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Abstract. In engineering and applied mathematics, polynomial systems arise whose solution sets
contain components of different dimensions and multiplicities. In this article we present algorithms,
based on homotopy continuation, that compute much of the geometric information contained in
the primary decomposition of the solution set. In particular, ignoring multiplicities, our algorithms
lay out the decomposition of the set of solutions into irreducible components, by finding, at each
dimension, generic points on each component. As by-products, the computation also determines
the degree of each component and an upper bound on its multiplicity. The bound is sharp (i.e.,
equal to one) for reduced components. The algorithms make essential use of generic projection
and interpolation, and can, if desired, describe each irreducible component precisely as the common
zeroes of a finite number of polynomials.
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Introduction. Given a system of n polynomial equations in C
N ,

f(x) :=



f1(x1, . . . , xN )

...
fn(x1, . . . , xN )


 ,(0.1)

with not all fi equal to the zero polynomial, we seek a description, by numerical
means, of its solution set. As a set with all multiplicity information ignored, this is
the algebraic variety V(f) := { x ∈ C

N | fi(x) = 0, for i = 1, . . . , n }. The closures
of the connected components of the set of manifold points of V(f) are the irreducible
components of V(f). The irreducible components of V(f) can have dimensions vary-
ing from zero (isolated points) up to N − 1 (hypersurfaces). The multiplicity of a
given component, which precisely generalizes the notion of the multiplicity of a root
of a polynomial in one variable, is a positive integer. In addition to computing all of
the isolated solutions, our algorithms certify the existence of each higher-dimensional
irreducible component by finding one or more generic points on it. Both the degree of
each component and an upper bound on its multiplicity are also determined. For com-
ponents having multiplicity equal to 1, the computed bound is sharp. Furthermore,
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a postprocessing algorithm describes each component precisely as the set of common
zeroes of a finite set of polynomials, whose coefficients have been approximated nu-
merically by interpolation. Accordingly, these form a numerical approximation to
the primary decomposition of the radical

√I(f) of the ideal I(f) ⊂ C[x1, . . . , xN ]
defined by the original system f , plus some of the multiplicity information of the
primary decomposition of I(f).

Our principle computational tool is homotopy continuation, which has proven
effective for obtaining a finite set of solutions containing all isolated roots of the
system [1, 2, 28, 30, 33]. Computing numerical approximations to the roots of a specific
problem is useful for many applications, such as mechanism design [34]. Beyond this,
the number of isolated solutions to a single generic problem conveys information about
every member of a suitably parameterized family of systems [31]. This kind of result
has guided developments in theoretical kinematics, where early numerical results were
subsequently confirmed by analytical means. Some of the problems solved by this
approach are well beyond the current capabilities of algorithms for Gröbner bases or
other symbolic reduction methods. An example is the 9-point path-synthesis problem
for 4-bar linkages, a problem which has total degree 78 and which, according to the
numerical evidence obtained by homotopy continuation, has 8652 isolated, nonsingular
roots in general [44]. Raghavan and Roth [38] give a survey from the viewpoint of
working kinematicians.

The prior success of continuation encourages us to explore the extension of homo-
topies to find higher-dimensional components of solutions. Symbolic methods for com-
puting primary decompositions (based on triangular sets [4, 5] or Gröbner bases [15])
are available in several computer algebra systems [18, 25]. See also [22, 24]. According
to Greuel [25], “All known algorithms for primary decompositions in K[x] are quite
involved.” In comparison, our numerical algorithms, founded soundly on results from
algebraic geometry, seem more straightforward, although admittedly careful attention
to numerical issues, such as round-off and ill-conditioning, is necessary to produce a
robust algorithm. For some examples in this article, multiprecision arithmetic was
needed to arrive at meaningful results.

Previous algorithms based on homotopy continuation produce lists of solutions
that include all isolated solutions, but these algorithms cannot certify whether singular
solutions are isolated. Our new algorithms construct interpolating polynomials that
tell whether a given solution is isolated or not, regardless of its singularity.

This article builds on previous work in [40, 41] for finding generic points on all
the solution components. However, the algorithms of [40, 41] did not determine the
number of irreducible components and did not group the generic solution points by
component. The algorithms of this article perform these operations to provide a
numerical irreducible decomposition.

The organization of this article is as follows. We review in section 1 the concept
of primary decomposition, and we sketch our algorithms in section 2. In section 3,
we illustrate the algorithms on an example, and we give pseudocode in section 4. A
theoretical justification, based on results in section 5, is in section 6. The efficacy of
our preliminary implementation is demonstrated in section 7, along with a discussion
of numerical aspects. Finally, in section 8 we summarize and point to future research.

1. Background I: Irreducible decomposition. Before describing our algo-
rithms for finding a numerical decomposition of the solution set of a polynomial
system into irreducible components, we first review the essential concepts. We refer
the reader to [36, 37] for an introductory presentation and to [19] for a full discussion.
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The solution of a system of polynomial equations can be regarded from either a
geometric or an algebraic point of view. Given a system f of n polynomials on C

N , as
in (0.1), the geometric object is the set f−1(0) ⊂ C

N of solutions of f(x) = 0. This
is often called the variety of f , V(f). On the algebraic side, one considers the ideal
I(f) = 〈f1, . . . , fn〉, which is the set of all polynomials that are algebraic combina-
tions of the given polynomials. For most applications, especially in engineering, the
solution set V(f) is the main item of interest. However, computer algebra procedures
manipulate the equations working with I(f).

For this discussion, an affine variety is the solution set in C
N of a system of

polynomial equations. An irreducible affine variety V is an affine variety that cannot
be expressed as the union of a finite number of proper subvarieties. This is equivalent
to

I(V ) := { p ∈ C[x1, . . . , xN ] | p(V ) = 0 }(1.1)

being a prime ideal, i.e., if pq ∈ I(V ) then either p ∈ I(V ) or q ∈ I(V ). It is also
equivalent to Vreg, the subset of manifold points of V , being connected in the complex
topology. (This is the usual Euclidean topology; see section 5.1.) A well-known result
is that every affine variety V has a unique decomposition into irreducible varieties as

V = V1 ∪ · · · ∪ Vm(1.2)

where m is finite, each Vi is irreducible, and Vi �⊂ Vj for i �= j. Geometrically, the Vi
are the closures in the complex topology of the distinct connected components of Vreg,
the set of manifold points of V . This is sometimes called the minimal decomposition
or irreducible decomposition of the variety.

The dimension of the irreducible components can vary from zero (isolated points)
up to N − 1. An N -dimensional component would be the whole space C

N , which
happens if and only if f is identically zero, a trivial case that we exclude. We organize
the irreducible components by dimension, writing the decomposition of the entire
solution set Z = V(f) as

Z :=

N−1⋃
i=0

Zi :=

N−1⋃
i=0

⋃
j∈Ii

Zij ,(1.3)

where Zi is the union of all i-dimensional components, the Zij are the irreducible
components, and the index sets Ii are finite and possibly empty.

The algebraic analogue of this decomposition is the primary decomposition of
I(f) [19, 36, 37]. Our decomposition contains more information than is contained
in classical primary decomposition of

√I(f) but less information than the primary
decomposition of I(f).

2. Overview of algorithms. Our main goal is to numerically represent the
decomposition of the solution set into its irreducible components as in (1.3). To this
end, our algorithms can provide two levels of output. In the main processing step,
which we call IrreducibleDecomposition, the output is a listing of the irreducible
components by dimension and degree, and a set of witness points on each component.
It also provides an upper bound on the multiplicity of the component. For a more
complete representation of each component, a postprocessing step called Polynomi-
alsGenerate generates a set of polynomials that vanish precisely on that component.

