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Exceptional Stewart--Gough Platforms,
Segre Embeddings, and the Special Euclidean Group\ast 
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Abstract. Stewart--Gough platforms are mechanisms which consist of two rigid objects, a base and a platform,
connected by six legs via spherical joints. For fixed leg lengths, a generic Stewart--Gough platform
is rigid with 40 assembly configurations (over the complex numbers), while exceptional Stewart--
Gough platforms have infinitely many assembly configurations and thus have self-motion. We define
a family of exceptional Stewart--Gough platforms called Segre-dependent Stewart--Gough platforms
which arise from a linear dependency of point-pairs under the Segre embedding and compute an
irreducible decomposition of this family. We also consider Stewart--Gough platforms which move
with two degrees of freedom. Since the Segre embedding arises from a representation of the special
Euclidean group in three dimensions which has degree 40, we consider the special Euclidean group in
other dimensions and compute spatial Stewart--Gough platforms that move in 4-dimensional space.
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1. Introduction. A Stewart--Gough platform consists of rigid base and platform objects
connected by six legs via spherical (i.e., ball-and-socket) joints. Gough utilized one in the
1950's [20] to mechanically test tires, while Stewart [50] devised a related kinematical arrange-
ment in the 1960's for use as a flight simulator. There is extensive literature on Stewart--Gough
platforms and other parallel-link robots: we refer the interested reader to the book [34] and
websites [10, 35].

Mathematically, we will model a Stewart--Gough platform by fixing a coordinate system
for the base \scrB and a coordinate system for the platform \scrP . Then we select six connection
points b1, . . . , b6 on the base object with respect to \scrB and p1, . . . , p6 on the platform object
with respect to \scrP . The points bi and pi are connected by the ith leg, which has length di \geq 0,
with spherical joints, as shown in Figure 1.1. In normal operation, the six leg lengths are
adjusted under computer control to produce coordinated motion of the platform with respect
to the base. In most situations, the mapping between the six leg lengths and the 6-dimensional
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Figure 1.1. Stewart--Gough platform.

space of rigid-body motion is nonsingular, and hence locally invertible. In particular, when
the leg lengths are held constant, the mechanism becomes rigid.

We shall refer to the position and orientation of the platform with respect to the base as
its pose. Given a pose, the relative positions of points b1, . . . , b6 and p1, . . . , p6 are known, so
the leg lengths d1, . . . , d6 are also known. However, given the leg lengths, the pose may not be
unique. For generic choices of the parameters bi, pi, and di, the polynomial system relating the
pose to the leg lengths has 40 solutions, allowing complex numbers [29, 33, 43, 44, 51]. Each
real solution among these represents a physically achievable way to assemble the Stewart--
Gough platform. Dietmaier [15] showed that parameters exist such that all 40 assembly
configurations are real.

Since a generic Stewart--Gough platform is rigid, the location of the platform object with
respect to the base can only continuously change by adjusting the leg lengths. Exceptional
Stewart--Gough platforms are those which have infinitely many different assembly configu-
rations and thus have self-motion, i.e., move even with fixed leg lengths. Some known ex-
ceptional platforms are special cases of Griffis--Duffy platforms [22, 30] and Geiss--Scheyer
platforms [19], a special case of Borel's Fb1 family of icosapods [12], as shown in [18]. A
complete classification of all exceptional Stewart--Gough platforms remains an open problem.

A subset of the exceptional Stewart--Gough platforms is called architecturally singular.
These have the property that their exceptional motion is determined by just the geometry
of the base and platform. If one chooses the leg lengths corresponding to any pose of the
platform, the architecturally singular platform still moves with at least one degree of freedom.
This may be contrasted with more general families of exceptional platforms for which only
special poses of the platform result in motion. The classification of all architecturally singular
Stewart--Gough platforms has been carried out by Karger [31, 32] (see also [38]).

In this paper, we define a subfamily of exceptional Stewart--Gough platforms, called Segre-
dependent Stewart--Gough platforms, which arise from a linear dependence among point-pairs
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under the Segre embedding related to a representation of the special Euclidean group in three
dimensions. More specifically, the Segre-dependent platforms are a subfamily of the archi-
tecturally singular platforms. One motivation for studying Segre-dependent Stewart--Gough
platforms is to highlight the algebraic geometric relationship between the Segre embedding
and Stewart--Gough platforms. Another motivation is this provides for new computational
approaches to compute exceptional mechanisms. A third motivation is to understand the
relationship between the generic number of assembly configurations and the degree of the
corresponding group, as discussed in section 5.

