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Abstract

The focal points of a curve traced by a planar linkage capture essential information
about the curve. In a previous paper, we showed how to determine the singular
foci of planar linkages from an expression for the tracing curve derived by use of
the Dixon determinant. This paper gives an alternative approach to finding the
singular foci, one that lends itself to simple geometric interpretations and does not
require a derivation of the tracing curve equation. In many cases, singular foci can be
determined from a simple graphical construction. The method is demonstrated for
one inversion each of the Stephenson-3 six-bar and the Watt-1 six-bar. A by-product
of the study is a technique for illustrating the non-real points on a tracing curve.
Knowledge of the singular foci will be helpful in further study of path cognates.

Key words: Focal points, singular focus, Foci: singular, Linkages: planar, isotropic
coordinates

1 Introduction

The focal triangle of a planar four-bar is well-known in kinematics: two ver-
tices are the fixed pivots of the four-bar and the third vertex is obtained by
noting that the focal triangle is similar to the coupler triangle of the linkage.
These three points are the singular foci of the four-bar coupler curve. They
play a central role in the determination of path cognates, which are distinct
mechanisms that produce the same curve. Roberts’ Theorem [11] proved that
every four-bar curve is triply generated, and as shown by Cayley [3], the three
Roberts cognates obtain from choosing any two of the three singular foci as
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the fixed pivots. The uniqueness of Roberts cognates is demonstrated in [12].
(See also [2, pp. 339-341] and [6, pp. 150–155] for more on Roberts cognates.)

It is natural to wonder how these results might generalize to more complicated
planar linkages. It is known, for example, that six-bar linkages have fully
circular tracing curves (often called coupler curves) of degree either 14, 16,
or 18, depending on the type of six-bar [13]. This implies that they have either
7, 8, or 9 singular foci. Is there a simple geometric relation that determines
the singular foci of a six-bar, something analogous to the focal triangle of the
four-bar? How do the singular foci relate to path cognates for six-bars? This
paper gives a method for answering the first question and partially addresses
the second. The method applies not just to six-bar linkages, but to any planar
linkage.

An algorithm for computing the singular foci of any planar linkage having all
rotational joints, with extensibility to prismatic joints as well, is given in [17].
That approach extracts the singular foci from an expression for the tracing
curve derived in [16] via the Dixon determinant. This method can be conve-
niently automated to handle any linkage, but it does not give much insight
into the geometry of the foci. One can easily use a numerical implementation
of that approach to observe, for example, that the fixed pivots of a mecha-
nism are often singular foci. One can also write out the conditions (preferably
with use of computer algebra) to get symbolic expressions. The method of the
current paper yields a better understanding of the foci in terms of geometric
diagrams and often leads to simple symbolic expressions. The new geometric
picture also explains why some singular foci appear with multiplicity greater
than one. The drawback of the geometric approach is that it is not easily
automated, so that we use it on a case-by-case basis.

The paper proceeds as follows. First, in §2 we review how singular foci relate
to the behavior of a planar curve at infinity. In particular, as shown in [17],
it is convenient to formulate equations in isotropic coordinates and to use a
two-homogenization of the tracing curve. Before presenting the new method,
we first discuss in §3 a technique for drawing a linkage in a “non-real” con-
figuration, including drawing it as the tracing point reaches infinity. In §4, we
develop the new method for finding singular foci and apply it to a Stephenson-3
six-bar and a Watt-1 six-bar. We conclude with two brief sections: one dis-
cusses how singular foci relate to the problem of finding all path cognates for
a given linkage (§5), and one identifies a class of mechanisms, called “coupler
mechanisms,” for which the theory is especially easy to apply (§6).
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2 Background

Generally speaking, the curves generated by planar linkages have special prop-
erties not expected of a general algebraic curve of the same degree. A notable
example is the four-bar coupler curve, which is a sixth-degree curve. A general
sextic in the plane has 28 terms, while a four-bar with a coupler triangle has
only nine link parameters. Clearly a four-bar coupler curve is not a general
sextic. Most of the difference is due to the fact that the curve is tricircu-
lar, which means that in the usual Cartesian coordinates, the coupler-curve
equation is of the form

a0(x
2 + y2)3 +(a1x + a2y)(x2 + y2)2

+(a3x
2 + a4xy + a5y

2)(x2 + y2) + f(x, y) = 0,
(1)

where a0, . . . , a5 are constant coefficients and f(x, y) is a cubic in x, y. This
equation has in total only 16 constants, which accounts for the bulk of the
difference. 1 It has also been shown that general six-bar curves are also fully
circular [13]: depending on the type of six-bar, they are degree 14, 16, or 18
with circularity 7, 8, or 9. Thus, circularity is a fundamental property of curves
drawn by planar linkages having rotational joints. In the next few paragraphs,
we use the four-bar equation to illustrate concepts that generalize naturally
to any planar algebraic curve.