We do not find the complete primary decomposition in the sense of [19]: we do
not identify the embedded components, and the ideals we generate for the irreducible



IRREDUCIBLE DECOMPOSITION FOR POLYNOMIAL SYSTEMS 2025

components are not necessarily either primary or prime. However, the multiplicity
bounds give partial information about the primary ideals. In fact, IrreducibleDe-
composition sharply identifies all components of multiplicity 1.

The following paragraphs describe the main idea of each of our algorithms. A
detailed description in pseudocode is given in section 4 and the theory behind them
is given in section 6.

2.1. IrreducibleDecomposition. Given a system f as in (0.1) the outputs of
algorithm IrreducibleDecomposition are the degree of each irreducible component
degZij and a witness point set W , defined as follows.

Definition 2.1. For a polynomial system f having a decomposition Z into
irreducible components Zij as in (1.3), a witness point set W is a finite set of points
of the form

W :=
N−1⋃
i=0

Wi :=

N−1⋃
i=0

⋃
j∈Ii

Wij ,(2.1)

where

1. Wij is a set of points of the irreducible component Zij (i.e., Wij ⊂ Zij);
2. Wij is distinct from all the other irreducible components (i.e., Wij ∩ Zkl = ∅

for (i, j) �= (k, l)).
3. Wij contains degZij points, each occurring νij times for some integer νij ≥
µij , where µij is the multiplicity of Zij as an irreducible component of f

−1(0).
Moreover, if µij = 1, then νij = 1.

IrreducibleDecomposition proceeds in two phases: WitnessGenerate finds
an unsorted superset of witness points that WitnessClassify subdivides into the
witness point subsets Wij . The workings of these subalgorithms is outlined in the
following paragraphs.

2.1.1. WitnessGenerate. This algorithm is the function provided by the prior
work in [40, 41]. The fundamental idea is that a generic linear variety Lk of dimension
k will cut an irreducible variety V of dimension N −k into a finite set of points, equal
in number to the degree of V . The qualifier “generic” is key and is discussed in
detail in [40, 41]. Furthermore, in an appropriate homotopy, the endpoints of the
solution paths will land on each irreducible component multiple times, depending on
the multiplicity and degree of the component. However, some endpoints also land
on the positive dimensional intersections of Lk with varieties of dimension greater
than N − k. Lk will not intersect varieties of dimension less than N − k.

The algorithm given in [40] is more efficient than the earlier [41], owing to its use
of an embedding strategy wherein Lk+1 ⊃ Lk as the algorithm ascends sequentially
from k = 1 to k = N . (This implies that we find points on solution sets in descending
order of dimension i = N − k running from i = N − 1 to i = 0.) The endpoints
of nondiverging paths not on any k-dimensional component are the start solutions
of paths leading to generic points of dimension lower than k. We call those start
solutions “nonsolutions.” The linear variety Lk is specified as the intersection of
N − k hyperplanes, which we refer to as “slicing planes.” The inclusion of Lk within
Lk+1 for each k is accomplished by removing the slicing planes one by one in a series
of N homotopies. In practice, the condition of genericity is obtained by using a
random number generator to choose the coefficients of the equations that define each
hyperplane. The result is an algorithm that succeeds with probability 1.
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We say that WitnessGenerate finds a witness point superset Ŵ , organized as

Ŵ =

N−1⋃
i=0

Ŵi, where Ŵi =Wi ∪ Ji,(2.2)

in which Wi is a witness point set for components of dimension i and Ji is a set
of points on components of greater than i dimensions. (J stands for “junk.”) It is

important to note that the points in Ŵi are undifferentiated, that is, at the conclusion
ofWitnessGenerate, we do not know how the points subdivide into the subsetsWij

or Ji.

2.1.2. WitnessClassify. This algorithm is the heart of the new contribution
of this article. Its purpose is to convert a witness point superset Ŵ into a witness
point set W . Starting at dimension i = N − 1 and descending sequentially to i = 0,
WitnessClassify proceeds to classify the points in each of the witness supersets, Ŵi,
by first separating out the points on higher-dimensional sets, Ji, and then subdividing
the remaining points according to membership in irreducible varieties.

The key operation in the inner workings of WitnessClassify is the construction
of filtering polynomials, pij , each of which vanishes on the entire irreducible compo-

nent Zij but which is nonzero, with probability 1, for any point in Ŵ that is not on
Zij . The geometric concept is as follows. For an irreducible component Zij , which
by definition has dimension i, pick a generic linear subspace of directions having di-
mension N − i − 1 and define a new set constructed by replacing each point of Zij

with its expansion along the chosen subspace directions. The result is an (N − 1)-
dimensional hypersurface. The filtering polynomial is the unique polynomial that
vanishes on this hypersurface. It can be constructed numerically as discussed be-
low.

The concept of a filtering polynomial can be illustrated by considering an ir-
reducible 1-dimensional curve C in C

3, which can be visualized by its real part, a
1-real-dimensional curve in R

3. Further, suppose we are given a point p ∈ C
3 whose

membership in C is to be determined. Pick a direction v ∈ P
2, that is, v is some line

through the origin in C
3. Replace each point in C by a line through the point parallel

to v to get a 2-dimensional surface S. S contains C, by construction. So if p ∈ C,
then p ∈ S. On the other hand, if p is not on C, it will be in S if and only if there
is a point q ∈ C such that p − q is parallel to v. So the set of all possible choices
of v is parameterized by the 1-dimensional set C, by all q ∈ C. But our algorithm
chooses v generically (i.e., randomly independent of p) from a 2-dimensional set P

2,
so with probability 1, S does not contain p. Hence, a test of membership in S is a
probability-1 surrogate for a test of membership in C. The idea generalizes readily to
varieties and spaces of any dimension, as stated rigorously in Lemma 5.2.

Suppose we have filtering polynomials for all components of dimension greater
than i. Then, we may extract Wi from Ŵi: Wi = Ŵi \ Ji. The next task is to sort
the points in Wi by their membership in the irreducible components Zij . Choosing
arbitrarily some point w ∈Wi, we move the slicing planes that pick w out of Zij , us-
ing continuation. In this manner, we can generate an arbitrary number of new points
on Zij . After picking a generic projection direction to expand Zij into a hypersur-
face, we find the lowest-degree polynomial that interpolates the samples, taking extra
samples to ensure that the true hypersurface has been correctly determined. This is
the filtering polynomial pij , which can then be used to find any additional points in
Wi that lie on Zij . Together with w, these form the set Wij . We then choose a new
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point from those in Wi that are not yet sorted, and repeat the process until all points
are sorted. With all the sets Wij sorted and corresponding filtering polynomials pij
in hand, we proceed to dimension i− 1 and apply the same method. The procedure
starts at dimension i = N −1 with an empty list of filtering polynomials. By assump-
tion, there are no components of dimension N , hence JN−1 = ∅ and ŴN−1 =WN−1.
After the algorithm concludes at dimension i = 0, the result is the witness point set
W decomposed by irreducible components into the sets Wij .

By Lemma 5.1, the degree of the filtering polynomial pij is the same as the

degree of Zij . Moreover, due to the properties of the witness point superset Ŵ , the
multiplicity of Zij is bounded by νij = #(Wij)/degZij . We have repeated points

in Ŵ because m paths as solutions of a polynomial homotopy converge to a solution
of multiplicity m.

WitnessClassify is implemented using the following list of subalgorithms, which
are necessary for constructing the filtering polynomials.

1. Sample, given a point w ∈ Z, produces additional points on the same irre-
ducible component by continuation.

2. Projection projects points along a given projective subspace.
3. Fit, given a set of projected sample points and a specified degree, finds the

best-fit polynomial of that degree.
4. Interpolate finds an interpolating hypersurface by sampling, projecting and

fitting, starting at degree 1 and incrementing until a fit is found (subject to
numerical accuracy).

