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Exceptional Stewart—Gough Platforms,
Segre Embeddings, and the Special Euclidean Group*
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Abstract. Stewart—Gough platforms are mechanisms which consist of two rigid objects, a base and a platform,
connected by six legs via spherical joints. For fixed leg lengths, a generic Stewart—Gough platform
is rigid with 40 assembly configurations (over the complex numbers), while exceptional Stewart—
Gough platforms have infinitely many assembly configurations and thus have self-motion. We define
a family of exceptional Stewart—Gough platforms called Segre-dependent Stewart—Gough platforms
which arise from a linear dependency of point-pairs under the Segre embedding and compute an
irreducible decomposition of this family. We also consider Stewart—Gough platforms which move
with two degrees of freedom. Since the Segre embedding arises from a representation of the special
Fuclidean group in three dimensions which has degree 40, we consider the special Euclidean group in
other dimensions and compute spatial Stewart—Gough platforms that move in 4-dimensional space.

Key words. Stewart—Gough platform, architecturally singular, Segre embedding, special Euclidean group, nu-
merical algebraic geometry

AMS subject classifications. Primary, 65H10; Secondary, 13P05, 14Q99, 68W30

DOI. 10.1137/17M1114284

1. Introduction. A Stewart—Gough platform consists of rigid base and platform objects
connected by six legs via spherical (i.e., ball-and-socket) joints. Gough utilized one in the
1950’s [20] to mechanically test tires, while Stewart [50] devised a related kinematical arrange-
ment in the 1960’s for use as a flight simulator. There is extensive literature on Stewart—Gough
platforms and other parallel-link robots: we refer the interested reader to the book [34] and
websites [10, 35].

Mathematically, we will model a Stewart—Gough platform by fixing a coordinate system
for the base B and a coordinate system for the platform . Then we select six connection
points b1, ..., bg on the base object with respect to B and p1,...,pg on the platform object
with respect to P. The points b; and p; are connected by the ith leg, which has length d; > 0,
with spherical joints, as shown in Figure 1.1. In normal operation, the six leg lengths are
adjusted under computer control to produce coordinated motion of the platform with respect
to the base. In most situations, the mapping between the six leg lengths and the 6-dimensional
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Figure 1.1. Stewart—Gough platform.

space of rigid-body motion is nonsingular, and hence locally invertible. In particular, when
the leg lengths are held constant, the mechanism becomes rigid.

We shall refer to the position and orientation of the platform with respect to the base as
its pose. Given a pose, the relative positions of points by,...,bs and p1,...,pg are known, so
the leg lengths dq, ..., dg are also known. However, given the leg lengths, the pose may not be
unique. For generic choices of the parameters b;, p;, and d;, the polynomial system relating the
pose to the leg lengths has 40 solutions, allowing complex numbers [29, 33, 43, 44, 51]. Each
real solution among these represents a physically achievable way to assemble the Stewart—
Gough platform. Dietmaier [15] showed that parameters exist such that all 40 assembly
configurations are real.

Since a generic Stewart—Gough platform is rigid, the location of the platform object with
respect to the base can only continuously change by adjusting the leg lengths. Exceptional
Stewart—Gough platforms are those which have infinitely many different assembly configu-
rations and thus have self-motion, i.e., move even with fixed leg lengths. Some known ex-
ceptional platforms are special cases of Griffis—Duffy platforms [22, 30] and Geiss—Scheyer
platforms [19], a special case of Borel’s Fbl family of icosapods [12], as shown in [18]. A
complete classification of all exceptional Stewart—Gough platforms remains an open problem.

A subset of the exceptional Stewart—Gough platforms is called architecturally singular.
These have the property that their exceptional motion is determined by just the geometry
of the base and platform. If one chooses the leg lengths corresponding to any pose of the
platform, the architecturally singular platform still moves with at least one degree of freedom.
This may be contrasted with more general families of exceptional platforms for which only
special poses of the platform result in motion. The classification of all architecturally singular
Stewart—Gough platforms has been carried out by Karger [31, 32] (see also [38]).

In this paper, we define a subfamily of exceptional Stewart—Gough platforms, called Segre-
dependent Stewart—Gough platforms, which arise from a linear dependence among point-pairs
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under the Segre embedding related to a representation of the special Euclidean group in three
dimensions. More specifically, the Segre-dependent platforms are a subfamily of the archi-
tecturally singular platforms. One motivation for studying Segre-dependent Stewart—Gough
platforms is to highlight the algebraic geometric relationship between the Segre embedding
and Stewart—Gough platforms. Another motivation is this provides for new computational
approaches to compute exceptional mechanisms. A third motivation is to understand the
relationship between the generic number of assembly configurations and the degree of the
corresponding group, as discussed in section 5.

The remainder of the paper is organized as follows. In section 2, we formulate the assembly
of Stewart—Gough platforms as a polynomial system and observe the presence of point-pairs
under the Segre embedding and the special Euclidean group in three dimensions. Section 3
defines Segre-dependent mechanisms and describes using numerical algebraic geometry (e.g.,
see [8, 49]) to compute them. Section 4 presents our computational results for Segre-dependent
mechanisms, including platforms with two degrees of freedom and spatial platforms that move
in 4-dimensional space. The special Euclidean group in other dimensions is considered in
section 5 with Theorem 5.1 relating the degree of the special Euclidean group with the degree
of the special orthogonal group. A conclusion is provided in section 6. Information on the
computations can be downloaded from the repository at https://doi.org/10.7274/R0OR20Z94.

2. Polynomial system formulation. Following the formulations of [17, 46] with a slight
modification, we present a polynomial system for the assembly of Stewart—Gough platforms in
which each leg imposes a linear condition. Each assembly configuration can be specified as the
relative position and orientation of the platform coordinate system P with respect to the base
coordinate system B. That is, each assembly configuration of the Stewart—Gough platform
corresponds to an element of the special Euclidean group SE(3) consisting of rotations and
translations in R3.

Each element in SE(3) will be represented by a matrix M € R3*3, two vectors z,y € R?,
and a scalar r € R. The matrix M represents the relative rotation from B to P so that
M € SO(3), i.e., MT = M~ and det M = 1. The vector y represents translations from B to
P. Thus, for b € B, the corresponding point in P is p = Mb + y. This representation also
accounts for the map from P to B which is given by M7 and x = —M7y so that y = —Mz.
That is, the corresponding point top € Pis b = MTp+z € B so that M(MTp+x)+y = p and
M7 (Mb+y)+2z = b. In particular, we must have 272 = y*y. We depart from the formulation
provided in [17, 46] by defining r = —z72/2 = —yTy/2 so that 27z = y’'y = —2r, which is
selected to simplify computations later.

Putting everything together, SE(3) is represented by the real solution set of the polynomial
System
[ MTM —1 7

MMT -1
y+ Mx
(2.1) fryz,y, M) = $+MTy )

2r + alx
2r +yTy
det M —1 |
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where I is the 3 x 3 identity matrix. By treating the variables in C'6, the solution set of f = 0,
denoted by S€3 C C'9, is irreducible with dim S5 = 6 and deg S€3 = 40. In particular, using
this representation of SE(3), the algebraic set S€3 is the Zariski closure in C'¢ of SE(3), and
SE(3) is the real subset of S&3, i.e., SE(3) = S€3 N RIS,

The distance constraint imposed by each leg corresponds to the intersection of S€3 with
a hyperplane as follows. Since the ith leg connects b; with p;, we can measure distance by
placing them in a common coordinate system. Since b; € B corresponds with Mb; +y € P,
the leg length condition

(Mb; +y —pi)" (Mb; +y —pi) = df
on SE&3 is equivalent to
i = b] by +pj pi +26] My — 2p]y — 2p] Mb; +y"y

(2:2) = b} bi +p pi — 267 « +pj y +pi Mb; + 7).