The remainder of the paper is organized as follows. In section 2, we formulate the assembly
of Stewart--Gough platforms as a polynomial system and observe the presence of point-pairs
under the Segre embedding and the special Euclidean group in three dimensions. Section 3
defines Segre-dependent mechanisms and describes using numerical algebraic geometry (e.g.,
see [8, 49]) to compute them. Section 4 presents our computational results for Segre-dependent
mechanisms, including platforms with two degrees of freedom and spatial platforms that move
in 4-dimensional space. The special Euclidean group in other dimensions is considered in
section 5 with Theorem 5.1 relating the degree of the special Euclidean group with the degree
of the special orthogonal group. A conclusion is provided in section 6. Information on the
computations can be downloaded from the repository at https://doi.org/10.7274/R0R20Z94.

2. Polynomial system formulation. Following the formulations of [17, 46] with a slight
modification, we present a polynomial system for the assembly of Stewart--Gough platforms in
which each leg imposes a linear condition. Each assembly configuration can be specified as the
relative position and orientation of the platform coordinate system \scrP with respect to the base
coordinate system \scrB . That is, each assembly configuration of the Stewart--Gough platform
corresponds to an element of the special Euclidean group SE(3) consisting of rotations and
translations in \BbbR 3.

Each element in SE(3) will be represented by a matrix M \in \BbbR 3\times 3, two vectors x, y \in \BbbR 3,
and a scalar r \in \BbbR . The matrix M represents the relative rotation from \scrB to \scrP so that
M \in SO(3), i.e., MT = M - 1 and detM = 1. The vector y represents translations from \scrB to
\scrP . Thus, for b \in \scrB , the corresponding point in \scrP is p = Mb + y. This representation also
accounts for the map from \scrP to \scrB which is given by MT and x =  - MT y so that y =  - Mx.
That is, the corresponding point to p \in \scrP is b = MT p+x \in \scrB so that M(MT p+x)+y = p and
MT (Mb+y)+x = b. In particular, we must have xTx = yT y. We depart from the formulation
provided in [17, 46] by defining r =  - xTx/2 =  - yT y/2 so that xTx = yT y =  - 2r, which is
selected to simplify computations later.

Putting everything together, SE(3) is represented by the real solution set of the polynomial
system

(2.1) f(r, x, y,M) =

\left[          

MTM  - I
MMT  - I
y +Mx
x+MT y
2r + xTx
2r + yT y
detM  - 1

\right]          
,

https://doi.org/10.7274/R0R20Z94
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where I is the 3\times 3 identity matrix. By treating the variables in \BbbC 16, the solution set of f = 0,
denoted by \scrS \scrE 3 \subset \BbbC 16, is irreducible with dim\scrS \scrE 3 = 6 and deg\scrS \scrE 3 = 40. In particular, using
this representation of SE(3), the algebraic set \scrS \scrE 3 is the Zariski closure in \BbbC 16 of SE(3), and
SE(3) is the real subset of \scrS \scrE 3, i.e., SE(3) = \scrS \scrE 3 \cap \BbbR 16.

The distance constraint imposed by each leg corresponds to the intersection of \scrS \scrE 3 with
a hyperplane as follows. Since the ith leg connects bi with pi, we can measure distance by
placing them in a common coordinate system. Since bi \in \scrB corresponds with Mbi + y \in \scrP ,
the leg length condition

(Mbi + y  - pi)
T (Mbi + y  - pi) = d2i

on \scrS \scrE 3 is equivalent to

d2i = bTi bi + pTi pi + 2bTi M
T y  - 2pTi y  - 2pTi Mbi + yT y

= bTi bi + pTi pi  - 2(bTi x+ pTi y + pTi Mbi + r).(2.2)

Let \ell i = (bTi bi+pTi pi - d2i )/2. Hence, if points bi and pi are given, then knowing the leg length
di \geq 0 is equivalent to knowing \ell i. With this, (2.2) becomes

(2.3) r + bTi x+ pTi y + pTi Mbi = \ell i,

which is a linear equation in (r, x, y,M) \in \scrS \scrE 3. In fact, the set of coefficients on the left-hand
side of (2.3) is the Segre embedding of the point-pairs bi and pi, where the Segre embedding
\sigma : \BbbC 3 \times \BbbC 3 \lhook \rightarrow \BbbC 16 is
(2.4)
\sigma (\alpha , \beta ) = [ 1 \alpha 1 \alpha 2 \alpha 3 \beta 1 \beta 2 \beta 3 \alpha 1\beta 1 \alpha 2\beta 1 \alpha 3\beta 1 \alpha 1\beta 2 \alpha 2\beta 2 \alpha 3\beta 2 \alpha 1\beta 3 \alpha 2\beta 3 \alpha 3\beta 3 ] .