2.2. PolynomialsGenerate. Once WitnessClassify is finished, we may con-
struct a set of polynomials whose set of common zeroes is one of the irreducible
components. By Lemma 5.3, it suffices to construct N+1 hypersurfaces using the Pro-
jection and Fit subalgorithms already implemented within WitnessClassify. These
can be determined using the sample points found on each component during classifi-
cation: each hypersurface is determined by choosing a new generic projection. Since
generic projection preserves degree, the degrees of hypersurfaces are all the same
and equal to the degree already determined for Zij . The algorithm Polynomials-
Generate generates sufficiently many equations to completely identify the solution
sets.

It would be interesting to have a numerical approach to compute generators for the
ideal I(Zij) of polynomials vanishing on Zij . If Zij is smooth, the N +1 polynomials
constructed above using N + 1 general projections generate I(Zij). Unfortunately,
simple examples show that the minimum number of polynomials to generate I(Zij)
for Zij with singularities can grow unboundedly as the degree of Zij increases.

3. An illustrative example. To illustrate our procedure, we will consider the
following system:

f =


 (y − x2)(x2 + y2 + z2 − 1)(x− 0.5)

(z − x3)(x2 + y2 + z2 − 1)(y − 0.5)
(y − x2)(z − x3)(x2 + y2 + z2 − 1)(z − 0.5)


 .(3.1)

This example has been constructed in a factored form so that it is easy to identify
the decomposition of Z = f−1(0) into its irreducible solution components, as

Z = Z2 ∪ Z1 ∪ Z0 = {Z21} ∪ {Z11 ∪ Z12 ∪ Z13 ∪ Z14} ∪ {Z01},
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A Numerical Irreducible Decomposition

WitnessGenerate

Path following

WitnessClassify

Filter Points Sample

& Interpolate�
✒

✏
✑Homotopy + Start Solutions

❄

�
✒

✏
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❄
l
e
v
e
l

2

139 paths ✲ 99 at infinity

2 solutions

38 nonsolutions

❄

✲̂W2
2 to classify ✲W2

2 on Sphere = W21

❄

Append to Filter

l
e
v
e
l

1

38 paths ✲ 4 at infinity

14 solutions

20 nonsolutions

❄

✲̂W1
8 on Sphere =J1

6 to classify ✲W1

1 on Line 1 = W11

1 on Line 2 = W12

1 on Line 3 = W13

3 on Cubic = W14

❄

Append to Filter

l
e
v
e
l

0

20 paths ✲ 1 at infinity

19 solutions ✲̂W0
13 on Sphere

2 on Line 1

2 on Line 2

1 on Line 3

0 on Cubic

1 to classify ✲W0
1 Isolated = W01



= J0

Fig. 3.1. Flow diagram of illustrative example.

where

1. Z21 is the sphere x2 + y2 + z2 − 1 = 0;
2. Z11 is the line (x = 0.5, z = 0.53);
3. Z12 is the line (x =

√
0.5, y = 0.5);

4. Z13 is the line (x = −√
0.5, y = 0.5);

5. Z14 is the twisted cubic (y − x2 = 0, z − x3 = 0); and
6. Z01 is the point (x = 0.5, y = 0.5, z = 0.5).

In Figure 3.1 we present the flow diagram for our algorithm IrreducibleDe-
composition on this illustrative example. The left-hand side of the diagram shows
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the operation of WitnessGenerate as it descends through successive embeddings to
generate the witness point supersets Ŵi, i = 2, 1, 0, these being of size 2, 14, and 19,
respectively. On the right-hand side, the operation of WitnessClassify proceeds as
follows. At level 2, the filter is empty and both points pass on toW2 for classification.
Samples from the first point were found to be interpolated by a quadratic surface (the
sphere) and the second point also lies on the same surface. Thus, component Z21 is a
second-degree variety of multiplicity 1. The sphere equation is appended to the filter,
and the algorithm proceeds to level 1. At level 1, 8 of the points in Ŵ1 are found to lie
on the sphere and are discarded as J1. Using the sample and interpolate procedures,
the remaining 6 are classified as falling on 3 lines and a cubic, each with multiplicity
1. A filtering polynomial for each of these is appended to the filter and the algorithm
proceeds to level 0. Here, 18 points in Ŵ0 are found to lie on the higher-dimensional
components, leaving a single isolated root as W01.

Note that the computation in IrreducibleDecomposition can be interleaved
between WitnessGenerate and WitnessClassify to entirely complete the compu-
tation at each level before descending to the next.

To summarize, the output of IrreducibleDecomposition is the witness point
set W , with degrees dij and multiplicity bounds νij as

W =W2 ∪W1 ∪W0 = {W21} ∪ {W11 ∪W12 ∪W13 ∪W14} ∪ {W01},

where

1. W21 contains 2 points, d21 = 2, and ν21 = 1;
2. W11 contains 1 point, d11 = 1, and ν11 = 1;
3. W12 contains 1 point, d12 = 1, and ν12 = 1;
4. W13 contains 1 point, d13 = 1, and ν13 = 1;
5. W14 contains 3 points, d14 = 3, and ν14 = 1; and
6. W01 is a nonsingular solution point.

The execution summary of our implementation on this example is described in
section 7.2.

4. Algorithms. In this section we give precise statements of our algorithms us-
ing pseudocode. The main procedure is IrreducibleDecomposition, which consists
of algorithms WitnessGenerate and WitnessClassify applied sequentially. Poly-
nomialsGenerate is a postprocessing step to generate equations for the components
after they have been identified by IrreducibleDecomposition.

4.1. Squaring polynomial systems. Our numerical algorithms for tracking
homotopy paths require that the number of equations n and the number of unknowns
N be equal. Yet, as indicated in (0.1), we wish to treat general problems where this
is not necessarily the case. In the algorithm below we apply the embedding of [40] to
a “square” polynomial system, derived from the given system as follows.

Algorithm 4.1. [g,m] = Square(f, n,N).
Input: polynomial system f(x1, . . . , xN ) = (f1, . . . , fn), n equations in N unknowns.
Output: square polynomial system, m = max(n,N), g(x1, . . . , xm) = (g1, . . . , gm).

if n < N [underdetermined case]
then gi := fi for i = 1, 2, . . . , n;

gi := 0 for i = n+ 1, . . . , N ; [append zero equations]
elseif n > N [overdetermined case]
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then gi := fi +

n∑
j=N+1

aijxj for i = 1, 2, . . . , n; [the aij’s are random numbers]

else gi := fi for i = 1, 2, . . . , n; [square case]
end if.
For an underdetermined system (n < N), the system is made square by appending

N − n zero equations. For an overdetermined system (n > N), we introduce n − N
auxiliary variables xN+1, . . . , xn. Solutions of the square system g in which all the
auxiliary variables equal zero are also solutions to the original system f . All other
solutions of g are spurious. Hence, in extracting the solution sets of f we discard
those spurious solutions and drop the auxiliary variables from the remaining solutions.
These operations are done by UnSquare.

Algorithm 4.2. [W,S, F ] = UnSquare(W ′, S′, F ′, n,N).
Input: Witness point set W ′, Sample points S′, Filtering polynomials F ′

from squared system, originally n equations in N unknowns.
Output: Witness point set W , Sample points S, and Filtering polynomials F

for the original system.

if n ≤ N
then [W,S, F ] := [W ′, S′, F ′];
elseif n > N

then W :=W ′; S := S′; F := F ′;
remove spurious Wij , Sij for xk �= 0, k > N ;
remove xk, k > N in Wij , Sij , and F ;

end if.
Remark 4.3. For overdetermined systems, elimination of the auxiliary variables

would give a smaller system of polynomials that are a random combination of the
original ones, as proposed in [41].