Let ¢; = (bl'b; +pI'p; —d?)/2. Hence, if points b; and p; are given, then knowing the leg length
d; > 0 is equivalent to knowing ¢;. With this, (2.2) becomes

(2.3) r+ biTa: + p;fpy + p;prbi =,

which is a linear equation in (r,z,y, M) € SE€3. In fact, the set of coefficients on the left-hand
side of (2.3) is the Segre embedding of the point-pairs b; and p;, where the Segre embedding
c:C3xC— Cl%is

(2.4)

ola,B)=]1 a1 az a3 B B2 Bz o1fr 2B azfi a1fz Bz azfe c1fz 2B azfs |.

Suppose that we are given parameters b;, p;, and ¢; for a Stewart—Gough platform. Let
Le C C'6 denote the linear space arising from the intersection of the six hyperplanes defined by
(2.3). Then assembling the corresponding Stewart—Gough platform is equivalent to computing
SE3 N Lg, which generically consists of deg S€3 = 40 points.

As an illustration of this formulation, the following examples show that one is able to
design mechanisms with certain properties or show that none exists.

Ezample 2.1. To show that there does not exist an exceptional Stewart—Gough platform
such that the motion is a linear translation, we can, without loss of generality, consider
all mechanisms which move along the curve {(—22/2, —zey,ze,I) | z € C} C S&3, where
e; = [1 0 0)7. Thus, to reach a contradiction, we assume that there exist constants b;, p;, and
¢; such that

—22/2 + (pi1 — bi1)z + p?b,; =Y

for all z € C. This is impossible since the coefficient of 2?2 is nonzero.

Ezxample 2.2. There exists exceptional Stewart—Gough platforms such that the platform
moves along a circle keeping the same relative rotation with respect to the base [40, Thm. 2].
For example, to move along a unit circle in the (y1,y2)-plane, we consider the curve C' =
{(=1/2,—y,y,I) | y? +y3 = 1,y3 = 0} C SE3. We aim to find parameters b;, p;, and ¢; such
that

—1/2 4 (pi1 — bt )y1 + (piz — bi2)y2 + p; by = 4
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whenever y% + y% = 1. Thus, we need p;1 = bj1, pi2o = by, and £; = p;fpbl- — 1/2. These
parameters are physically meaningful with

di = +/1+ (bis — pi3)2 > 0.

Thus, the family of exceptional Stewart—Gough platforms which can move along the curve C
is

{(bl,pl,gl,...,b(j,pﬁ,eﬁ) | bij = Dij and fi:p?bi—l/2 for i = 1,...,6,j = 1,2},

one of which is shown in Figure 2.1.

Figure 2.1. A Stewart—-Gough platform with motion along a unit circle.

3. Segre-dependent Stewart—Gough platforms.

3.1. Definition of Segre-dependent. Given parameters b;, p;, and ¢;, the six hyperplanes
defined by (2.3) generically define a codimension 6 linear space Lg C C'6. If the parameters are
selected so that codim L < 6 and SE3N Lg # 0, then we trivially have that the corresponding
Stewart—Gough platform has a rank deficient Jacobian matrix. Therefore, we say that b;
and p; form a Segre-dependent Stewart—Gough platform if, for o as in (2.4),

o(b1,p1)
(3.1) rank : < 6.
o (bs, pe)
For any such (b1, p1, ..., bg, ps) that is real, we may pick any point in SE(3) and generate a com-

patible real set of leg lengths d; using (2.2). Since the resulting Stewart—Gough platform has
a rank deficient Jacobian, every Segre-dependent Stewart—Gough platform is architecturally
singular. For architecturally singular Stewart—Gough platforms that are not Segre-dependent,
see Remark 4.11, [38, Cor. 1], and [45, Thm. 4.1].

Remark 3.1. Generically, every 6 x 6 submatrix of the the 6 x 16 matrix arising from
the Segre embedding ¢ in (2.4) has rank 6. In order to be Segre-dependent, every 6 x 6
submatrix must have rank at most 5. For a general mechanism from the Geiss—Schreyer
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family of exceptional mechanisms [19], precisely (2) = 28 of the 6 x 6 submatrices have rank
5 arising from the following 6 x 8 submatrix having rank 5:

[ D12 b1z biapi1r bispir biapiz bispiz biapiz bispis
boa b3 boopar  bazpar  boopoe  bogpao  boopas  bazpos
bs2 b33 b3zaps1 b3spar bsapsa baszpsz  b3apss  bszpss
bya bsz bazpsr  bazpsr baopaz  bagpaz  bazpsz  bazpas
bsa  bs3 bsaps1 bsapsi bsops2  bs3ps2  bsapss  bsapss
be2 b3 be2ps1 besper be2be2  bespe2  be2pes  be3pes

Since this mechanism is not architecturally singular and hence not Segre-dependent, the ex-
istence of a 6 x 6 submatrix of rank 6 was assured. Nonetheless, this shows that the location
of the points is not in general position with respect to the Segre embedding. Since the Geiss—
Schreyer family is a special case of Borel’s Fbl family of icosapods [12], as shown in [18], we
note that every 6 x 6 submatrix generically has rank 6 on Fbl.

We generalize condition (3.1) in the following problem.

Problem 3.2. For 1 <m < n, let oy : C™ x C" < COPDOH) pe the Segre embedding.
For all N >3 and 2 < R < min{N, (m+ 1)(n+ 1)}, compute an irreducible decomposition of
the set of points (by,p1,...,bn,pN) € (C™ X (C”)N such that

Um,n(blypl)
(3.2) rank : < R.

Om,n (bN7 pN)

As a physical interpretation of this problem, the values of m and n correspond to the
dimension of the spaces for the base and platform points. The number N is the number of
legs so that the matrix in (3.2) has size N x (m + 1)(n + 1). The number R is the requested
upper bound on the rank which is at most the minimum of the number of rows and columns.
For example, m = 2, n =3, N = 6, and R = 5 correspond to Segre-dependent mechanisms
with at least one degree of freedom with six legs having a planar base and a spatial platform
(or, equivalently, a spatial base and a planar platform).

If R = 1, then all points (b;,p;) are equal, which physically corresponds with all legs
coinciding. In the general case, a matrix has rank at most R if and only if every (R+1)x (R+1)
minor vanishes so that constructing the ideal for this problem is trivial. Computing the
geometric irreducible decomposition corresponds with computing the prime decomposition of
this ideal generated by such minors. In the following, we describe how to compute such a
decomposition for specific instances using numerical algebraic geometry.

3.2. Computing using numerical algebraic geometry. Since the total number of minors,
namely ( R]il) . ((m%)ﬁ”l)), can be large, we prefer to employ a null space approach [4] to
solve relevant cases of Problem 3.2 in section 4. Using the notation of Problem 3.2, we let
A:= A(b1,p1,...,bn,pn) be the N x(m+1)(n+1) matrix in (3.2), and we let Dy := N—R > 0
and D, := (m+1)(n+1)— R > 0. Thus, rank A < R if and only if the left null space of A has

dimension at least Dy, which happens if and only if the right null space of A has dimension at
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least D,. Let By € CN*N and B, € CmTD0+Dx(m+1)(n+1) 16 general, and let A, € CPex R
and A, € C**Pr he matrices of indeterminants. With this setup, we have

{(blapl)' "7bN7pN) ‘ rankA(b17p17"')bN7pN) S R}

= {(blap17"‘7bN7pN) ’ |: I Aé i| ‘BE'A(blapla"wava) = 0 for some Af}

I

A(bluplv"‘7bNapN)'Br' A

:{(blvpl)"'7bN7pN) = 0 for some AT}

The choice between the left and right null spaces is based on the relative sizes of N and
(m+1)(n+1).
For concreteness, we will formulate the remaining based on using the left null space, say

(3.3) F(bi,p1,...,bn.pn,Ag) = [ I Ag |- By~ A(b1,p1,-..,bn,pN).