A circular curve passes through two special points at infinity, called the
isotropic points, denoted I and J . As is readily seen from the sixth-degree
terms in Eq.(1), as x and y grow large, they must be in the ratio x/y = ±i,
where i =

√−1. Or more precisely, we may homogenize Eq.(1) by substituting
(x, y) = (X/W, Y/W ) and clearing denominators to get

a0(X
2 +Y 2)3 + W (a1X + a2Y )(X2 + Y 2)2

+W 2(a3X
2 + a4XY + a5Y

2)(X2 + Y 2) + W 3F (X,Y,W ) = 0,
(2)

where F (X,Y, W ) is the homogenization of f(x, y). Using the bracket notation
[X,Y,W ] to indicate that in homogeneous coordinates only the ratio of the
coordinates matter, we may write the points where the curve hits infinity,
W = 0, as

I := [1,−i, 0] and J := [1, i, 0]. (3)

1 The full accounting is that the curve is also trinodal, meaning it has three double
points, and these nodes must lie on the focal circle [3].
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The four-bar curve passes through each of I and J three times, each time
along a different tangent line. The singular foci of any circular curve are the
points that are common to two such tangents [4]. This is important enough
that we restate it as a formal definition.

Definition 1 A singular focal point 2 of an algebraic curve in the plane is
the intersection of a tangent at isotropic point I with a tangent at isotropic
point J .

It is not immediately clear from this definition why singular foci are of particu-
lar interest nor how we would determine them from the coupler-curve equation.
This all becomes much easier to fathom if we change our expressions from the
Cartesian coordinates (x, y) to isotropic coordinates (p, p̄), where

(p, p̄) = (x + iy, x− iy).

This is, in effect, just a mapping of the Cartesian plane into the complex
(Argand) plane, so that when x and y are real, p is just the corresponding
complex vector, and p̄ is its complex conjugate. Despite the greater familiarity
of Cartesian coordinates, it can be argued that almost all derivations in planar
kinematics are more easily developed in isotropic coordinates. Their use in
kinematics has a long history, see for example [1,5,7,11]. More exposition in
the context of recent work can be found in [14–17].

Since x2 + y2 = pp̄, in isotropic coordinates Eq.(1) becomes

a0p
3p̄3 + (b1p + b̄1p̄)p2p̄2 + (b2p

2 + b3pp̄ + b̄2p̄
2)pp̄ + g(p, p̄) = 0, (4)

where g(p, p̄) is a cubic polynomial. Note that if the coefficients in the Carte-
sian expression are real, then the coefficients on monomials pj p̄k and pkp̄j

are complex conjugates of each other, for example, b1 = (a1 − a2i)/2 and
b̄1 = (a1 + a2i)/2. This complex conjugate relationship between coefficients
holds in general, not just for four-bars.

In isotropic coordinates we have the desirable situation that the circularity of
the curve is completely determined by which monomials appear. The salient
feature of Eq.(4) is that although it is of sixth degree, variables p and p̄
only appear up to degree three; that is, it is a bicubic equation. Defining
the bidegree b as the highest power of p that appears, which is the same as
the highest power of p̄ that appears, and letting d be the total degree of the
equation, we say that the difference c = d− b is the circularity of the curve.

2 Bottema and Roth [2] note that singular foci are also sometimes called special,
principal, or Laguerre foci.
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The behavior at infinity of the curve is not altered by a linear change of
coordinates. Homogenizing Eq.(4) via the substitution (p, p̄) = (P/W, P̄/W ),
one obtains an expression analogous to Eq.(2) as

a0P
3P̄ 3 +W (b1P + b̄1P̄ )P 2P̄ 2

+W 2(b2P
2 + b3PP̄ + b̄2P̄

2)PP̄ + W 3G1(P, P̄ , W ) = 0,
(5)

where G1 is the one-homogenization of g(p, p̄). The curve still hits infinity in
two triple points, which keep their labels I and J , as

I := [1, 0, 0] and J := [0, 1, 0]. (6)

The final step in simplifying the whole picture is to consider a two-homogenization
of the plane. We introduce a separate homogeneous coordinate for p and p̄ by
making the substitutions (p, p̄) = (P/V, P̄ /V̄ ) and clearing denominators. Now
the four-bar coupler curve equation reads

a0P
3P̄ 3 +(b1PV̄ + b̄1P̄ V )P 2P̄ 2

+(b2P
2V̄ 2 + b3PP̄V V̄ + b̄2P̄

2V 2)PP̄ + G2(P, P̄ , V, V̄ ) = 0,
(7)

where G2 is the two-homogenization of g. As discussed in [17], this transfor-
mation blows up isotropic points I and J into the lines at infinity V = 0
and V̄ = 0, respectively. (See also [8, ex.7.22] for a discussion of blowing up
from the perspective of algebraic geometry.) This maneuver restructures the
picture at infinity, so that the former multiple intersections of the coupler
curve with I and J are now separated into (generally) distinct points of in-
tersection with these lines at infinity. More precisely, for each line through
I in the one-homogeneous formulation there is a corresponding point along
the line V = 0 in the two-homogeneous formulation. A similar one-to-one
correspondence holds for lines through J and points on V̄ = 0.