Suppose that we are given parameters bi, pi, and \ell i for a Stewart--Gough platform. Let
\scrL 6 \subset \BbbC 16 denote the linear space arising from the intersection of the six hyperplanes defined by
(2.3). Then assembling the corresponding Stewart--Gough platform is equivalent to computing
\scrS \scrE 3 \cap \scrL 6, which generically consists of deg\scrS \scrE 3 = 40 points.

As an illustration of this formulation, the following examples show that one is able to
design mechanisms with certain properties or show that none exists.

Example 2.1. To show that there does not exist an exceptional Stewart--Gough platform
such that the motion is a linear translation, we can, without loss of generality, consider
all mechanisms which move along the curve \{ ( - z2/2, - ze1, ze1, I) | z \in \BbbC \} \subset \scrS \scrE 3, where
e1 = [1 0 0]T . Thus, to reach a contradiction, we assume that there exist constants bi, pi, and
\ell i such that

 - z2/2 + (pi1  - bi1)z + pTi bi = \ell i

for all z \in \BbbC . This is impossible since the coefficient of z2 is nonzero.

Example 2.2. There exists exceptional Stewart--Gough platforms such that the platform
moves along a circle keeping the same relative rotation with respect to the base [40, Thm. 2].
For example, to move along a unit circle in the (y1, y2)-plane, we consider the curve C =
\{ ( - 1/2, - y, y, I) | y21 + y22 = 1, y3 = 0\} \subset \scrS \scrE 3. We aim to find parameters bi, pi, and \ell i such
that

 - 1/2 + (pi1  - bi1)y1 + (pi2  - bi2)y2 + pTi bi = \ell i



EXCEPTIONAL STEWART--GOUGH PLATFORMS 183

whenever y21 + y22 = 1. Thus, we need pi1 = bi1, pi2 = bi2, and \ell i = pTi bi  - 1/2. These
parameters are physically meaningful with

di =
\sqrt{} 
1 + (bi3  - pi3)2 > 0.

Thus, the family of exceptional Stewart--Gough platforms which can move along the curve C
is \bigl\{ 

(b1, p1, \ell 1, . . . , b6, p6, \ell 6) | bij = pij and \ell i = pTi bi  - 1/2 for i = 1, . . . , 6, j = 1, 2
\bigr\} 
,

one of which is shown in Figure 2.1.

Figure 2.1. A Stewart--Gough platform with motion along a unit circle.

3. Segre-dependent Stewart--Gough platforms.

3.1. Definition of Segre-dependent. Given parameters bi, pi, and \ell i, the six hyperplanes
defined by (2.3) generically define a codimension 6 linear space \scrL 6 \subset \BbbC 16. If the parameters are
selected so that codim\scrL 6 < 6 and \scrS \scrE 3\cap \scrL 6 \not = \emptyset , then we trivially have that the corresponding
Stewart--Gough platform has a rank deficient Jacobian matrix. Therefore, we say that bi
and pi form a Segre-dependent Stewart--Gough platform if, for \sigma as in (2.4),

(3.1) rank

\left[   \sigma (b1, p1)
...

\sigma (b6, p6)

\right]   < 6.

For any such (b1, p1, . . . , b6, p6) that is real, we may pick any point in SE(3) and generate a com-
patible real set of leg lengths di using (2.2). Since the resulting Stewart--Gough platform has
a rank deficient Jacobian, every Segre-dependent Stewart--Gough platform is architecturally
singular. For architecturally singular Stewart--Gough platforms that are not Segre-dependent,
see Remark 4.11, [38, Cor. 1], and [45, Thm. 4.1].

Remark 3.1. Generically, every 6 \times 6 submatrix of the the 6 \times 16 matrix arising from
the Segre embedding \sigma in (2.4) has rank 6. In order to be Segre-dependent, every 6 \times 6
submatrix must have rank at most 5. For a general mechanism from the Geiss--Schreyer
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family of exceptional mechanisms [19], precisely
\bigl( 
8
6

\bigr) 
= 28 of the 6\times 6 submatrices have rank

5 arising from the following 6\times 8 submatrix having rank 5:\left[        

b12 b13 b12p11 b13p11 b12p12 b13p12 b12p13 b13p13
b22 b23 b22p21 b23p21 b22p22 b23p22 b22p23 b23p23
b32 b33 b32p31 b33p41 b32p32 b33p32 b32p33 b33p33
b42 b43 b42p41 b43p41 b42p42 b43p42 b42p43 b43p43
b52 b53 b52p51 b53p51 b52p52 b53p52 b52p53 b53p53
b62 b63 b62p61 b63p61 b62p62 b63p62 b62p63 b63p63

\right]        .