Treating F' as a vector and the variables in two groups, (b1, p1,...,bx,pn) € (C™ x C™)N and
Ay € CPexE the system F consists of (m -+ 1)(n + 1) Dy polynomials:

e Dy, polynomials of multidegree (0, 1),

e (m + n)Dy polynomials of multidegree (1,1), and

e mnD, polynomials of multidegree (2,1).
Let V(F) be the set of solutions of F' = 0. For the projection

77(617])17 .. '7bN7pN7A[) = (b17p17’ . '7bN7pN)7

we compute an irreducible decomposition of X = 7(V(F')) using numerical algebraic geometry.
In numerical algebraic geometry (e.g., see [8, 49]), an irreducible decomposition of an
algebraic set Y € CK is computed via a union of witness sets forming a numerical irreducible
decomposition. A witness set for an irreducible algebraic set Z C CX of dimension k and
degree d is a triple Z = {f, L, W}, where
e (witness system) f is a polynomial system such that Z is an irreducible component of
V(f) c CK,
e (witness slice) L is a system of k general affine linear polynomials in K variables, and
e (witness point set) W = Z N V(L) € CK which consists of d points.
Hence, if Y = Y7 U---UY, is an irreducible decomposition with corresponding witness set
Vi, ..., Yy, then the formal union Yy U---U)), is a numerical irreducible decomposition for Y.
One option for computing a numerical irreducible decomposition for X, as first described
in [23], is to first compute a numerical irreducible decomposition for V(F') treated as an
algebraic set in the affine space (C™ x C™")V x CP*E, To do so, we may begin with the
regenerative cascade [27], which uses homotopy path tracking to compute a finite superset,
say ﬁ/\k, of the set of isolated points of V(F)NV(¢y,..., ), say W, for all possible values of k,
where each ¢; is a general affine linear polynomial. Then, for each k, the local dimension test
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[3] applied to each point in ﬁ/\k identifies which ones are isolated points, thereby extracting
W from Wj,. Finally, monodromy [48] and a trace test [47] are used to partition Wj into a
union of witness point sets for the irreducible components of V(F) of codimension k.

From this computed numerical irreducible decomposition for V(F'), a numerical irreducible
decomposition for X is computed as follows. For each irreducible component Z C V(F') with
witness set Z, a (pseudo)witness set for 7(Z) is computed via homotopy continuation, as
described in [26]. The projection membership test of [25] yields the irreducible components
of X since they are the inclusion maximal elements of

{F(Z ) ‘ Z is an irreducible component of V(F' )} .

An alternative option for computing a numerical irreducible decomposition for X is to
utilize the multihomogeneous regeneration presented in [24]. Since only the image under the
projection map w is of interest, one can simplify this computation using [1] by not having
to consider all possible slices in the auxiliary variables A,. This regeneration procedure pro-
duces unions of witness point sets which can be decomposed into witness points sets for the
irreducible components using monodromy and a trace test, as above.

These techniques depend upon the selection of elements that are general in a family,
i.e., outside of a proper algebraic subset of the family, and also depend on path tracking in
homotopy continuation. In finite precision arithmetic, both processes may fail to achieve the
probability-one success rate predicted by theory based on selecting elements from a continuum
and exact path tracking. To enhance reliability in our work, we employ adaptive step-size
and adaptive precision path tracking methods [5, 6, 9], and we select general elements over C
by using a random number generator with at least as many digits as the adaptive precision
encounters. Moreover, the trace test [47] provides an a posteriori check that complete witness
point sets have been computed, so it flags missing witness points. Finally, by keeping all of
the points (b;,p;) fully general, we maintain symmetry in the solution set, as shown in the
computations below.

4. Computational results. The following were obtained using the numerical algebraic
geometric methods described in section 3.2 using the software package Bertini [7]. The
computations were performed in parallel using a total of 64 cores in four AMD Opteron 6378
2.4 GHz processors. To illustrate computing times, Computations 4.9 and 4.12 each took
about 2.5 hours, while Computation 4.7 took about three days.

From the witness sets (see section 3.2) computed in these computations, exact defining
equations can be recovered [2], which allows each component computed to be certified, e.g.,
using Macaulay?2 [21].

4.1. Planar-planar with six legs in SE(3). A planar Stewart—Gough platform has both
bi,...,bg and p1,...,pg lying in a plane. Since we are free to independently select the coor-
dinate frame of references B and P, we can, without loss of generality, assume that the third
coordinate of each point is 0, i.e., b;,p; € C2. Thus, planar Stewart-Gough platforms which
are Segre-dependent correspond to solving Problem 3.2 with N =6, R=5, and m =n = 2.
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In particular, for the 6 x 9 matrix

bi1 bz pin piz buipn bizpin bupiz bizpie
ba1 b2 po1 P22 b2aipar boopor boipoe  boopao
bs1 b3z p31 P32 b3ips1 bsapsr b3ipsz  biaps2
ba1r ba2 pa1 pa2 baipar baspar baipaz  baopas
bs1 bs2 ps1 Ds2 bsipst bsapsi bsipse  bsaps2
be1 be2 Dpe1 Doz be1pe1 be2psr  be1Pe2  be2pe2

(4.1) A=

—_ = = =

the problem is to describe the irreducible components of the set of points (b1, p1, ..., bg, ps) €
(C%x C?)% such that rank A < 5. Following section 3.2, we obtain the following decomposition.

Computation 4.1. The solution to Problem 3.2 when N =6, R =5, and m =n = 2 is

provided by the following list of irreducible components:

1. (Two legs coincide) (g) = 15 drreducible components of dimension 20 and degree 1
such that, for distinct i,j € {1,...,6},

e by =0b; and p; = p;.

2. (General planar case) One irreducible component of dimension 20 and degree 306. In
particular, the projection of this component onto (b1, ..., bg, p1,...,ps) € C* is gener-
ically one-to-one. Thus, on a Zariski dense subset (by,...,bg,p1,...,ps) € R?, there
is a unique (ps,ps) € R* yielding a Segre-dependent planar Stewart-Gough platform.

The general planar component in item 2 has been geometrically described [16, 36, 39, 45].
Moreover, with a left null vector A = [A1,..., \g] € P?, the system A - A = 0 consists of nine
linear equations in the unknowns

ALy -5 A6, P51A5, P52A5, D616, D62 A6-

As long as As, Ag # 0, which happens generically, this determines unique values of ps, pg.

If we treat (by,...,bs,p1,...,06) € (C?)'2 this yields a term in the multidegree of this
general planar component. Since two linear constraints are placed on each b1, ..., bg, p1, ..., P4
and none of ps, pg, following the notation of [24], we can write this term as

10(2:2:2:2,2,2,2,2,2,2,0,0)

In fact, due to symmetry, this actually yields a family consisting of 2 - (g) = 30 terms of the
multidegree where the 2 corresponds with selecting either the base or the platform and the
binomial coefficient corresponds to selecting two of the six locations which have no constraints.

Based on symmetry, this is just one of the 15 different families of codimension 20 linear



188 J. D. HAUENSTEIN, S. N. SHERMAN, AND C. W. WAMPLER

slices in (C?)'2. The following table summarizes all terms of the multidegree of this general
planar component.