The bottom line is that a complete picture of the behavior of the coupler curve
at infinity is obtained by finding its intersections with the lines V = 0 and
V̄ = 0. But substituting V = 0 into the coupler curve equation means that all
but the terms of top degree in P drop out. Also, since [P, V ] are homogeneous
coordinates, we may set P = 1 when V = 0. The upshot is that we are left with
just a homogeneous cubic equation in P̄ , V̄ . This is just the homogenization
of the leading terms in p of the original equation. We get a similar result from
setting V̄ = 0, but now we are picking out the leading terms in p̄. These
two leading polynomials have coefficients that are complex conjugates of each
other, so the solutions of one are just the complex conjugates of those of the
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other. Hence, we just need to solve one of them to know how the curve hits
infinity.

Since the solutions to these leading polynomials correspond to the tangents
of the coupler curve at the isotropic points, we have the following result con-
cerning singular foci.

Theorem 1 [17]. Let F (P, V, P̄ , V̄ ) be the two homogenization of a polyno-
mial f(p, p̄). The singular focal points of f(p, p̄) = 0 are the points (p, p̄) =
(qJ , q̄I), where qJ is any root of F of the form ([qJ , 1], [1, 0]), and q̄I is any
root of F of the form ([1, 0], [q̄I , 1]). These are just the roots of the leading
polynomials of f(p, p̄).

Finally, we see why the singular foci are of interest. They tell us where the
curve reaches infinity and they depend only on the terms of highest degree.
This is useful in the search for path cognates, because the two cognate mech-
anisms must reach infinity in the same points, and hence they must have the
same singular foci. These points are easier to evaluate than general points of
the curve, because they depend only on the leading terms. Another implica-
tion is that if two curves have a common singular focus, it means they have
points in common on each of the lines V = 0 and V̄ = 0, and thus the number
of finite intersections is reduced by two.

A final remark is necessary to clarify what follows. A four-bar coupler curve
has three points on each of the lines V = 0 and V̄ = 0, so by Thm. 1, there are
nine singular foci. However, we have already noted that the three qI and three
qJ appear as complex conjugates of each other. Thus, the three pairs (qJ , qI)
that match up the complex conjugates are “real” points. These are the ones
that form the focal triangle of the four-bar, and they completely encode all
the focal information. Since we are only interested in real curves, it is always
enough to only consider these real focal points, and so just finding the qI is
sufficient.

This paper is concerned with finding the singular foci of curves traced out by
planar linkages. For any planar linkage with all rotational joints, the singular
foci can be found by applying the Dixon determinant to get the tracing curve
equations, as in [16], and then picking out the leading polynomials [17]. In
this paper, we give a method that skips the first step and directly finds the
singular foci from the loop equations for a mechanism. This has the advantage
of giving simpler expressions and also giving a simpler geometric interpretation
of the singular foci. In fact, we can find many singular foci by drawing simple
diagrams that depend on the shape of the links in the mechanism. But first,
we must work out a method of drawing a linkage at a non-real configuration.
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3 Drawing Non-Real Configurations

By Def.1, the singular foci are determined by how the tracing curve reaches
the isotropic points. These points are not on the real portion of the curve and
they are at infinity, so at first thought, it would not seem possible to draw
the linkage in such a position. This section will reveal a method for drawing
non-real points on the tracing curve, which will subsequently be used to show
the locations of the singular foci.

The tracing curve, C ∈ C2, may be regarded as the projection onto (p, p̄) of
the motion curve, Ĉ ∈ C2N , in the variables (x, p) = (θ1, . . . , θN−1, p) and
their conjugate variables (x̄, p̄) = (θ̄1, . . . , θ̄N−1, p̄). The curve Ĉ shows the
coordinated motion of all the links along the motion, while C is just the motion
of the tracing point. To draw the linkage at a point on C, we must know the
placement of all the links, which is the information in the corresponding point
of Ĉ.

Throughout the article, we denote complex conjugation with an asterix, that
is, c∗ is the complex conjugate of c.

