · · · −d∗ ·
α1α2 · · · · · ·



. (23)

These are seen to obey the expected symmetry relations.
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