Term in Total number of
multidegree elements in family
1e(2:2:2:2,2,2,2,.2,2,2.0,0) 9. (g) — 30
10(2:2,2,2,2,2,2,2,2,1,1,0) 9. ((13) ) (g) 120
10(22:2,22,2,22,1,1,1,1) 9 (2) 30
3,(2:2,2:2,2,1,2,2,2,2,1,0) 9. (?) ) (?) 60
9,5(2:2:2,2,1,2,2,2,2,2,1,0) 9. (fli) . (?) 60
1e0(2:2:2,1,2,2,2,2,2,2.1,0) (615) . (?) . ( 240
90,(2:2:2,2,2,1,2,2,2,1,1,1) 9 (g) ) G») 120
10(22,1,22,2,22.2,1,11) 9. (g) ) G) 120
1ew(2:2:2:2,2,0,2,2,2,2,2,0) (?) 6
0o (2:2:2,2,0,2,2,2,2,2,2,0) (ﬁ) ) (?) 30
9,5(2:2:2,2,2,0,2,2,22,1,1) 9. (g) ) (%) 60
10(2:2,2,02,2,2.2,2,2.1,1) 9. (g) ) (11) 120
30(2:2:2,2,1,1,2,2,22,1,1) (g) 15
9(2:2:2,1,2,1,2,2,22,1,1) 6 . (2| . (4 — 120
15(2,2,1,1,2,2,2,2,2,2,1,1) 2)(6)(%)(4)(1> — 90
2) " \2

Ezxample 4.2. To demonstrate item 2, we consider the following sufficiently general collec-
tion of points:

b = (070)7 by = (170)7 by = (27 1)7 by = (37 _1)7 bs = (_273)7 be = (_17 _2)7
p1 = (O>O)a P2 = (2’0)7 p3 = (17 1)7 Pa = (_27 _3)'

Using the “linearity” of A\ - A, as described above, it is easy to check that the unique planar
Segre-dependent Stewart—Gough platform has

ps = (—4/9,-2/3) and ps = (10/37,8/37) with left null vector A = [84,7, —28, —8, —18, —37],
as shown in Figure 4.1.

Remark 4.3. One family of planar Stewart—-Gough platforms that has been extensively
studied is the family of Griffis-Duffy platforms [22]. In this family, the base and platform are
triangles with connection points at each vertex and along each edge where the legs connect

a vertex to a point on an edge in a cyclical fashion. We take the following collections to be
collinear:

{b1,b2,b3}, {b3,ba,b5}, {bs5,b6,01}, {p2,p3,04}, {P4,05,06}, {P6:p1,P2}

A generic element in this family is rigid with 16 assembly configurations. The following derives
the family of Segre-dependent Griffis—-Duffy platforms, which is equivalent to the family of
exceptional Griffis—Duffy platforms derived using the results of [13, 30, 36, 45].
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Figure 4.1. A planar Segre-dependent Stewart—Gough platform.

Suppose that we construct a Griffis—Duffy platform where

(4.2) p1=pep1 + (1 — p1)p2, p3 =pops+ (1 — p3)pa, ps = papes + (1 — ps)pe,
by = bipg + (1 — p2)bs, by = bypg + (1 — pg)bs, b = bspue + (1 — pg)b1.

Then the platform is Segre-dependent if and only if one of the following holds:
1. b; = b; for (i,7) = (1,3), (3,5), or (1,5);
2. p; = pj for (i,j) = (2,4), (4,6), or (2,6);
3. by, b3, b5 and po, p4, pg are both collinear;

pa e — 1 G} ps —1 ]
R = det + det
) (1) = papiops {1_% us—l-ue—l} [a 145 6 [1—u2 ot g — 1
' Ha p3 —1 I pe — 1
— det det =0
[1—;@ uz-l-u:a—l} [1—u5 u5+u6—1]

The quintic polynomial R(u) in item 4 is linear in each y;. In particular, for general pq, ...,
us € R, there exists a unique ug € R such that every by, p2, b3, p4, bs, pg € R? with (4.2) yields
a Griffis—Duffy platform that is Segre-dependent. We illustrate by considering the sufficiently
general values

w1 =1/3, uo =4/5, ug =1/4, pgy = 2/7, and pus = 3/11.

The unique value of g satisfying item 4 is ug = 10/11. Hence, every Griffis—-Duffy mechanism
built from these values of u; will be Segre-dependent. We illustrate this with two examples
presented in Figure 4.2:

(a) by = (070)7 by = (07 1)7 bs = (_272)’ b2 = (070)’ bgs = (270)’ and pg = (3’ 1);

(b) b1 =(0,0), b3 = (0,5), b5 = (=2,2), p2 = (0,0), pa = (1/2,0), and ps = (3, 1).

Ezample 4.4. Griffis-Duffy Type I platforms [30] are Griffis-Duffy platforms (see Re-
mark 4.3) whose base and platform consist of equilateral triangles with connection points
at the midpoint of each edge, i.e., u; = 1/2. Figure 4.3 shows an example, as does one of the
seven pictures featured on the main cover of the SIAM Journal on Applied Algebraic Geometry
(SIAGA). Every such mechanism is Segre-dependent by item 4. In fact, taking the midpoints
of each edge for any two triangles will yield a Segre-dependent mechanism.

4.2. Planar-planar with six legs in SE(3) and two degrees of freedom. In section 4.1, the
exceptional mechanisms described generically had self-motion with one degree of freedom. We
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(a) (b)

Figure 4.2. Two mobile Griffis—-Duffy platforms.

Figure 4.3. Griffis—Duffy Type 1 platform with its coupler curve.

now consider planar Segre-dependent Stewart—Gough mechanisms with at least two degrees
of freedoms. With the setup from section 4.1, this means that the 6 x 9 matrix A in (4.1) has
rank at most 4, i.e., the dimension of the left null space of A is at least 2. We note that all

nonarchitecturally singular Stewart—Gough platforms with two degrees of freedom are given
in [42, Thm. 5].

Computation 4.5. The solution to Problem 3.2 when N =6, R =4, and m =n = 2 is
provided by the following list of irreducible components:
1. (Three legs coincide) (g) = 20 irreducible components of dimension 16 and degree 1
such that, for distinct 1,7,k € {1,...,6},
e b =0b; = by and p; = p; zﬁp;i.
2. (Two pairs of legs coincide) % = 45 irreducible components of dimension 16 and
degree 1 such that, for distinct i,j,k, ¢ € {1,...,6},
e b, =bj, by = by, pi = pj, and py = py.
3. (Five points coincident) 2 - (g) = 12 drreducible components of dimension 16 and
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degree 1 such that, for distinct h,i,j,k,¢ € {1,...,6},
[ bh:bi:bj:bk:bg or
® Ph = Di = Pj = Pk = De¢-
4. (Four point-pairs: one set coincident and one set collinear) 2 - (Z) = 30 drreducible
components of dimension 16 and degree 3 such that, for distinct i,j,k, 0 € {1,...,6},

Pj —Di
o bj=0bj=by =0 andrank | pp —p; | <1or
be —Di
[ b, — b
e rank | by —b; | <1 and p; = pj = pr, = pe.
| be—b;

5. (Siz point-pairs: both collinear) One irreducible component of dimension 16 and de-
gree 25 such that

[ b2 — b p2—p1
bs — by P3 —P1
erank [ by — by | <1 andrank | ps—p1 | <1.
bs — b1 P5 — P1
| bs — b1 P6 — P1

6. (Five point-pairs: both collinear) (g) = 6 wrreducible components of dimension 16 and
degree 93 such that, for distinct h,i,j,k, ¢ € {1,...,6},

[ bz‘ — bh Pi — Ph
e rank bj = bn < 1, rank Pj=Ph | < 1, and, for a, B € {1,2},

by, — b, Pk — Ph
| be — by | Do — Dh

[ 1 by prg braPri bnibh2 broPhi bhopne

1 bia pig biapit  biapiz  biapin biapio

rank | 1 bjo pjg bjipj1 bjipj2  bjapj1 bjopja | < 3.
1 bra pPrg bkiPr1 bribke  Oropr1 brobr2
L 1 ben peg boiper  beiprz beaper  beapeo

7. (Siz points collinear) Two irreducible components of dimension 16 and degree 583 such

that
by — by
by — b1
e rank | by — b1 | <1 and, for a € {1,2},
bs — b1
be — b1

rank[ 1 b:oz p:1 P2 b:l * P b:l *P:2 b:2 *P:a b:Q *D:2 ] S 4

or
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P2 —p1
pP3 — D1
e rank | ps—p1 | <1 and, for a € {1,2},
P5 —DP1
Pe —P1

rank[ 1 b1 b2 pa bi-p1 bi-p2 b2-p1 ba2-p2 ] <4,

where 1 is the vector of 1’s and “” corresponds to all values 1 to 6.