Remark 4.4. For underdetermined systems, there are more efficient squaring pro-
cedures. Letting f be a system of n polynomials f1, . . . , fn on C

N with n < N ,
consider the system F obtained by appending one zero equation plus N − n− 1 ran-

dom linear equations Li := bi +
∑N

j=1 aijxj for i = n + 1, . . . , N − 1. There is a
one-to-one correspondence between positive dimensional irreducible components of
f−1(0) and positive dimensional irreducible components of F−1(0). Letting L be
the generic linear space defined by Ln+1 = 0, . . . , LN−1 = 0, the correspondence is
obtained by associating an irreducible component Zij of f

−1(0) with the irreducible
component Zij ∩ L of F−1(0). Under this correspondence, degrees and multiplicities
are preserved, with the dimensions shifted down by N − n − 1. Generic points of
Zij ∩ L are generic points of Zij .

A further improvement is to use a system G obtained from f by appending N −n
random linear equations, and then postprocess the level zero witness points of G using
the system F obtained by replacing one of the random linear equations of G with the
zero equation.

4.2. Main procedure: IrreducibleDecomposition. Our “probability-1” al-
gorithm proceeds as follows.

Algorithm 4.5. [W,D,M ;S, F ] = IrreducibleDecomposition(f, k).
Input: Polynomial system f(x1, . . . , xN ) = (f1, . . . , fn); top dimension k.
Output: Witness point set W ; degrees D; multiplicity bounds M .
Optional Output: Sample points S; filtering polynomials F .

[g,m] := Square(f, n,N);
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Ŵ :=WitnessGenerate(g, k);

[W ′, D,M ;S′, F ′] :=WitnessClassify(g, Ŵ , k);

[W,S, F ] := UnSquare(W ′, S′, F ′, n,N).
By default, the top dimension k is N − 1, but for efficiency reasons, if it can be de-
termined by some other means that there are no components of dimension greater
than k, we start the algorithm with k less than N − 1. The optional outputs are
provided to avoid the need to recompute in the postprocessing algorithm Polynomi-
alsGenerate.

The two main subalgorithms are presented next. The first of these, Witness-
Generate, is the algorithm from [40], which we include only to define its specification.
The algorithm finds generic slices of the solution set at each dimension i from i = k
down to i = 0. This is done using a cascade of homotopies between embedded systems.

Algorithm 4.6. [Ŵ ] =WitnessGenerate(f, k).
Input: Polynomial system f(x1, . . . , xN ) = (f1, . . . , fn); top dimension k.

Output: Witness point superset Ŵ .
We now come to the main contribution of this article, algorithm WitnessClas-

sify, which descends through the dimensions to sort out the points in Ŵ .
Algorithm 4.7. [W,D,M ;S, F ] =WitnessClassify(f, Ŵ , k).

Input: Polynomial system f ; Witness point superset Ŵ ; top dimension k.

Output: Witness point set W ; degrees D; multiplicity bounds M ;

Optional Output: Sample points S; filtering polynomials F .

F := ∅; [initialize filter to empty]

for i = k down to 0 do [loop to process Ŵi]

Ji := {w ∈ Ŵi | p(w) ≈ 0 for some p ∈ F};
Ŵi := Ŵi \ Ji; [remove “junk”]

j := 0; [j counts irreducible components]

while Ŵi �= ∅ do

j := j + 1;

choose w ∈ Ŵi;

[pij , Sij ] := Interpolate(f,w, i); [get filtering polynomial & sample points]

Wij := {w ∈ Ŵi | pij(w) ≈ 0}; [find witness points]

Dij := deg pij ; [degree of the component]

Mij := #Wij/Dij ; [multiplicity bound for the component]

Ŵi := Ŵi \Wij ; [remove points just classified]

F := F ∪ pij ; [update the filter]

end while;

end for.
Two lines in this algorithm invoke an approximate test of equality p(w) ≈ 0

because in practice both the witness points w and the coefficients of the filtering
polynomials p are subject to numerical error. The same remark applies in algorithm
Interpolate below.

The next algorithm Interpolate makes use of a projection function π(A,x):

π(A,x) =


a10 +

N∑
j=1

a1jxj , . . . , ai0 +

N∑
j=1

aijxj


 ,(4.1)

where aij is the (i, j)th element of the matrix A. When applied to a set of points
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S, π(A,S) is just the set of projections of the points. Matrix A with the column
(a10, a20, . . . , ai0)

T deleted will have fewer rows than columns, and the “direction of
the projection” mentioned in section 2 is just the linear subspace of projective space
obtained by intersecting the closure of the null space of this truncated matrix with
the hyperplane P

N \ C
N of P

N at infinity. In the proper terminology appearing in
section 5.2 this intersection is the center of the projection.

Algorithm Interpolate finds a filtering polynomial by fitting a polynomial to
the projection of a set of sample points. Letting q denote the defining equation in
projected coordinates, which is unique up to nonconstant multiple, the polynomial in
the original coordinates is p(x) = q(π(A,x)). In our code we do not expand p but
keep the composite form.

Algorithm 4.8. [p, S] = Interpolate(f,x, i).
Input: Polynomial system f ; solution point x; working dimension i.

Output: Interpolating polynomial p; sample points S.

Parameter: Oversampling numbers k1 ≥ 0, k2 ≥ 1 (integers).

A := Rand(i+ 1, N + 1); [generate random A ∈ C
(i+1)×(N+1)]

if i = 0 [do not sample isolated points]

then S := {x};
p(y) := π(A,y)− π(A,x); [random hyperplane through x]

else S := ∅; [sample and fit]

d := 1; [start at degree 1]

loop

ms := #monom(d, i+ 1)− 1 + k1; [number of sample points needed]

S := S ∪ Sample(f,x, i,ms −#S); [expand the sample set]

p := Fit(d, i, π(A,S)); [fit degree d polynomial]

exit when p(π(A,Sample(f,x, i, k2))) ≈ 0; [test k2 extra points]

d := d+ 1; [if fit not good, increment d]

end loop;

end if.
The function Sample generates new generic points from the current one x by

homotopy continuation that moves slicing hyperplanes, initially passing through x.
The hyperplanes that pick out the new sample points are chosen randomly to produce
widely dispersed, generic points on the irreducible component on which x sits. Sam-
ple uses a random number generator for the coefficients of the new slicing hyperplanes
and then calls the path trackers to find new generic points on those slices. When we
have enough points, the function Fit constructs an interpolating polynomial, using
least squares if k1 > 0. The exiting condition consists of a zero test (numerically up
to a certain tolerance) on the evaluation of the interpolating polynomial in k2 ≥ 1
extra sampled points.

Remark 4.9. We mention a modification of WitnessClassify that will likely
yield some significant speedup for components whose dimension is higher than two.
Note that ifX ⊂ C

N is an irreducible affine variety of dimension k > 1, thenX∩L ⊂ L
is irreducible of the same degree for any generic linear subspace L ⊂ C

N of dimension
≥ N −k+1. Thus for i > 1, if we slice Zij with a generic linear space L of dimension
N − i + 1 and project Zij ∩ L to a generic C

2 before the construction of a given
polynomial pij , we can ascertain the degree of the polynomial pij by interpolation in
C

2 instead of C
i+1.
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4.3. Postprocessing: Generation of equations. As justified in Lemma 5.3,
we need to interpolate the component with N + 1 generically projected hypersur-
faces. A by-product of IrreducibleDecomposition is set Sij of sample points on
each irreducible component Zij , which is large enough to uniquely determine a hy-
persurface once a projection has been fixed. Also, IrreducibleDecomposition has
already found one such polynomial for each component for use in the filtering process.
Thus, procedure PolynomialsGenerate is easily built from existing functions: the
projection function π and the fitting routine Fit, as follows.