Since this mechanism is not architecturally singular and hence not Segre-dependent, the ex-
istence of a 6\times 6 submatrix of rank 6 was assured. Nonetheless, this shows that the location
of the points is not in general position with respect to the Segre embedding. Since the Geiss--
Schreyer family is a special case of Borel's Fb1 family of icosapods [12], as shown in [18], we
note that every 6\times 6 submatrix generically has rank 6 on Fb1.

We generalize condition (3.1) in the following problem.

Problem 3.2. For 1 \leq m \leq n, let \sigma m,n : \BbbC m \times \BbbC n \lhook \rightarrow \BbbC (m+1)(n+1) be the Segre embedding.
For all N \geq 3 and 2 \leq R < min\{ N, (m+ 1)(n+ 1)\} , compute an irreducible decomposition of
the set of points (b1, p1, . . . , bN , pN ) \in (\BbbC m \times \BbbC n)N such that

(3.2) rank

\left[   \sigma m,n(b1, p1)
...

\sigma m,n(bN , pN )

\right]   \leq R.

As a physical interpretation of this problem, the values of m and n correspond to the
dimension of the spaces for the base and platform points. The number N is the number of
legs so that the matrix in (3.2) has size N \times (m+ 1)(n+ 1). The number R is the requested
upper bound on the rank which is at most the minimum of the number of rows and columns.
For example, m = 2, n = 3, N = 6, and R = 5 correspond to Segre-dependent mechanisms
with at least one degree of freedom with six legs having a planar base and a spatial platform
(or, equivalently, a spatial base and a planar platform).

If R = 1, then all points (bi, pi) are equal, which physically corresponds with all legs
coinciding. In the general case, a matrix has rank at most R if and only if every (R+1)\times (R+1)
minor vanishes so that constructing the ideal for this problem is trivial. Computing the
geometric irreducible decomposition corresponds with computing the prime decomposition of
this ideal generated by such minors. In the following, we describe how to compute such a
decomposition for specific instances using numerical algebraic geometry.

3.2. Computing using numerical algebraic geometry. Since the total number of minors,
namely

\bigl( 
N

R+1

\bigr) 
\cdot 
\bigl( (m+1)(n+1)

R+1

\bigr) 
, can be large, we prefer to employ a null space approach [4] to

solve relevant cases of Problem 3.2 in section 4. Using the notation of Problem 3.2, we let
A := A(b1, p1, . . . , bN , pN ) be theN\times (m+1)(n+1) matrix in (3.2), and we letD\ell := N - R > 0
and Dr := (m+1)(n+1) - R > 0. Thus, rankA \leq R if and only if the left null space of A has
dimension at least D\ell , which happens if and only if the right null space of A has dimension at
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least Dr. Let B\ell \in \BbbC N\times N and Br \in \BbbC (m+1)(n+1)\times (m+1)(n+1) be general, and let \Lambda \ell \in \BbbC D\ell \times R

and \Lambda r \in \BbbC R\times Dr be matrices of indeterminants. With this setup, we have

\{ (b1, p1, . . . , bN , pN ) | rankA(b1, p1, . . . , bN , pN ) \leq R\} 

=
\Bigl\{ 
(b1, p1, . . . , bN , pN ) | 

\Bigl[ 
I \Lambda \ell 

\Bigr] 
\cdot B\ell \cdot A(b1, p1, . . . , bN , pN ) = 0 for some \Lambda \ell 

\Bigr\} 
=

\Biggl\{ 
(b1, p1, . . . , bN , pN )

\bigm| \bigm| \bigm| \bigm| \bigm| A(b1, p1, . . . , bN , pN ) \cdot Br \cdot 

\Biggl[ 
I

\Lambda r

\Biggr] 
= 0 for some \Lambda r

\Biggr\} 
.

The choice between the left and right null spaces is based on the relative sizes of N and
(m+ 1)(n+ 1).

For concreteness, we will formulate the remaining based on using the left null space, say

(3.3) F (b1, p1, . . . , bN , pN ,\Lambda \ell ) =
\bigl[ 
I \Lambda \ell 

\bigr] 
\cdot B\ell \cdot A(b1, p1, . . . , bN , pN ).