8. (Two legs coincide and three point-pairs: one set coincident and one set collinear)
2. (g) . (g) = 120 irreducible components of dimension 15 and degree 2 such that, for
distinct h,i,j,k, 0 € {1,...,6},

® by =0b;, bj = by = by, pr, = pi, andrank{pk—pj } <1 or
Pe — Dy
by, — b;
e by = b;, rank <1, pn = pi, and pj = py = py.
by — b;
9. (Two legs coincide and four point-pairs: both collinear) (2) = 15 irreducible compo-
nents of dimension 15 and degree 24 such that, for distinct g, h,i,j,k, ¢ € {1,...,6},

bj — b; Dj — Di
® by =bp, rank | b —b; | <1, pg = pp, rank | pr —p; | <1, and, for o, €
by — b; Do — Di
{1,2},
1 bia pig biapin  bapie  bi2pin  biapio
rank 1 bja pjg bjipj1 bjipj2  bjepj1  bjapje <3

1 bka DPrg briPr1 briPrk2  broDr1  broDr2
1 bia peg boapea  bapez  beper  bepe

10. (Two collections of three point-pairs: one coincident and one collinear) (g) = 20 wrre-
ducible components of dimension 14 and degree 4 such that, for distinct g, h,i,j,k, £ €

1,...,6},

o by = by, = b;, rank[bk_bj

<1, rank Ph— Pg <1, and p; = px, = py-
by — b;

Di — Pg

4.3. Planar-spatial case with six legs in SE(3). For a Stewart-Gough platform where
one body is planar and one is spatial, we can, without loss of generality, assume that the
points in the base by, ..., bg lie in C?, i.e., the third coordinate of each b; is zero. Thus, solving
Problem 3.2 with N = 6, R = 5, m = 2, and n = 3 requires computing where the 6 x 12
matrix

b1 bi2 p11 pi2 P13 bupin bizpin buipiz biapiz biip1z bi2pis
ba1 ba2 p21 P22 P23 boipa1 boopor boipae  boopoo  b21paz boopos
bs1 bs2 p31 P32 P33 b3ips1 bsaps1 bsips2 bsaps2 bsipss bsapss
byt baz pa1 paz Pa3 baipar bazpsr baipaz baopaz  ba1paz  bazpas
bsi bs2 ps1 ps2 P53 bsipsi bsapsi bsips2  bsopse bsipss bsopss
be1 be2 P61 P2 Pe3 beiber be2pe1  beipe2 be2be2  be1pe3  be2pes

(43) A=

—_ = e e
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has rank at most 5.

Computation 4.6. The solution to Problem 3.2 when N =6, R=5, m =2, andn =3 is
provided by the following list of irreducible components:

1.

2.

7.

(Two legs coincide) (g) = 15 irreducible components of dimension 25 and degree 1 as
in item 1 of Computation 4.1.
(Three point-pairs: base coincident, platform collinear) (g) = 20 srreducible compo-
nents of dimension 24 and degree 3 such that, for distinct i,j,k € {1,...,6},
e by =10; = by andrank[pj—pi <1.
Px — Di |
(Three point-pairs: base collinear, platform coincident) (g) = 20 irreducible compo-
nents of dimension 23 and degree 2 such that, for distinct i,j,k € {1,...,6},

bj — b;

opi:pj:pkandrank[b <1

k— b |
(Four point-pairs: base coincident, platform coplanar) (2) = 15 irreducible components
of dimension 23 and degree 3 such that, for distinct i,j,k,¢ € {1,...,6},

pj —Di
e by =0b; =b,=by and rank | p, —p; | <2.
Pe —Di
(Four point-pairs: both collinear) (2) = 15 drreducible components of dimension 23
and degree 42 such that, for distinct i, j,k,¢ € {1,...,6},
bj — bi Dj —DPi
erank | by —b; | <1,rank | pr —p; | <1, and, fora € {1,2} and 8 € {1,2,3},
be — b D¢ — Pi

bia Pig bitpit  bitpi2 bipis biepit biopiz biopis
bja pjs bjipj1  bjipj2  bjipjz  bjapj1 bjapj2 bjap;3
bka Prg bripk1 bripk2  bripks  brepk1  brepke  brapks
beo Peg boper beipez beipes  beaper  beapez beapes

< 3.

rank

—_ = =

. (Five point-pairs: base collinear, platform coplanar) (g) = 6 irreducible components of

dimension 23 and degree 216 such that, for distinct h,i,j,k, ¢ € {1,...,6},

b; — by, Pi — Dh
e rank bj = b < 1, rank Pj = Ph < 2, and, for a € {1,2} and distinct

br — bp, Pk — Ph
by — by Pe — Dh

67’7 c {17273}7
1 bha DPng Phy bniPn1 bnabre  bniPnz  bnobri  bropn2  bnobhs
1 bia pig Py buapin bz biapis  biepin biapiz biabis

rank | 1 bja Pjg Pjy bjubj1 bjipje bjipjz  bjapji bjepje bjapyz | < 4.
1 bra Pr3 DPrky briPr1 bribre  briPks  brapr1 brobre  bropis
1 bea Dpeg Pey beper  bopez  beipes  beaper beapez beapes

(Sixz base points collinear) One irreducible component of dimension 23 and degree 369
such that
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be — by
by — by
e rank | by — by | <1 and, for a € {1,2},
bs — b1
bg — b1

rank [ ]- b:a p:l p:2 pd b:l ° p:l b:l N P:2 b:l ° ps b:2 ’p:l b:2 'p:2 b:2 - p:3 ] S 57
where 1 is the vector of 1’s and “” corresponds to all values 1 to 6.

8. (Planar-planar) One irreducible component of dimension 23 and degree 1700 as in
item 2 of Computation 4.1.

4.4. Planar-spatial with six legs in SE(3) and two degrees of freedom. Similarly to
section 4.2, we next consider where the 6 x 12 matrix A in (4.3) has rank at most 4.

Computation 4.7. The solution to Problem 3.2 when N =6, R=4, m =2, andn = 3 is

provided by the following list of irreducible components:

1. (Three legs coincide) (g) = 20 irreducible components of dimension 20 and degree 1 as
wn item 1 of Computation 4.5.6 \

2. (Two pairs of legs coincide) (2)2# = 45 irreducible components of dimension 20 and
degree 1 as in item 2 of Computation 4.5.

3. (Siz base points coincident) One irreducible component of dimension 20 and degree 1
such that

® by =by =bg =0by = b5 = bg.

4. (Five point-pairs: base coincident, platform coplanar) (g) = 6 drreducible components
of dimension 20 and degree 6 as in item 3 of Computation 4.5.

5. (Four point-pairs: base coincident, platform collinear) (2) = 15 irreducible components
of dimension 20 and degree 6 as in item 4 of Computation 4.5.

6. (Four point-pairs: base collinear, platform coincident) (2) = 15 irreducible components
of dimension 19 and degree 3 as in item 4 of Computation 4.5.

7. (Two legs coincide and three point-pairs: base coincident, platform collinear) (g) . (g) =
60 irreducible components of dimension 19 and degree 3 as in item 8 of Computa-
tion 4.5.

8. (Five point-pairs: both collinear) (g) = 6 irreducible components of dimension 19 and
degree 186 as in item 6 of Computation 4.5.

9. (Siz point-pairs: base collinear, platform coplanar) One irreducible component of di-
mension 19 and degree 2547 as in item 7 of Computation 4.5.

10. (Five platform points coincident) (g) = 6 irreducible components of dimension 18 and
degree 1 as in item 3 of Computation 4.5.