Algorithm 4.10. [I] = PolynomialsGenerate(D,S, F ).
Input: Degrees D; sample sets S; filtering polynomials F .
Output: Defining equations Iij for irreducible components Zij .

for each irreducible component (i, j) do

Iij := Fij ; [copy the filtering polynomial from F ]

if i = N − 1 [determine #hypersurfaces needed]

then m := 1; [hypersurface]

elseif Dij = 1 [linear component]

then m := N − i;

else m := N + 1; [default]

end if;

while #(Iij) < m do [construct hypersurfaces]

A := Rand(i+ 1, N + 1); [new random projection]

Iij := Iij ∪ Fit(Dij , i, π(A,Sij));

end while;

end for.
The if-block is included for efficiency. In general, N + 1 hypersurfaces suffice,

but only one is needed if the component is a hypersurface and N − i suffice if the
component is linear.

5. Background II: Projections and related material. Using homogeneous
polynomials and projective space in place of polynomials and C

N , we arrive at the con-
cept of a projective variety as the common zeroes of a set of homogeneous polynomials.
A projective variety minus a proper projective subvariety is called a quasi-projective
variety, or variety for short. Though affine varieties and projective varieties are the
most important types of quasi-projective varieties, there are others, e.g., C

2 \{(0, 0)}.
5.1. The complex and Zariski topologies. Unless we say otherwise, closures

will be in the complex topology, i.e., in the topology induced on a subset of complex
Euclidean space (or projective space) by the underlying manifold topology of complex
Euclidean space (or projective space). The key fact connecting the complex topology
and the Zariski topology is that, given a subvariety X of a variety Y , the closure X
of X in Y is a subvariety of Y , and X is Zariski open and dense in X, i.e., X \X is a
proper subvariety of X not containing any nonempty Zariski open set of X. Usually,
we use this fact when X is a variety in C

N ⊂ P
N and we close up X in P

N ; see [37,
Chapter 1.10].

The dimension of a variety is the complex dimension of the regular points, i.e.,
manifold points, of the variety.

Often for an irreducible variety X we want a given property to hold for a Zariski
open and dense set U ⊂ X because then, with probability 1, the property holds for
a generic point of X. See [40, 41] for illustrations of this concept. Often, it is easier
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to work with an irreducible variety Y that is mapped algebraically onto a dense set
of X; e.g., in section 5.2 below, we study a general projection as a succession of
projections with 1-dimensional kernels. If we find a dense Zariski open set U of Y
with the property we want, we need to produce a dense Zariski open set of X, given
the Zariski open set of Y . To avoid the explicit finding of such an X we apply the
theorem of Chevalley on constructible sets [36, Chapter 1.9, 35, Chapter 2C], which
guarantees that there is some Zariski open dense subset of X contained in the image
of U .

5.2. Projections and generic projections. “Generic” projections have been
used since classical times to reduce questions about general varieties to questions
about hypersurfaces; see [3, 6, 35] for a number of such applications. Here we give
proofs for the facts we need but for which we know no easily accessible reference.

An algebraic map f : Y → X, between algebraic varieties Y and X, is proper
if given any compact subset K ⊂ X, f−1(K) is compact. The so-called “proper
mapping theorem” states that the image of a closed subvariety under a proper map
is a closed variety.

A linear projection (or projection for short) π : C
N → C

m is a surjective affine
map

π(x1, . . . , xN ) = (L1(x), . . . , Lm(x)), Li(x) := ai0 +

N∑
j=1

aijxj , aij ∈ C.(5.1)

Theoretically, we work with equivalence classes of projections, considering two pro-
jections π1, π2 from C

N onto C
m equivalent if there is an affine linear isomorphism

T : C
m → C

m with T (π1(x)) = π2(x).
We need to consider the extension of projections to projective space. Let [x0, . . .,

xN ] denote linear coordinates on P
N . Abusing notation, we regard C

N ⊂ P
N using

the inclusion (x1, . . . , xN ) → (1, x1, . . . , xN ). Thus C
N = P

N \H, where H := {x0 =
0} is the hyperplane at infinity. A projection from P

N to P
m is a surjective map

πL : P
N \ L→ P

m with

π([x0, . . . , xN ]) = [L0(x), . . . , Lm(x)], Li(x) :=

N∑
j=0

aijxj , aij ∈ C(5.2)

and where L is the linear projective space P
N−m−1 ⊂ P

N defined by the vanishing of
the linear equations Li. L is the center of the projection. Theoretically, we work with
equivalence classes of projections, considering two projections π1, π2 from P

N onto P
m

equivalent if they have a common center L and there is a projective linear isomorphism
T : P

m → P
m with T (π1(x)) = π2(x) on P

N − L. Note that two projections from
P
N to P

m are equivalent if and only if they have the same center. Geometrically, the
projection has a simple description. Let L be the center of the projection. Choose any
P
m ⊂ P

N with the property that L ∩ P
m = ∅. Given a point x ∈ P

N \ L and letting
〈x, L〉 denote the linear subspace P

N−m ⊂ P
N generated by x and L, the projection

from P
N to P

m with center L sends x to 〈x, L〉 ∩ P
m.

The projections πL from P
N to P

m that are extensions of projections from C
N

to C
m are precisely the projections with center L ⊂ H. For example, the projection

(x1, . . . , xN ) → (x1, . . . , xN−1) extends to the projection [x0, . . . , xN ] → [x0, x1, . . .,
xN−1] with center L := {[0, . . . , 0, 1]}. Note that an equivalence class of projections is
naturally identified with the center of the projection in the projective case and with
the center of the projective extension of the projection in the affine case.
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Let X ⊂ C
N be an algebraic subvariety. Let π : C

N → C
m be a linear projection.

The restriction πX , of π to X, does not have to be proper. For example, the map
from the hyperbola {x1x2 −1 = 0} to the x1 axis has as image the complement of the
origin and is therefore not proper. It is a part of the Noether normalization theorem
[19], that if π is general, then the restriction πX , of π to X, is in fact proper.

Lemma 5.1. Let X be a closed subvariety of C
N , all of whose irreducible com-

ponents are of dimension k. For a general linear projection π : C
N → C

m with
m ≥ k + 1, the map πX is proper and generically one-to-one. In particular, π(X) is
a closed subvariety of C

m of degree equal to the degree of X in C
N .

Proof. It can be assumed without loss of generality that X is irreducible. The
properness follows, as noted above, from the Noether normalization theorem. By
induction it suffices to show the lemma when m = N − 1 ≥ k + 1. To make this
induction rigorous, we need to use Chevalley’s theorem, which was mentioned above,
to conclude that the generic choices at each stage give a generic choice at the end.

LetX denote the closure ofX in P
N in the complex topology. X is a k-dimensional

subvariety of P
N , and X is a Zariski open set of X. As noted above, projections of C

N

to C
N−1 are the restrictions to C

N of the projections P
N → P

N−1 of the projections
πx from points x on the hyperplane at infinity, H := P

N \ C
N . Let ∆ denote the

diagonal of X×X. Note that we have an algebraic map φ : X×X \∆ → H, obtained
by sending (x,y) to the intersection of H with the unique projective line through x
and y.

If none of the projections πx with x �∈ H ∩X are generically one-to-one, then we
conclude that the fiber of φ over each point of H \ (X \X) is at least k-dimensional.
Thus we conclude

2k = dimX ×X = dimX ×X \∆
≥ k + dimφ(X ×X \∆) ≥ k + dim

(
H \ (X \X)

)
(5.3)

= k +N − 1,

i.e., that k ≥ N − 1. Since we are assuming that k < N − 1, we see that the generic
fiber dimension of the map φ : X × X → H is less than k, in which case there is a
Zariski open subset of H \ (X \X) with projections that are generically one-to-one.

Now we show that the degree of X is the same as the degree of π(X). Note that
since degX = degX, deg π(X) = deg π(X), and π(X) = π(X), it suffices to prove
the result for a generically one-to-one projection in projective space. Let V denote the
proper subvariety of π(X) equal to the union of the singular points of π(X) and the
image under π of the ramification locus of π. A generic linear L := P

m−k meets π(X)
transversely in deg π(X) points contained in π(X) \V . By construction, the (N − k)-
dimensional linear space π−1(L) meets X transversely in degX points contained in
the regular points of X.