As shown in [14] and used in [15–17], the curve Ĉ is given by n = N/2 primary
loop equations and n conjugate equations, written for k = 1, . . . , n as

ck0 +
N−1∑

i=1

ckiθi + ckNp = 0, (8)

c∗k0 +
N−1∑

i=1

c∗kiθ̄i + c∗kN p̄ = 0. (9)

In addition, the joint variables must satisfy the condition of unit magnitude
rotation, written

θiθ̄i − 1 = 0, i = 1, . . . , N − 1. (10)

(Those unfamiliar with this formulation may understand it by examining the
examples in the next section.) For real points on the curve, θ̄∗i = θi, all i,
which is synonymous with θi having unit magnitude. The non-real points on
the curve are those for which Eqs.(8–10) hold, but θ̄∗i 6= θi, for some i. Then,
θi and θ̄i are stretch-rotations, one of which magnifies link i and the other
reduces link i by a reciprocal factor.

To illustrate the linkage at a non-real point, we draw two sets of loop-closures:
one for the primary loop equations and one for the conjugate loop equations.
An example is shown in Fig.1 for a four-bar linkage. For ease of visualization,
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Real Non-Real

p = p̄
∗

p̄
∗

p

Fig. 1. Real and non-real points on a four-bar coupler curve.

it is helpful to draw the complex-conjugate of the conjugate loop equation,
namely

ck0 +
N−1∑

i=1

ckiθ̄
∗
i + ckN p̄∗ = 0. (11)

For real points, the primary and conjugate loops are identical, so they appear
as one at the left in Fig.1. But for a non-real point, such as illustrated at the
right in Fig.1, one sees that the although link i has the same rotation angle
in both the primary loop and the conjugate loop, it is magnified in one and
demagnified in the other. Even so, the loop remains closed in both. For the
non-real point, we have taken θ1 at the same angle as the real diagram, but
its magnitude is decreased from 1 to 0.7. As the magnitude of θ1 decreases
further, the coupler triangle for the primary loop will settle down onto the
fixed pivots, while in the conjugate loop, the two binary links grow without
bound, taking point p̄∗ to infinity. The next few paragraphs will make this
observation precise.

4 Diagrams of Singular Foci

Now that we can draw the linkage in non-real configurations, it is possible
also to draw it at a singular focus. The singular foci are the locations of the
tracing point p when the conjugate tracing point p̄ is at infinity. Generally,
there is more than one such point.

It is best to begin by writing the equations that describe the singular foci.
By Theorem 1, the singular foci of the tracing curve C are determined by its
two-homogeneous roots at infinity. Thus, one may determine the singular foci
of C as the projections of the roots at infinity of Ĉ. Let g(x, p, x̄, p̄) = 0 denote
the entire system of 2N − 1 equations in 2N variables given by Eqs.(8–10),
and let G(X, P, V, X̄, P̄ , V̄ ) be the two-homogenization of g. Accordingly, we
wish to find the solutions of the system

G(X, P, 1, X̄, 1, 0) = 0,
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which when written out is

ck0 +
N−1∑

i=1

ckiΘi + ckNP = 0, k = 1, . . . , n, (12)

N−1∑

i=1

c∗kiΘ̄i + c∗kN = 0, k = 1, . . . , n, (13)

ΘiΘ̄i = 0, i = 1, . . . , N − 1. (14)

This system of equations is simple to solve because Eqs.(12,13) are linear and
Eqs.(14) imply either Θi = 0 or Θ̄i = 0 for all i. Finding all solutions is only a
matter of cycling through the choices of Θi = 0 vs. Θ̄i = 0. Generally, since the
extra variable P appears in Eq.(12) where no corresponding variable appears
in Eq.(13), the solutions have n variables among (Θ1, . . . , ΘN−1) that are zero
and the complementary n− 1 variables among (Θ̄1, . . . , Θ̄N−1) are zero. This
satisfies all of Eqs.(14) and leaves just enough variables to solve the linear
systems Eqs.(12,13). An exception to this rule occurs when the linear systems
are not both full rank; this is related to the appearance of extraneous factors
in the Dixon determinant, as we shall discuss below in a re-examination of the
Watt-1 six-bar.

An appealing feature of this approach is that we may interpret the results as
simple geometric diagrams. The solutions we seek use one half of the links,
including the ground link, to close the primary loop equations, Eq.(12). The
remaining links close the conjugate loop equations, Eq.(13). Normally, these
two sets of equations are coupled together through the unit magnitude condi-
tions, Eq.(10), but at infinity these conditions are replaced by Eq.(14), which
decouples the two subsystems.

In the primary loop closure diagram for Eq.(12), the location of the tracing
point is a singular focus. However, one must not neglect to check the existence
of a solution in the conjugate loop diagram. In that diagram, the ground link
is scaled to zero; that is, all ground pivots move to the origin. Meanwhile,
P̄ = 1; that is, the conjugate tracing point is placed off the origin one unit.

The diagrams for the singular foci are limiting cases of the finite tracing curve
as the scale of some links shrink to zero in the primary loop diagram while their
reciprocals in the conjugate diagram grow infinitely large. We have already
observed the beginning of this process for a four-bar in Fig.1. In the limit, the
conjugate loop diagram may be understood as a picture of the linkage zoomed
out infinitely, so that the finite links shrink to nothing at the origin and only
the links that have been infinitely magnified appear.