11. (Two legs coincide and four point-pairs: base coincident, platform coplanar) (2) =15
irreducible components of dimension 18 and degree 3 such that, for distinct g, h, i, j, k,

ted{l,...,6},
Pj — DPi
[ ] bg :bh, biij Zbk Zbg, pg = Dh, and rank Pk — Di S 2.
Pe — Di

6
12. (Two collections of three point-pairs: base coincident, platform collinear) (2%) = 10 rre-
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ducible components of dimension 18 and degree 9 such that, for distinct g, h,,j,k, 0 €
{1,...,6},
o by =by =b;, b; = by = by, rank[ph_pg ] <1, andrank[pk_pj ] <1.
Pi — Dg Pe — Dy
13. (Platform coplanar, two legs coincide, and four point-pairs: both collinear) (Z) =15
irreducible components of dimension 18 and degree 50 as in item 9 of Computation 4.5.
14. (Siz point-pairs: both collinear) One irreducible component of dimension 18 and de-
gree 75 as in item 5 of Computation 4.5.
15. (Siz platform points collinear) One irreducible component of dimension 18 and de-
gree 1329 as in item 7 of Computation 4.5.
16. (Two collections of three point-pairs: one set coincident and one set collinear) (g) =20
irreductble components of dimension 17 and degree 6 as in item 10 of Computation 4.5.

Remark 4.8. Items 6, 8, 9, 10, 13, 14, 15, and 16 of Computation 4.7 are all planar-planar
mechanisms. Moreover, for item 3, even though the generic rank of the 6 x 12 matrix A
in (4.3) is 4 corresponding with a two-dimensional left null space, a generic element of this
family actually has three degrees of freedom. This does not occur in any other family in the
computations presented throughout this section; i.e., for the other families, the generic dimen-
sion of the left null space of the matrix in (3.2) is equal to the mobility of the corresponding
Stewart—Gough platform.

4.5. Spatial-spatial case with six legs in SE(3). For spatial Stewart—Gough platforms,

we consider where the 6 x 16 matrix A, namely
(4.4)

1 b1 biz biz pix pi2 P13z buipir biepir bizpir biipiz biepiz bizpiz biipiz  biepis  bizpis
ba1 b2z b2z p21 P22 D23 baipar b2ap2r b23par b2ipaz baapaz b2spaz b2ipas b2opas baspas
b1 b3z b3z P31 p32 P33 baipst bsepsr bsspar bsips2  bsapsa  baspsa baipss  bsapss  bsspss
bar baz baz pa1 paz P43 baipar bazpar bazpar baipaz baopaz  bazpaz baipaz  baopaz  bazpas
bs1 bs2 bss ps1 Ps2 D53 bsipsi bsapsi bsapsi bsips2 bsaps2 bsaps2 bsipss bsapss bsapss
be1 be2 bes pe1 Ps2 Pe3 beiper be2per  besper beiDe2 be2ps2  bespsz  beipes  bez2pes  bespes

— = =

has rank at most 5.

Computation 4.9. The solution to Problem 3.2 when N =6, R =5, and m =n = 3 is

provided by the following list of irreducible components:

1. (Two legs coincide) (g) = 15 irreducible components of dimension 30 and degree 1 as
in item 1 of Computation 4.1.

2. (Three point-pairs: one set coincident and one set collinear) 2 - (g) = 40 wrreducible
components of dimension 28 and degree 3 corresponding to items 2 and 3 of Compu-
tation 4.6.

3. (Four point-pairs: both collinear) (2) = 15 drreducible components of dimension 27
and degree 72 as in item 5 of Computation 4.6.

4. (Four point-pairs: one set coincident and one set coplanar) 2 - (2) = 30 irreducible
components of dimension 26 and degree 3 as in item 4 of Computation 4.6.

5. (Five point-pairs: one set collinear and one set coplanar) 2 - (g) = 12 drreducible
components of dimension 26 and degree 444 as in item 6 of Computation 4.6.

6. (Planar-planar) One irreducible component of dimension 26 and degree 8445 as in
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item 2 of Computation 4.1.
7. (Siz points collinear) Two irreducible components of dimension 25 and degree 924 as
in item 7 of Computation 4.6.

We note that the “2” in several of these families arises due to symmetry of swapping the
base and platform.

Remark 4.10. Theorem 2 of [31] states that every architecturally singular Stewart—Gough

platform with six distinct legs satisfies at least one of the following conditions:

e by,...,bg are coplanar;

® pi,...,pe are coplanar;

e four points of by, ..., bg are collinear;

e four points of pq,...,pg are collinear.
This theorem must trivially hold for Segre-dependent Stewart—Gough platforms which we can
observe by reviewing the last six families provided in Computation 4.9.

Remark 4.11. In Karger’s classification of architecturally singular Stewart—Gough plat-
forms [31] (see also [37, 38]), there was a chosen system of Cartesian coordinates. This choice
simplified the computation but resulted in additional components as compared with leaving
a fully general coordinate system, e.g., as in Computation 4.9. With respect to this general
coordinate system, each irreducible component of the families described in items 1, 2, 3, 5,
and 6 of Computation 4.9 is an irreducible component of the set of architecturally singular
mechanisms.

Each irreducible component of item 4 of Computation 4.9 is a codimension 1 subset of
the architecturally singular set where four points are coincident, corresponding to Family 5
in [31]. In particular, coplanarity is needed for Segre-dependency but not for architectural
singularity.

Each irreducible component of item 7 of Computation 4.9 is a codimension 3 subset of
the architecturally singular set where six points are collinear, corresponding to Family 1 in
[31]. In particular, the additional rank constraints are needed for Segre-dependency but not
architectural singularity.

4.6. Spatial-spatial case with 10 legs in SE(4). Since SE(3) is 6-dimensional, spatial
Stewart—Gough platforms utilize six legs. One can consider a Stewart—Gough platform moving
in four dimensions using SE(4) (e.g., see [41]) with dim SE(4) = 10. Thus, Problem 3.2 with
N =10, R=9, and m = n = 3 corresponds with Segre-dependent Stewart—Gough platforms
having a spatial base and platform that move in 4-dimensional space.

Computation 4.12. The solution to Problem 3.2 when N =10, R=9, and m =n = 3 is
provided by the following list of irreducible components:

1. (Two legs coincide) (120) = 45 drreducible components of dimension 54 and degree 1.

2. (General spatial case) One irreducible component of dimension 53 and degree 147,816.
In particular, the projection onto (by,...,bio, P1,--.,P7, Ps1,ps2) € C> is generically
one-to-one. Thus, on a Zariski dense subset (by,...,b10,p1,...,p7,D81,P82) € R3,
there is a unique (ps3, e, p10) € R” yielding a Segre-dependent spatial Stewart-Gough
platform that mowves in 4-dimensional space.

Conceptually, spatial Stewart—Gough platforms which move in 4-dimensional space is anal-
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ogous to the case considered in section 4.1, namely planar Stewart—Gough platforms which
move in 3-dimensional space. Computationally, the Segre-dependent mechanisms have a sim-
ilar decomposition. In particular, we can follow a similar approach to compute the remaining
seven coordinates in the general spatial component of item 2. That is, for a left null vector
A= [A1,..., 0] € PY, the system X - A = 0, where A is the 10 x 16 matrix where each row
has the form of each row in (4.4), consists of 16 linear equations in the unknowns

Als .3 A0, P83A8, P91 A9, P92 A9, P93 A9, P101A10, P102A105 P103A10-

Ezample 4.13. To demonstrate item 2, we consider the following sufficiently general col-
lection of points:

by = (0,0,0), by =(1,0,0), by = (~1,4,0),  bi=(3,4,2),  bs=(22 1),
bg = (1, 372) by = ( 4, -2, 4), bg = ( 4,3,2) by = (—2,4, —4)7 bio = (—1, —1,2),
b1 = (Ov 70)7 b2 = (2,0,0) p3s = (la 170) Pa = (17272)’ Ps = (_2727 1)a
6:( ’ 3’4)a 7:( L1,- ) 8:( 3,—-2,p )

Using the “linearity” of A - A as described above, it is easy to check that the unique spatial
Segre-dependent Stewart—Gough platform that moves in 4-dimensional space has

pss = —3794462/313611,
pg = (—7809731, —17364829, —1001946) /4163483, and
p1o = (—16495001, 6880823, —29032984) /22069647

with left null vector
A = [=76731972,30802104, 6959736, —5925332, 12436712, 4871861, 2608205, —1254444, 4163483, 22069647].