We need some more refined statements to separate points by using different pro-
jections.

Lemma 5.2. Let X be a closed subvariety of C
N , all of whose irreducible com-

ponents are of dimension k. Fix a finite set S ⊂ C
N . For a general linear projection

π : C
N → C

m with m ≥ k + 1, π(x) = π(y) for x ∈ S and y ∈ X ∪ S implies that
x = y.

Proof. As in Lemma 5.1, we can assume by induction that m = N − 1. Let
H := P

N−1 denote the hyperplane at infinity in P
N . Let y be a point of S. If y �∈ X,

consider the map φy : X → H given by sending x ∈ X to the point φy(x) equal to the
intersection of H with the line spanned by x and y. If y ∈ X, let φy : X \ {y} → H
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be the analogous map. The union T of the closures of the images of these maps
as y runs over the set S is at most dimX. Since dimX = k ≤ N − 2 < dimH, we
conclude that the projection corresponding to a general point of H \T has the desired
properties.

We repeatedly use that a reduced affine subvariety A ⊂ C
N , all of whose irre-

ducible components are of dimension N − 1, is the zero set of a polynomial on C
N

(see [36, p. 7]). Given a reduced variety X, the following classical lemma will let us
construct polynomials whose set of common zeroes is exactly the underlying set of X.

Lemma 5.3. Let X be a subvariety of C
N , all of whose irreducible components

are of dimension k < N . Given N + 1 generic projections πi : C
N → C

k+1 with qi
the defining degX polynomial of πi(X) for i = 0, . . . , N ; the set of common zeroes of
the polynomials q0(π0(x)), . . . , qN (πN (x)) is X.

Proof. Choose a generic projection πN : C
N → C

k+1 and let qN be the defining
degX polynomial of πN (X). Then qN (πN (x)) vanishes on an (N − 1)-dimensional
set XN containing X. Let S be a finite set consisting of one point from each irre-
ducible component of XN \X. Choose a generic projection πN−1 : C

N → C
k+1. By

Lemma 5.2, πN−1(S) ∩ πN−1(X) = ∅, and thus the set of common zeroes XN−1 of
qN (πN (x)), qN−1(πN−1(x)) minus X is of dimension at most N − 2. This step can be
repeated, in an obvious induction, to give the conclusion of the lemma.

5.3. Multiplicities. We take a pedestrian view of multiplicities in this section
and refer the reader to Fulton [23] for a thorough description.

If we have a system f of n polynomial equations f1, . . . , fn ∈ C[x1, . . . , xN ] and
x∗ is an isolated zero of the system, then the multiplicity of x∗ is

mult(f,x∗) := dimC OCN |x∗/〈〈f1, . . . , fn〉〉,(5.4)

where

1. OCN |x∗ denotes the ring of convergent power series at x∗ ∈ C
N , or equiva-

lently, the ring of germs of holomorphic functions at x∗ ∈ C
N ; and

2. 〈〈f1, . . . , fn〉〉 denotes the ideal generated by the fi in OCN |x∗ .

The following is a simple observation.
Lemma 5.4. Given a system f of n polynomial equations f1, . . . , fn ∈ C[x1, . . . , xN ]

and an isolated zero x∗ of the system, and a matrix


λ11 · · · λ1n

...
. . .

...
λN1 · · · λNn


 ∈ C

N×n(5.5)

such that the system g of polynomial equations g1 := λ11f1 + · · · + λ1nfn, . . . , gN :=
λN1f1 + · · · + λNnfn also has x

∗ as an isolated zero, it follows that mult(f,x∗) ≤
mult(g,x∗).

Proof. Simply note that 〈〈g1, . . . , gN 〉〉 ⊂ 〈〈f1, . . . , fn〉〉.
In [40, 41], a polynomial system is replaced with a new system made out of linear

combinations of the equations of the systems so that an isolated solution x∗ of the
original system is still isolated in the new system. The above lemma shows that the
multiplicity of the isolated solution of the new system is at least as great as the isolated
solutions of the original system. An example in [41] shows that the multiplicity can
increase.

Let W be a k-dimensional irreducible component of the affine variety V(f) of
a system f of polynomial equations f1, . . . , fn ∈ C[x1, . . . , xN ]. Rather than give
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the definition of mult(f,W ), the multiplicity of W with respect to f , we note that
it follows from [23, Chapter 10] that given a generic point w ∈ W and k linear
equations L1, . . . , Lk which define a linear C

N−k passing through w and transverse
to W at w, then mult(f,W ) = mult(f, L1, . . . , Lk,w). Thus, given generic linear
equations L1, . . . , Lk, mult(f, L1, . . . , Lk,w) is the same value for all the points { w ∈
W | Li(w) = 0 for all i }.

In [40, 41], to study a dimension k componentW of the zero set of a given system
f , f is replaced with a new system g of polynomials g1, . . . , gN−k of random linear com-
binations of the fi. Then the system g is augmented with k general linear equations
L1, . . . , Lk. The combination of Lemma 5.4 and the last paragraph guarantees that

1. mult(f,W ) ≤ mult(g,W ), and
2. mult(g,W ) = mult(g, L1, . . . , Lk,w) for any solution w ∈W of all the Li.

If homotopy continuation is used to solve the system g augmented with L1, . . . , Lk,
then the quantity mult(g, L1, . . . , Lk,w) is the number of paths ending at w. Thus,
we find a bound for mult(f,W ). Since the bound is the same for all the generic points
of W we compute, we use it as a check on our breakup of the witness points.

6. Theoretical justification. Let f be a system as in (0.1) with not all the fi
equal to the zero polynomial. We have the decomposition (1.3) ofV(f) into irreducible
components with dimZij = i. As the output ofWitnessGenerate we get a finite set

of points Ŵ :=
∑N−1

i=0 Ŵi, where each Ŵi has a disjoint decomposition
⋃

j∈Ii
Wij+Ji

(we know this breakup exists, and it is the purpose of WitnessClassify to describe
it explicitly) with

1. Wij consisting of degZij generic points of Zij , and
2. Ji ⊂

⋃
j>i Zj .

Moreover, as shown in [40, 41], for each w ∈Wij WitnessGenerate has a number of

paths νij ≥ mult(f, Zij) ending at w. The algorithms do an explicit breakup Ŵi into
the disjoint subsets Wij and Ji. In this section we show why the algorithms work.

For the top dimension k, Jk is empty. If we move the linear space defining a
generic point x of some Zkj , we can trace out by continuation as large a finite set Skj

as we want of points of the same component Zkj , which can also be assumed generic.
Take a generic projection π : C

N → C
k+1. By the generic projection theorems of

section 5, we can assume that π is

1. one-to-one on the set Ŵ ∪⋃
j∈Ik

Skj ,
2. proper on each Zkj ,
3. gives an isomorphism of a dense Zariski open set of Zkj with its image, and

4. given x ∈ Ŵ ∪⋃
j∈Ik

Skj , π(x) ∈ Zkj if and only if x ∈ Zkj .