Some partitions of the links between the two sets of loops may fail to have
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a0 b0
c0

a1

a2

b3

b2

a5

b4

a4

A0 B0

C0

A

B
C

D

E

O

2

4

Fig. 2. Four-bar (point D) and Stephenson-3 six-bar (point E) path-generating
linkages

solutions. On the primary side, this may happen for example when all Θi

are zero in a loop that includes the (nonzero) ground link. On the conjugate
side, this happens when all Θ̄i are zero on some path between ground and the
tracing point.

The best way to understand these diagrams is to draw them for a few examples.
We begin with the familiar four-bar linkage.

Example 1 Four-bar focal diagrams. Consider the four-bar linkage A0ADBB0,
a sub-mechanism of the six-bar in Fig.2. The focal diagrams are shown in
Fig.3, with the diagrams for the primary loop closure at the left and the di-
agrams for the conjugate loop shown on the right. Unlike in Fig.1, here the
conjugate loop diagram is separated from the primary loop diagram so that it
can be rescaled to finite size. In the main focal diagram, we draw the ground
link and a stretch-rotation of one of the three moving links, scaling the other
two to zero. The connectivity between links remains the same despite some of
them having zero size. In case (a), Θ1 = Θ2 = 0, binary link 1 and the coupler
link 2 are scaled to zero, and the tracing point is at ground pivot A0. In case (b),
Θ3 = Θ2 = 0, and the tracing point is at ground pivot B0. Finally, in case (c),
Θ1 = Θ3 = 0, the coupler triangle is stretch-rotated to bridge the ground piv-
ots, placing the third singular focal point at p = a0 + a2(b0 − a0)/(a2 − b2). In
each case, the conjugate loop diagrams are satisfactory, once again confirming
the classical result that there are three singular foci, and the focal triangle is
similar to the coupler triangle.

The singular foci of a Stephenson-3 mechanism are related to its four-bar sub-
mechanism in a special way. One may see from the following example that a
similar relationship will hold for any linkage formed by adding a tracer dyad
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(a)

b3Θ3

A0 B0

P

Θ1 = Θ2 = 0

a1Θ̄1 a2Θ̄2

b2Θ̄2

O P̄ = 1

A

Θ̄3 = 0

(b)

a1Θ1

A0 B0

P

Θ2 = Θ3 = 0

b3Θ̄3 b2Θ̄2

a2Θ̄2

O P̄ = 1

B

Θ̄1 = 0

(c)

a2Θ2 b2Θ2

A0 B0

P

Θ1 = Θ3 = 0

a1Θ̄1

b3Θ̄3

O P̄ = 1

Θ̄2 = 0

Fig. 3. Focal diagrams for a four-bar: primary loop on left and conjugate loop on
right for each.

to a simpler linkage.

Example 2 Stephenson-3 focal diagrams. Refer again to the Stephenson-3
six-bar linkage shown in Fig.2. This linkage has nine singular foci as dia-
grammed in Fig.4. This time, to save space, the conjugate loop diagrams are
omitted. In the main focal diagram, we draw the ground link and a stretch-
rotation of two of the five moving links, scaling the other three to zero. The
diagrams are arranged in columns, according to whether links 4 and 5 are
scaled to zero. When Θ4 = 0 with Θ5 6= 0, the focal diagrams give singular
foci F1, F2, F3 that are just the singular foci of the four-bar, as in the previous
example, with link 5 closing the loop to ground pivot C0. When Θ4 6= 0 and
Θ5 = 0, one obtains a new focal triangle that is a stretch-rotation about C0 of
the four-bar focal triangle; the stretch-rotation factor is the ratio of two sides
of the tracer link 4. That is,

Fi+3 = c0 + (b4/a4)(c0 − Fi), i = 1, 2, 3. (15)

When both Θ4 = Θ5 = 0 and any one of the other three links is scaled to
zero, the tracing point is at C0, indicating that this ground pivot is a triple
singular focus. The final case of Θ4 6= 0 and Θ5 6= 0 simultaneously is not
possible: it forces Θ1 = Θ2 = Θ3 = 0, and the four-bar loop cannot be closed.
In summary, we have as singular foci the three singular foci of the base four-
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Θ4 = 0, Θ5 6= 0 Θ4 6= 0, Θ5 = 0 Θ4 = Θ5 = 0

F3

2

F2

F1

F6

2

4

F5

4

F4

4

F9

F82

F72

Θ1 = Θ3 = 0

Θ2 = Θ3 = 0

Θ1 = Θ2 = 0

Θ1 = Θ3 = 0

Θ2 = Θ3 = 0

Θ1 = Θ2 = 0

Θ2 = 0

Θ1 = 0

Θ3 = 0

Fig. 4. Focal diagrams for a Stephenson-3 six-bar.

a0 b0

a1

a2

b2

a3

b3

a4

a5 b5

A0 B0

A
B

C

D

E

P

O

2

3

5

Fig. 5. Watt-1 path-generating linkage

bar, three singular foci that are a stretch-rotation of the four-bar focal triangle,
and a triple singular focus at pivot C0.