5. Special Euclidean and special orthogonal groups. The planar pentad consists of two
triangles, say AABC and AA’B'C’, in the plane with three binary links constraining the
distances |AA’|, |[BB’|, and |CC’|. The spherical pentad is a similar mechanism, except the
two triangles each lie on a common sphere. The Stewart—Gough platform may be viewed
as the natural generalization of these arrangements from plane to sphere to three-space, as
summarized in Table 5.1. In this section, we show how the number of assembly configurations
of these three mechanical arrangements all fall naturally into a sequence that generalizes to
higher dimensions. In particular, as discussed in [17, 46] and summarized in section 2, the
reason that a Stewart—Gough platform generically has 40 assembly configurations is due to
the fact that deg S€3 = 40, where SE3 is the Zariski closure of a representation of SE(3) where
each leg imposes a linear condition. The generic number of assembly configurations for the
planar and spherical pentads follows from exactly the same kind of reasoning applied to the
spaces SE(2) and SO(3). This idea can be generalized abstractly to mechanisms related to the
special orthogonal group SO(N) consisting of N x N orthogonal matrices with determinant
equal to 1 and the special Euclidean group SE(N) in RY. In each case, the number of “legs,”
i.e., the number of point-pair distance constraints, is equal to the dimensionality of the space
in question, e.g., 10 for 4-dimensional Stewart—-Gough platforms as in section 4.6 (see also
[11, 41]).
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Table 5.1
Mechanisms related to the special Fuclidean and special orthogonal groups.

Generic number
Mechanism of assembly configurations | Corresponding group
planar pentad 6 SE(2)
spherical pentad 8 SO(3)
Stewart—Gough platform 40 SE(3)

To understand the generic number of assembly configurations, we consider the following
three varieties:

(5.1) SOx={M e CVN | M"TM = MM" =1,det M = 1},

(5.2) SRT N = {(z,y,M) e CN x CN x CN*N | M € SOy, Mz +y = 0},

(5.3) SEn ={(rz,y, M) € Cx CN x CN x CV*N | (2,5, M) € SRT y,2r + 2Tz = 0}.
In particular, SOy is the Zariski closure of SO(N), SRT y is the Zariski closure of a represen-

tation of rotations and translations in RY, and S is the Zariski closure of a representation
of SE(N). The data in Table 5.1 corresponds with

degSE9 =6, degSO3 =28, and degSE3 = 40.

Thus, we aim to understand the degrees of these varieties in general. We start with deg SO
from [14]:

(5.4) deg SOy =2V det [ ( 2“}(,‘ 22_.*7) > } :
o 1<ij<| X

In particular, the generic number of assembly configurations for spherical pentads is

deg SO3 = 22 <i> =38.

The following theorem was motivated by simply observing that

6 1

deg SOy :23-det[ 11

:| =40 = deg553

with further computational evidence generated by Bertini [7] using [28] presented in Ta-
ble 5.2.

Theorem 5.1.

1. For N > 1, dimSRT ny =dimSOpn41 and degSRT n = % -deg SOn 1.

2. Fork>0and N =2k+ 1, dmSEN =dimSOpny1 and degSEN = degSOpn 1.
3. Fork>1 and N =2k, dimSE N = dimSOpn 11 and deg SEN < deg SOn 1.

One consequence of the proof provided in section 5.1 is that, for N = 2k > 2,
degSEN < degSOn41 — k=1, deg SOy

Since this inequality is sharp for N = 2,4 but is not for NV = 6, we have the following open
problem.
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Table 5.2
Dimensions and degrees for various varieties.

SON11 SRT N~ SEN
dim [ deg dim [ deg dim [ deg
1 2 1 1 1 2
3 8 3 4 3 6
6 40 6 20 6 40

10 384 10 192 10 304
15 4768 15 2384 15 4768
21 | 111,616 | 21 | 55,808 | 21 | 90,496

S N N [

Problem 5.2. For even N > 8, compute deg SE .

Since the degree describes the generic number of assembly configurations over the complex
numbers, a natural question to ask is whether all assembly configurations can be real. For
Stewart—Gough platforms, this was answered affirmatively by Dietmaier [15], who produced
a Stewart—Gough mechanism where all 40 assembly configurations are real. Since each leg
corresponds with intersecting S€3 with a hyperplane, one can view Dietmaier’s result as
producing a linear space of codimension 6 which intersects S€3 in 40 real points. That is,
there exists a witness set (see section 3.2) for S€3 such that all 40 witness points are real.
This motivates the following, another open problem.

Problem 5.3. For N > 4, determine the maximum number of real witness points for SEN.

To help understand the odd and even cases, we explicitly consider Theorem 5.1 for N =1
and N = 2.

Ezample 5.4. For N =1, we have

802:{[8 C] 32+02:1},
c s

SRT1={(z,y,1) | v +y =0}, and S&; = {(r,z,y,1) | z +y = 2r + 2> = 0}.

Clearly, dimSOs = dAim SRT 1 = dim S = 1 with deg SOy = degSE 1 =2 -degSRT1 = 2.
For the embedding C* < P* where o + [1, ], the Zariski closure of C x SRT is

{[h7r7xuyah] ’$+y=0} CP4.

Hence, the set of points at infinity (corresponding with h = 0) is the projective line

{[0,7,2,9,0] | z +y =0} C P*.
In particular, z7x is generically nonzero at infinity in the Zariski closure of C x SRT in P*
so that the hypersurface 2r + 27z = 0 intersects C x SRT transversely.

Ezample 5.5. For N = 2, we have
SO3={M cC>3 | MTM = I,det M = 1},

e {([z) (3] [ m )| s e

T2 Y2 —miz M1 =mi2x1 —m1x2 — Y2 =0
and SE9 = {(r,z,y, M) € C x SRT2 | 2r + 23 + 23 = 0}.
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One can verify that dimSO3 = dAiImSRT 9 = dimSE9 = 3 with degSO3 = 2 - degSRT o =
8 > 6 = deg S€3. To understand the reason for this drop in degree, we consider the embedding
C? — PY where o ~— [1,a]. The Zariski closure of C x SRT 3 is

2 2 2_ 24,2 .2 .92
miy +miy —h® =y +as —yp —y;
{[h,’l”, |: . :|,|: o :|,|: T :H ‘ = mi1121 + mi2z2 + hyr = mi2x1 — m11z2 — hy2 c P,

T2 2 —mi2 mi1
Y ! ! = mi1y1 — mi2y2 + hx1 = mi2y1 + mi1y2 +hza =0

The set of points at infinity (corresponding with & = 0) has dimension 3 with three irreducible
components:

{or (o] [u )0l fet+o=vi+w}, {{0ma- [ L o[ om0 3]}

where i = y/—1. Since the two linear irreducible components at infinity have z72 = 0,
these two will yield two lines contained in the hypersurface h = 0 when intersecting the
Zariski closure of C x SRT 2 in P? with the hypersurface 2rh + 272 = 0. Hence, we have
degSE2 =2 -degSRT2—2=6.

There are two vectors and two matrices of interest in Example 5.5, namely

(5.5) u:[i},u:[_li},B:[_lii},andB:[i;i].

These, together with the following lemma, are used in the proof of Theorem 5.1 presented in
section 5.1.

Lemma 5.6. For B and B as in (5.5), the following hold:

1. there does not exist M € SOy such that B-M = M - B;

2. there exists M € C**% with MTM = I and det(M) = —1 such that B- M = M - B;
and

3. there exists M € SO3 such that

B 0
0 0

].M:M.