Now fix a component Zkj , which we can assume after renaming to be Zk1. Given a
large enough finite set of points Sk1, we can find the lowest degree polynomial pk1 on
C

k+1 vanishing on Sk1 and know that it will vanish on Zk1 and be of degree degZk1.
Using the composition pk1(π(x)) of the projection π with the polynomial pk1 we can
pick out the points Wk1 as the zeroes of pk1(π(x)) on Wk, and thus split Wk1 off from
Wk. We can proceed until we have completely broken up Wk as desired. Now a point
x ∈ Ŵk−1 is in Jk−1 if and only if it belongs to one of the Zkj . Since π(x) ∈ Zkj

for x ∈ Ŵ ∪ ⋃
j∈Ik

Skj if and only if x ∈ Zkj , we see that Jk−1 is precisely the set

of points of Ŵk−1 for which pkj(π(x)) = 0 for some j. Thus we have computed Jk−1

and therefore also Wk−1. Repeating the above argument successively for i from k− 1
to 0 gives the desired decomposition, i.e., the output of WitnessClassify.
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7. Computational experiments. In this section we first comment on the nu-
merical aspects of constructing the interpolating polynomials and then discuss several
numerical experiments using the new algorithm.

7.1. Numerics of fitting. We denote the interpolating polynomial p(x) of de-
gree d in n variables as

p(x) =
∑
|a|≤d

cax
a with

xa = xa1
1 xa2

2 · · ·xan
n

|a| = a1 + a2 + · · ·+ an
and m =

(n+ d)!

n!d!
,(7.1)

where m is the number of monomials of degree ≤ d in n variables in this dense
representation. To determine the coefficients ca we need at least m− 1 generic points
xi, i = 1, 2, . . . , s, s ≥ m − 1. The interpolation conditions p(xi) = 0 constitute a
linear system, say, Yc = 0, where c is the m × 1 column of coefficients and Y is
an s ×m matrix composed of the monomials xa

i evaluated at the generic points xi.
Since the scale of c is undetermined, we may add one generic inhomogeneous linear
equation to make the solution unique.

In our implementation we solve the linear system directly from the interpo-
lation conditions. This can be done by least squares using QR decomposition of
the matrix Y.

The accuracy of the fit depends on the accuracy of the sample points xi and
the conditioning of the matrix Y. To improve the conditioning of Y, we disperse
the sample points widely. Points close together will lead to rows of Y that are nearly
equal. For example, consider fitting a line through two points in the plane. For a given
level of absolute accuracy in the points, the error in the slope of the line diminishes
proportionately to the distance between the points. For higher degrees, the numerical
issues are thornier because the entries in Y tend to blow up (or vanish) when the
magnitude of the sample points is large (or small).

To get a sense of the problem we took (7.1) with n = 2 and ca = 1 for various
degrees. In the numerical experiment we reconstructed this polynomial from sampled
points (xk, yk) satisfying f(xk, yk) = 0, for k = 1, 2, . . . ,m − 1. The samples were
generated by choosing xk randomly in a uniform distribution from the unit circle in
the complex plane and then solving for yk by Newton’s method. We fixed c0 = 1,
formed the matrix Y, and solved Yc = 0 by classical LU decomposition, with 32-digit
multiprecision arithmetic. Since the correct values of the coefficients are known from
the outset (all ca = 1), we can evaluate the error. The experiment was repeated for
degrees from 2 to 12. The results in Table 7.1 indicate a steady worsening of the
conditioning as the degree increases, with a corresponding increase in the error of
the computed coefficients. For degrees greater than or equal to 4, the conditioning
is such that double precision calculations—instead of 32 decimal places—will give
coefficients only accurate to 10−8 or worse. Obviously multiple precision is needed for
higher degrees.

7.2. Test problems. The algorithms have been implemented in an extra module
of PHCpack [42]. Reported timings concern a Pentium III 800 Mhz processor running
Linux. The first two examples were done with standard machine arithmetic, but two
systems required multiprecision facilities to refine the witness points and to construct
the interpolating polynomials.

Except for the illustrative example, we started WitnessGenerate at the level
that corresponds with the known top dimension of the solution set of the systems
because doing otherwise would be computationally too expensive.
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Table 7.1
Under “rcond” we list the estimate for the inverse of the condition number of the linear system.

Column “error” is the maximal error in the coefficients ca.

deg #terms rcond error

2 6 2.935E-06 1.409E-27
3 10 2.331E-05 1.437E-28
4 15 1.062E-08 1.761E-25
5 21 1.226E-07 9.069E-27
6 28 3.661E-08 6.636E-26
7 36 1.639E-10 4.200E-24
8 45 1.050E-12 7.589E-22
9 55 2.486E-14 7.840E-21

10 66 6.722E-14 2.859E-21
11 78 1.359E-13 2.086E-21
12 91 2.686E-16 3.540E-19

Table 7.2
Execution summary for the illustrative example. We find one 2-dimensional component of

degree 2, four curves (three linear and one cubic), and one isolated point.

WitnessGenerate WitnessClassify

Level #x(t) #ns #Ŵ #∞ CPU time 2 1 1 1 1 0 CPU time

2 139 38 2 99 1m 31s 50ms 2 0 0 0 0 0 6s 460ms
1 38 20 16 2 4s 540ms 10 3 1 1 1 0 9s 560ms
0 20 — 14 6 2s 720ms 8 0 1 2 2 1 0ms

Total 197 58 32 107 1m 35s 300ms 20 3 2 3 3 1 16s 20ms

7.2.1. The illustrative example. Table 7.2 collects all the numbers of the flow
diagram in Figure 3.1. The computations started at level 2 and went down to level 0.
The number of paths (#x(t)) breaks up into three categories: nonsolutions (counted

by #ns), solutions that are candidate witness points (#Ŵ ), and spurious solutions
at infinity (#∞). Note that we did not record the number of paths traced by the
polyhedral homotopies to construct the start systems. The timings, however, include
also the computational work for this stage.

The second half of Table 7.2 lists the output ofWitnessClassify. The numerical
header in every column indicates the dimension of the components found. The first
nonzero entry in each column is the degree of the component, and the subsequent
entries are the number of points classified as on that component.

7.2.2. Butcher’s problem. This problem arose in the construction of Runge–
Kutta formulas; see [16, 13]. There are two versions of this problem, one with seven
and another with eight equations. The computations are summarized in Tables 7.3
and 7.4.

In both examples, standard machine arithmetic sufficed in WitnessClassify.
We see that with low degree components, this classification is swift compared to
WitnessGenerate.

7.2.3. The cyclic n-roots problems. One of the most notorious benchmark
problems in polynomial system solving is the so-called cyclic n-roots problem; see [8,
9, 10, 11, 12, 17, 21, 29]. By a trick of Canny, described in [20], we can reduce the
dimension of the cyclic n-roots problem by 1.

We are interested in the dimensions n = 4, 8, and 9, because those systems have
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Table 7.3
Execution summary for the 7-variable version of Butcher’s problem. There are three linear

3-dimensional components, two linear 2-dimensional components, and five isolated points.

WitnessGenerate WitnessClassify

Level #x(t) #ns #Ŵ #∞ CPU time 3 3 3 2 2 0 CPU time

3 247 195 3 49 8m 32s 460ms 1 1 1 0 0 0 1s 600ms
2 195 165 11 19 21s 90ms 3 1 5 1 1 0 1s 50ms
1 165 70 11 79 28s 820ms 0 0 8 1 2 0 0ms
0 79 — 7 68 11s 810ms 0 0 2 0 0 5 0ms

Total 682 435 32 215 9m 34s 180ms 5 4 16 2 3 5 2s 650ms

Table 7.4
Execution summary for the 8-variable version of Butcher’s problem. Three linear components

of dimension 3 were found, followed by a linear component of dimension 2, and then by 2 lines, and
finally 16 isolated points.

WitnessGenerate WitnessClassify

Level #x(t) #ns #Ŵ #∞ CPU time 3 3 3 2 1 1 0 CPU time

3 228 181 3 44 31m 3s 910ms 1 1 1 0 0 0 0 1s 370ms
2 181 157 9 15 25s 600ms 4 2 2 1 0 0 0 150ms
1 157 86 14 57 24s 570ms 10 0 0 2 1 1 0 760ms
0 86 — 21 65 14s 430ms 5 0 0 0 0 0 16 0ms

Total 652 434 47 181 32m 8s 510ms 20 3 3 3 1 1 16 2s 280ms

Table 7.5
Execution summary for reduced cyclic 8-roots. The interpolation was done with 32 decimal

places. Two lines and two curves of degree 8 were found. Solutions with zero components are
spurious and counted as on “toric” infinity, listed under #∞.