Significantly, the singular foci of the Stephenson-3 depend only on the ground
pivots and the shape of links 2 and 4. The scale of the links does not matter.

As the final example, we examine the Watt-1 linkage drawn in Fig.5. This
example requires some extra analysis to deal with solution lines at infinity.
This is related to the eigenvalue problem that arises when the method of [17]
is applied to this mechanism.
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Points Lines

F1

Θ1 = Θ2 = Θ5 = 0

3

F2

Θ1 = Θ3 = Θ5 = 0

2

F3

Θ1 = Θ3 = Θ4 = 0

2

5

Primary Conjugate

P

2
3

P̄ = 1
5

Θ4 = Θ5 = 0 Θ̄1 = Θ̄2 = Θ̄3 = 0

Line 1

P
P̄ = 1

2
3

5

Θ2 = Θ3 = 0

Θ4 = Θ5 = 0
Θ̄1 = 0

Line 2

Fig. 6. Solutions at infinity, (P̄ = 1, V̄ = 0), for a Watt-1 six-bar.

Example 3 Watt1 focal diagrams. Consider the Watt six-bar linkage shown
in Fig.5. Denoting p = ~OP , the loop equations are

(a0 − b0) + a1θ1 + a2θ2 + a3θ3 = 0

b2θ2 + b3θ3 + a4θ4 + a5θ5 = 0

b0 − (a3 + b3)θ3 + b5θ5 − p = 0

(16)

This linkage is more difficult to analyze than the Stephenson-3 previously con-
sidered. In the case of the Stephenson-3 linkage, the system of equations (12–
14) had nine solution points, each giving a focal point. In the case of the Watt-1
linkage, we find that the system has three solution points and two solution lines.
These solutions are diagrammed in Fig.6. Expressions for the singular foci are
as follows: F1 = a0+(a0−b0)b3/a3, F2 = b0 and F3 = b0+(a0−b0)b2b5/(a2a5).
Note that singular focus F2 is at the ground pivot B0.

To understand the line solutions, it helps to write out Eqs.(12–14) explicitly
as they apply to this linkage:

(a0 − b0) + a1Θ1 + a2Θ2 + a3Θ3 = 0 (17)

b2Θ2 + b3Θ3 + a4Θ4 + a5Θ5 = 0 (18)

b0 − (a3 + b3)Θ3 + b5Θ5 − P = 0 (19)

a∗1Θ̄1 + a∗2Θ̄2 + a∗3Θ̄3 = 0 (20)

b∗2Θ̄2 + b∗3Θ̄3 + a∗4Θ̄4 + a∗5Θ̄5 = 0 (21)

13



(a3 + b3)
∗Θ̄3 + b∗5Θ̄5 − 1 = 0 (22)

ΘiΘ̄i = 0, i = 1, . . . , 5 (23)

Solution Line 1 in Fig.6 arises because the first conjugate loop equation, Eq.(20),
is satisfied by Θ̄1 = Θ̄2 = Θ̄3 = 0, which allows all three conjugate loop
equations, Eqs.(20–22), to be satisfied with only two conjugate variables, Θ̄4

and Θ̄5, being nonzero. Consequently, in the main loop equations, we have
Θ4 = Θ5 = 0, leaving four variables, {Θ1, Θ2, Θ3, P}, to close the three
main loop equations, Eqs.(17–19). The point P can be placed anywhere in
the plane and still there will be a solution for the remaining variables. How-
ever, we are only interested in the points on Line 1 that are limits of the finite
tracing curve as it approaches infinity. On the finite curve as it approaches
Θ4 = Θ5 = V̄ = 0, we have

(a0 − b0) + a1θ1 + a2θ2 + a3θ3 = 0

b2θ2 + b3θ3 = 0

b0 − (a3 + b3)θ3 − p = 0

(a0 − b0)
∗ + a∗1θ

−1
1 + a∗2θ

−1
2 + a∗3θ

−1
3 = 0.

(24)

One may use the second of these to eliminate θ2 from the rest. Then, multiply-
ing the last equation by θ1θ3 to clear away the negative exponents, one obtains
a quadratic equation. This gives two singular foci, shown in Fig.7. In the con-
jugate loop diagrams on the right of this figure, links 4 and 5 are infinite in
extent. If we zoom out infinitely far, the conjugate diagrams will look just like
the one shown in Fig.6 for Line 1.