Proof. For M € SO3, we can write

mip mig |
M:[ ,

—miz Mi1 |

where m%l + m%z = 1. If we ignore this quadratic condition, B - M = M - B is equivalent to
mi1 = mio = 0. Hence, no such M € SOy can exist.
For the second and third statements, it is easy to verify that

1 0 1 0 0
M:[O _1] and M=]10 -1 0
0O 0 -1

satisfy the requirements, respectively. |
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5.1. Proof of Theorem 5.1. Let N > 1. We first address the equality of dimensions. By
comparing (5.2) and (5.3), it is clear that dim SRT y = dim S€ ;. Moreover, it is well known
that dimSOy = £N(N — 1), and thus

1
dimSRT y = dimSEx = dimSOy + N = SN(N 1) + N = (N + )N = dim SOy 1.

1
2
We now turn to degrees and assume that (z,y, M) € SRT y and P € SOy are generic.

Define
M oy
M_[:cT 1].

Let Mi.nx and Pi.ny be the N x (N + 1) matrices corresponding to the first N rows of M
and P, respectively, and let Mpy41 and Py41 be the last rows of M and P, respectively. We
know that the row spans of Mi.y and Pj.y are both an N-dimensional linear space in CV+1
with M.n - M%H = Pi.n - P]T/H = 0. In particular, it follows that M4 and Py are
each uniquely defined given M.y and Pi.y, respectively.

We now consider the vector in Pliicker coordinates corresponding with My.x and Pi.p,
namely vy and vp, respectively. Since det M = 1, we can write

o =[1or - on]T.

Since Py, N'PI‘F; N = 1, we have U%’U’p = 1. Hence, the first IV rows of M correspond with vectors
in the Pliicker embedding defined on the affine coordinate patch where the first coordinate
is 1. In addition, the first N rows of P correspond with vectors in the Pliicker embedding
for which vTv = 1. In particular, due to the selection of coordinate patches (linear versus
quadratic), there is a generically 1-to-2 relationship between Mj.y and Pi.x which yields a
generically 1-to-2 relationship between M and P so that

1
degSRTN = 5 . degSON+1.

By (5.2) and (5.3), we see that S€ is obtained by intersecting C x SRT n with the degree
2 hypersurface defined by 2r 4+ 272 = 0. Hence, Bézout’s theorem yields

(5.6) degSEN < 2-degSRT v = degSOn 1.

We will show that this is an equality for odd N and a strict inequality for even V.

Assume that N = 2k+ 1. Following Example 5.4, we show that z”z is generically nonzero
at infinity for SRT y so that the intersection of C x SRT y with the hypersurface 2r+z72 = 0
is transverse, i.e., equality holds in (5.6). For every M € SOy, there exists O € CN*V with
OTO = I such that

Ay
Ao
oMo = ;
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where each A; € S§Os. In particular, the points at infinity of SOy lie in the Zariski closure
of matrices of the form

[ 1By
Y2 - Ba
P=0 or,
Vi - B
0

where 7, € C and B; € {B,B} with B and B as in (5.5). By Lemma 5.6(3), we can
assume without loss of generality that B; = B so that the set of points at infinity for SO is
irreducible.

Affinely, belonging to SRT  implies Mx+y = 0. Thus, if we write x = O-z and y = Oy,
then Zy + 7y = 0, which must also hold at infinity. Since we also need Pz = 0, PTy = 0,
and 272 = yTy at infinity, we must have z = O - (1 -1+ -+ g -z + agq - en) and
y=0-(B1-y1+--+ B yr — ary1 - en) for any aj, 3; € C, where

1= [u’,0,...,07, ..., 2, =[0,...,0,uT,0]", y1 = [@",0,...,0]",..., yp = [0,...,0,7,0]T,

where u and @ as in (5.5). In particular, we know that 27z = yTy = o? 41 is generically

nonzero as required.

All that remains to be shown for the odd case is that no other components for SRT y can
arise at infinity of projective dimension equal to dimSRT y — 1 by taking some v; = 0, e.g.,
as in Example 5.5. If, without loss of generality, v, = 0, then suppose + = O - (g -1 + -+ - +
Qg1 Tp—1+ o -en—2+app1-en—1+ogqo-ey)and y =0 - (Br-y1+ -+ Br—1 - Yp—1 + Br -
en—2 + Br+1 - en—1 + Bry2 - en) with a% + ai_H + a2+2 = ﬂi + /BI%H + /6’,%+2. Hence, the total
affine degrees of freedom for this setup is (k+2) + (k+2) — 1 = 2k +3 = N + 2, meaning
that the best case scenario is a gain of two degrees of freedom over the case above. However,
the codimension of matrices P where v = 0 is 3, showing that the total affine dimension is
strictly smaller than dim SRT .

Now we turn to the case that N = 2k. Following Example 5.5, we show that there exists
at least one irreducible component at infinity for SRT x for which z72 = 0, showing that
the intersection of C x SRT n with the hypersurface 2r + 272 = 0 is not transverse, i.e., the
inequality in (5.6) is strict. For every M € SOy, there exists O € CV*¥ with OTO = I such

that
Ay
Ao

oTMO = , ,
Ay,

where each A; € SOs. In particular, the points at infinity in SOy lie in the Zariski closure
of matrices of the form

71 - By

B
(5.7) P 2

|
Q

OT

Vi + By



EXCEPTIONAL STEWART-GOUGH PLATFORMS 203

where 7; € C and Bj € {B,B} with B and B as in (5.5). Hence, by Lemma 5.6, the set
of points at infinity for SOy is reducible. To focus on one irreducible component, we take
Bj = B for all j, which affinely has dimension equal to the dimension of SOy. We can then
produce a family of points at infinity for SR7T y by taking x = O - (g -1 + - - - + oy - %) and
y=0-(P1-y1+ -+ Bk - yx), where aj,B; € Cand

1 =[u?,0,...,0/7, ...,z =10,...,0,uT]", 4y = [@",0,...,0/7, ..., g =10,...,0,7 |,

with v and @ as in (5.5). Hence, since 72 = y’y = 0 for such points, the only item that

remains is to show that the Zariski closure of the collection of such points has projective
dimension equal to dim SR7T n — 1. Since there are k degrees of freedom in both = and y, this
collection of points has affine dimension equal to dim SOy +2k = dimSOn+ N = dim SRT n
so that the projective dimension is dim SRT y — 1 as required.

It is interesting to note that, in the even case, the set of all P with, for example, v, = 0,
has codimension 1 with respect to when ~; is general. Moreover, replacing oy, - x5 and 8y - yx
with o -eny—1+apy1-en and B -en—1+ Bk+1 - en, respectively, where ai + O‘%H = 6,3 + ﬁgﬂ,
yields a gain in one degree of freedom. Hence, the even cases have at least one irreducible
component at infinity where z7x # 0 generically.

6. Conclusion. The relationship between leg constraints of a Stewart—Gough platform
and the Segre embedding yields a geometric class of exceptional Stewart—Gough platforms
via linear dependency of point-pairs under the Segre embedding. We considered the planar-
planar, planar-spatial, and spatial-spatial cases for Stewart—Gough platforms, the planar-
planar and planar-spatial Stewart—Gough platforms with two degrees of freedom, and the
spatial-spatial Stewart—Gough platforms that move in 4-D space. The complete classification
of all exceptional Stewart—Gough platforms remains an open problem.

Since the generic number of assembly configurations of a Stewart—Gough platform is equal
to the degree of a representation of the special Euclidean group in 3-D space, we also considered
the degree of the special Euclidean group in other dimensions. We show that the degree of
a representation of the special Euclidean group in odd dimensions is equal to the degree of
the special orthogonal group in one higher dimension. For the corresponding case of special
Euclidean groups in even dimensions, we give a inequality, but we leave as an open problem
the determination of a sharp result for S€y, even N > 8.

Acknowledgments. We thank Manfred Husty for suggesting to compute Stewart—Gough
platforms with two degrees of freedom and the referees for their helpful comments.
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