WitnessGenerate WitnessClassify

Level #x(t) #ns #Ŵ #∞ CPU time 1 1 1 1 0 CPU time

1 775 750 18 7 9m 40s 190ms 8 1 8 1 0 7m 29s 610ms
0 750 — 235 515 3m 27s 30ms 43 0 48 0 144 52s 800ms

Total 1525 750 253 522 13m 7s 220ms 51 1 56 1 144 8m 22s 410ms

components of solutions. Backelin [7] proved that if n has a quadratic divisor, then
there are infinitely many solutions. For prime dimensions, Fröberg conjectured and
Haagerup proved in [26] that the number of roots is always finite and equals

(
2n−2
n−1

)
.

The summary of the computation for the reduced version of the cyclic 8-roots
problem is in Table 7.5. Although the lines can be distinguished without multi-
precision arithmetic, the breakup of the remainder of the whole 1-dimensional com-
ponent into two curves of degree 8 is impossible to do with standard floating-point
double-precision arithmetic.

No multiprecision arithmetic was needed for the reduced cyclic 9-roots problem
whose 2-dimensional component breaks up in two linear components; see Table 7.6.

For n = 10, all solutions are isolated: there are 34940 of them in total. Since there
are no positive dimensional components, this problem is much easier for homotopy
continuation than the cyclic 8-roots or cyclic 9-roots problems.
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Table 7.6
Execution summary for reduced cyclic 9-roots. The 2-dimensional component of degree 2 breaks

up into 2 linear pieces. Standard floating-point arithmetic sufficed. Solutions with 0 components
are spurious and counted as on “toric” infinity, listed under #∞. The list of 730 isolated solutions
contains 650 regular and 20 quadruple solutions.

WitnessGenerate WitnessClassify

Level #x(t) #ns #Ŵ #∞ CPU time 2 2 0 CPU time

2 4044 4018 2 24 2h 33m 19s 160ms 1 1 0 2s 40ms
1 4018 3009 8 1001 16m 39s 20ms 6 2 0 136ms
0 3009 — 730 2279 36m 53s 870ms 0 0 730 0ms

Total 11071 7027 740 3104 3h 26m 52s 50ms 7 3 730 2s 176ms

7.2.4. A 7-bar mechanism. This problem tests a known result from the kine-
matics of planar linkages. Suppose we are given a collection of seven rigid planar
pieces: one quadrilateral, two triangles, and four line segments with vertices labeled
as shown at the top of Figure 7.1.

We wish to assemble the pieces so as to align A with A′, B with B′, etc. It is
not permitted to flip the pieces over, but they can be translated and rotated in any
fashion within the plane. One such assembly is shown at the right of Figure 7.1. The
problem is to find all possible assemblies. It is simplest to hold one of the links, say,
the quadrilateral, in a fixed location and determine the locations of the remaining
links.

Using the formulation in [43] for problems of this type, the problem can be for-
mulated as a system of polynomial equations:

θj θ̂j = 1, j = 1, . . . , 6,(7.2)

−a0 + a1θ1 + a2θ2 − a3θ3 = 0,

−b0 + b2θ2 + a3θ3 − a4θ4 + a5θ5 = 0,(7.3)

−c0 + a4θ4 + b5θ5 − a6θ6 = 0,

−ā0 + ā1θ̂1 + ā2θ̂2 − ā3θ̂3 = 0,

−b̄0 + b̄2θ̂2 + ā3θ̂3 − ā4θ̂4 + ā5θ̂5 = 0,(7.4)

−c̄0 + ā4θ̂4 + b̄5θ̂5 − ā6θ̂6 = 0.

The parameters a0, b0, c0, a1, a2, b2, a3, a4, a5, b5, a6 are complex numbers that describe
the shape of the links. In (7.4), āi, b̄i, and c̄i denote the complex conjugate of ai, bi,
and ci. One may notice that the coefficients in (7.4) are the conjugates of those in
(7.3). The variable θi represents the rotation of link i as a complex number. Solutions
having |θi| = 1 (all i) correspond to actual solutions of the geometric problem.

For generic parameters, this problem has 18 distinct solutions in complex space;
see [27] for a demonstration using a different formulation. For the dimensions shown
at the top of Figure 7.1, 8 of these are “real” solutions having |θi| = 1.

For certain special linkages, higher-dimensional solution sets can occur. One such
example can be constructed by making the two 4-bar linkages ABFEG and CDIHG
to be Roberts cognates [39] (see also [14, p. 340]), so that the solution set must
include a 4-bar coupler curve, having degree 6. A particular example is as follows.
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Fig. 7.1. Find all possible assemblies of pieces at the top into a 7-bar mechanism.

First, choose

b0 = 0, b2 = −0.11 + 0.49i, a2 = 0.46, a5 = 0.41,(7.5)

c0 = 1.2, α = 0.6 + 0.8i, β = e1.8i.

Then, derive the remaining parameters as

a3 = a5, γ = b2/a2, b5 = a5γ, a0 = c0/γ, a4 = |b2|,(7.6)

a1 = |a0 + a3α− a4β/γ|, a6 = |a4β − b5α− c0|.

The result is the linkage as shown in Figure 7.2. In addition to a solution curve of
sixth degree, shown on the top, the linkage also has six isolated solutions, such as the
one shown at the bottom of Figure 7.2. There are two isolated solutions associated
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Fig. 7.2. 7-bar linkage with a solution curve of degree 6, shown on the top, and six isolated
solutions, one of which is displayed at the bottom.

with each of three double points of the four-bar coupler curve. In this example, only
one of the three double points is real.

The execution summary for this problem is in Table 7.7. Standard floating-point
arithmetic is sufficient to detect that there is only one component of degree 6, but we
need an accurate interpolating polynomial to use as a filter to classify the end points
of the solution paths.

For generic choices of the parameters, there are 18 isolated solutions. For a generic
test problem, PHC finds the 18 solutions in only 4s 700ms.

8. Conclusions. We presented algorithms for finding a numerical decomposition
of the solution set of a polynomial system into irreducible components. The methods
are general and thoroughly justified by algebraic geometry. Experiments on the test
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Table 7.7
Execution summary for 7-bar mechanism. The interpolation was done with 40 decimal places.

A curve of degree 6 and six isolated points are found.

WitnessGenerate WitnessClassify

Level #x(t) #ns #Ŵ #∞ CPU time 1 0 CPU time

1 48 42 6 0 8s 670ms 6 0 42s 180ms
0 42 — 6 36 3s 700ms 0 6 290ms

Total 90 42 12 36 12s 370ms 6 6 42s 470ms

problems are very encouraging and agree with known results.
The field of numerical algebraic geometry, in which this algorithm falls, is in its

infancy, and there is much work yet to be done. To this point, we have concentrated
mainly on the geometric aspects of the algorithms, but it is clear that the numerical
analysis of the methods deserves further attention. In particular, as the degree of a
solution component increases, the numerical conditioning is seen to worsen. Hence,
methods to surmount this problem require multiprecision to adapt the accuracy to
the problem. In a related vein, the algorithm must at several points decide when
a polynomial function evaluates to zero, so a good method is needed to set the tol-
erances for such tests. Another missing piece is a method for tracking the singular
paths occurring when sampling a higher-dimensional solution set that has multiplicity
greater than 1. Finally, the current slicing method used inWitnessGenerate creates
spurious paths leading to infinity. A formulation that avoids or at least mitigates this
phenomenon will be needed for treating large problems.

Acknowledgment. We thank the referee for helpful comments.
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