Solution Line 2 arises in a complementary fashion to Line 1. This time, the
second main loop equation, Eq.(18), is satisfied by Θ2 = Θ3 = Θ4 = Θ5 = 0,
so that only link 1 is needed to bridge across the two ground pivots. This
leaves four variables, {Θ̄2, Θ̄3, Θ̄4, Θ̄5}, to close only three loops in the conju-
gate equations, Eqs.(20–22), thus giving a one-dimensional solution line. Note
that Eq.(19) gives P = b0, that is, the singular focus remains at the fixed pivot
B0 along the whole solution line. However, just as for Line 1, we need to de-
termine if Line 2 is approached by the finite portion of the tracing curve. The
governing equations in the approach to Θ̄1 = V̄ = 0, P̄ = 1 are

a∗2θ̄2 + a∗3θ̄3 = 0

b∗2θ̄2 + b∗3θ̄3 + a∗4θ̄4 + a∗5θ̄5 = 0

−(a3 + b3)
∗θ̄3 + b∗5θ̄5 − p̄ = 0

b2θ̄
−1
2 + b3θ̄

−1
3 + a4θ̄

−1
4 + a5θ̄

−1
5 = 0

(25)
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Fig. 7. Focal points on solution Line 1 of Watt-1 six-bar.

Since these are all homogeneous, we may set θ̄2 = 1 to dehomogenize. Then
the first equation determines θ̄3 = −(a2/a3)

∗. After substituting these into the
final equation, we may clear negative exponents by multiplying by θ̄4θ̄5. We are
left with one quadratic equation and two linears, hence there are two solutions.
Since the tracing point coincides with fixed pivot B0 for every configuration in
Line 2 (see Fig.6), we get two more copies of B0, which along with focus F2

make B0 a triple singular focus.

In total, we have B0 as a triple singular focus along with four other singular
foci. This agrees with the results obtained in [17].

The final observation to make is that Lines 1 and 2 intersect at Θ2 = Θ3 =
Θ4 = Θ5 = Θ̄1 = Θ̄2 = Θ̄3 = 0 with P = b0. This degenerate point at infinity
is not approached by the finite portion of the tracing curve, so it does not count
as a singular focus. However, it appears as the extraneous factor (p−b0)(p̄−b̄0)
in the Dixon determinant when using the methods of [16,17].

5 Path Cognates

A detailed discussion of the use of the singular foci to determine path cognates
must be postponed to a later paper. However, we can use the results shown
above for the Stephenson-3 six-bar to give a hint of how to proceed.

Two linkages which produce the same tracing curve must have the same sin-
gular foci. The Stephenson-3 linkage is drawn in Fig.2, and its singular foci
are diagrammed in Fig.4. We see that fixed pivot C0 is a triple singular focus
and the only multiple focus. Thus, all path cognates must have this point as
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the ground pivot for link 5. We have already noted that the focal triangles
F1F2F3 and F4F5F6 are similar. For a general Stephenson-3 linkage, no other
partitioning of these six foci into two triangles will give similar triangles. Con-
sequently, for any path cognate, one of these must be the focal triangle for
the four-bar sub-linkage formed by links 0,1,2,3, and the other is generated by
stretch-rotation about C0 via link 4. We know that the same four-bar curve is
generated by three cognates (Robert’s cognates), each having the same focal
triangle F1F2F3, so we immediately get three cognates for the six-bar from
this. We can get another three cognates by reversing the roles of the two focal
triangles; that is, stretch-rotate the four-bars about C0 such that their focal
triangle is F4F5F6 instead of F1F2F3. These are the six path cognates found
by Roth [12].

The argument of the last paragraph shows that there are six possible assign-
ments of the singular foci to the fixed pivots of the Stephenson-3 six-bar.
Roth’s constructions give one path cognate for each of these: the reversal of
the roles of the two focal triangles is accomplished via the construction of a
Hart pantograph, and reassignment of the fixed pivots within a focal triangle
is done via Roberts cognates. To conclude that there are no other cognates,
one must show that each assignment of the foci to the fixed pivots determines
a unique linkage. This will be done in a future report.

6 Coupler Mechanisms

A coupler mechanism consists of two one-degree-of-freedom path-generating
mechanisms that are connected by a coupler link, see [14]. This is a special
case of the type of planar motion considered in [10]. When a tracing point
is placed on the coupler link, the singular foci of the tracing curve of the
coupler mechanism are easily derived from those of the two sub-linkages. An
example is the Stephenson-3 linkage, where link 4 couples together a four-bar
(links 0,1,2,3) with a two-bar (link 5 pinned to link 0). We have seen that the
singular foci of the six-bar are those of the four-bar (F1, F2, F3), the center
point of the circle generated by link 5 (C0), and three obtained by scaling and
moving the coupler link to bridge from one of F1, F2, F3 to C0.

It can be seen from the geometric constructions of §4 that the pattern of
the Stephenson-3 linkage generalizes to any coupler mechanism: its singular
foci will be those of its two sub-linkages along with new ones constructed by
bridging the coupler link from a singular focus of one sub-linkage to one of the
other sub-linkage. If the sub-linkages have n1 and n2 singular foci, then the
bridging gives n1n2 new singular foci, for a total of n1+n2+n1n2. Those coming
directly from the sub-linkages may be multiple singular foci. The multiplicities
can be counted by the same construction method, but we will not go into that
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level of detail here.

The special case of “Stephenson-pattern” linkages, which result from sequen-
tially adding any number of output dyads to an initial four-bar, are partic-
ularly easy to analyze. Wunderlich [18] found that the coupler curve of the
n-loop Stephenson-pattern linkage is fully circular of degree 2 · 3n (see also [9,
pp. 227–228]). It thus has 3n singular foci. Applying the results of this paper,
one can generate all the singular foci recursively. The n-loop mechanism in-
herits 3n−1 singular foci from the (n − 1) loop sub-mechanism it is built on,
the ground pivot of the new output dyad is a singular focus of order 3n−1,
and there are 3n−1 new singular foci obtained by stretch-rotation of the previ-
ous foci about the new ground pivot. The stretch-rotation factor is the ratio
of two of the sides of the coupler triangle, as we saw in the case of the the
Stephenson-3 linkage. The recursion can be started with the ”0-loop” linkage,
which is a single link pinned to ground. The 0-loop “coupler curve” is just a
circle, having degree 2, with a single singular focus at its center. Using the re-
cursive approach just outlined, one can easily determine the 3 singular foci for
the 1-loop mechanism, which is just the four-bar linkage, then the 9 singular
foci of the 2-loop mechanism, which is the Stephenson-3 six-bar linkage, and
so on.

7 Conclusion

This paper gives a method for finding the singular foci of planar linkages.
Based on analysis of the solutions at infinity of the loop equations, it leads to
a detailed geometric interpretation of the foci. A key step in this interpreta-
tion is a technique for drawing linkages in non-real configurations. Although
the new approach to singular foci must be applied on a case-by-case basis
for each linkage type, it yields simple formulae for the singular foci. This is
in contrast to the method of [17], which is easier to implement as a general
numerical algorithm but does not readily yield simple formulae or geometric
understanding. The new method is particularly apt for determining the sin-
gular foci of a class of mechanisms called “coupler mechanisms,” including all
of the Stephenson-pattern linkages.

The singular foci represent essential characteristics of the curve traced out
by a planar linkage; in particular, they describe the behavior of the curve at
infinity. Two curves sharing one or more singular foci have a reduced number
of intersection points and two linkages can generate the same tracing curve
only if they have all singular foci in common. These facts can be useful in the
design of path-generating linkages.
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quadrilatère plan,” Bull. des Sciences Math. Astro., Tome III, 1879.

[6] E. Dijksman, Motion Geometry of Mechanisms, Cambridge University Press,
Cambridge, 1976.

[7] A. Haarbleicher, “Application des coordonnées isotropes a l’étude de la courbe
des trois barres,” J. de l’Ecole Polytechnique, II serie, v. 31, pp. 13–40, 1933.

[8] J. Harris, Algebraic Geometry: A First Course, Springer, New York, 1992.

[9] K.H. Hunt, Kinematic Geometry of Mechanisms, Clarendon Press, Oxford,
1978.

[10] S. Roberts, “On the motion of a plane under certain conditions,” Proc. London
Math. Soc., Vol. III, pp. 286–319, 1871.

[11] S. Roberts, “On three-bar motion in plane space,” Proc. London Math. Soc.,
Vol. VII, pp. 14–23, 1875.

[12] B. Roth, “On the multiple generation of coupler curves,” Trans. ASME, Series
B, J. Eng. Industry, v.87, n.2, pp.177–183, 1965.

[13] E.J.F. Primrose, F. Freudenstein and B. Roth, “Six-bar motion (Parts I–III),”
Arch. Rational Mech. Anal., v.24, pp.22-77, 1967.

[14] C. Wampler, “Isotropic coordinates, circularity and Bezout numbers: Planar
kinematics from a new perspective,” Proc. ASME DETC, Aug. 18–22, 1996,
Irvine, CA, Paper 96-DETC/MECH-1210.

[15] C. Wampler, “Solving the kinematics of planar mechanisms,” ASME J. Mech.
Des., v.121, n.3, pp.387–391, 1999.

[16] C. Wampler, “Solving the kinematics of planar mechanisms by Dixon
determinant and a complex-plane formulation,” ASME J. Mech. Design, v.123,
n.3, pp.382–387, 2001.

[17] C. Wampler, “Singular Foci of Planar Linkages,” Mech. Mach. Theory (in
press).
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