Treating F as a vector and the variables in two groups, (b1, p1, . . . , bN , pN ) \in (\BbbC m\times \BbbC n)N and
\Lambda \ell \in \BbbC D\ell \times R, the system F consists of (m+ 1)(n+ 1)D\ell polynomials:

\bullet D\ell polynomials of multidegree (0, 1),
\bullet (m+ n)D\ell polynomials of multidegree (1, 1), and
\bullet mnD\ell polynomials of multidegree (2, 1).

Let \scrV (F ) be the set of solutions of F = 0. For the projection

\pi (b1, p1, . . . , bN , pN ,\Lambda \ell ) = (b1, p1, . . . , bN , pN ),

we compute an irreducible decomposition ofX = \pi (\scrV (F )) using numerical algebraic geometry.
In numerical algebraic geometry (e.g., see [8, 49]), an irreducible decomposition of an

algebraic set Y \subset \BbbC K is computed via a union of witness sets forming a numerical irreducible
decomposition. A witness set for an irreducible algebraic set Z \subset \BbbC K of dimension k and
degree d is a triple \scrZ = \{ f, L,W\} , where

\bullet (witness system) f is a polynomial system such that Z is an irreducible component of
\scrV (f) \subset \BbbC K ,

\bullet (witness slice) L is a system of k general affine linear polynomials in K variables, and
\bullet (witness point set) W = Z \cap \scrV (L) \subset \BbbC K which consists of d points.

Hence, if Y = Y1 \cup \cdot \cdot \cdot \cup Yu is an irreducible decomposition with corresponding witness set
\scrY 1, . . . ,\scrY u, then the formal union \scrY 1\cup \cdot \cdot \cdot \cup \scrY u is a numerical irreducible decomposition for Y .

One option for computing a numerical irreducible decomposition for X, as first described
in [23], is to first compute a numerical irreducible decomposition for \scrV (F ) treated as an
algebraic set in the affine space (\BbbC m \times \BbbC n)N \times \BbbC D\ell \times R. To do so, we may begin with the
regenerative cascade [27], which uses homotopy path tracking to compute a finite superset,

say \widehat Wk, of the set of isolated points of \scrV (F )\cap \scrV (\ell 1, . . . , \ell k), say Wk, for all possible values of k,
where each \ell i is a general affine linear polynomial. Then, for each k, the local dimension test
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[3] applied to each point in \widehat Wk identifies which ones are isolated points, thereby extracting

Wk from \widehat Wk. Finally, monodromy [48] and a trace test [47] are used to partition Wk into a
union of witness point sets for the irreducible components of \scrV (F ) of codimension k.

From this computed numerical irreducible decomposition for \scrV (F ), a numerical irreducible
decomposition for X is computed as follows. For each irreducible component Z \subset \scrV (F ) with
witness set \scrZ , a (pseudo)witness set for \pi (Z) is computed via homotopy continuation, as
described in [26]. The projection membership test of [25] yields the irreducible components
of X since they are the inclusion maximal elements of

\Bigl\{ 
\pi (Z)

\bigm| \bigm| \bigm| Z is an irreducible component of \scrV (F )
\Bigr\} 
.

An alternative option for computing a numerical irreducible decomposition for X is to
utilize the multihomogeneous regeneration presented in [24]. Since only the image under the
projection map \pi is of interest, one can simplify this computation using [1] by not having
to consider all possible slices in the auxiliary variables \Lambda \ell . This regeneration procedure pro-
duces unions of witness point sets which can be decomposed into witness points sets for the
irreducible components using monodromy and a trace test, as above.

These techniques depend upon the selection of elements that are general in a family,
i.e., outside of a proper algebraic subset of the family, and also depend on path tracking in
homotopy continuation. In finite precision arithmetic, both processes may fail to achieve the
probability-one success rate predicted by theory based on selecting elements from a continuum
and exact path tracking. To enhance reliability in our work, we employ adaptive step-size
and adaptive precision path tracking methods [5, 6, 9], and we select general elements over \BbbC 
by using a random number generator with at least as many digits as the adaptive precision
encounters. Moreover, the trace test [47] provides an a posteriori check that complete witness
point sets have been computed, so it flags missing witness points. Finally, by keeping all of
the points (bi, pi) fully general, we maintain symmetry in the solution set, as shown in the
computations below.

4. Computational results. The following were obtained using the numerical algebraic
geometric methods described in section 3.2 using the software package Bertini [7]. The
computations were performed in parallel using a total of 64 cores in four AMD Opteron 6378
2.4 GHz processors. To illustrate computing times, Computations 4.9 and 4.12 each took
about 2.5 hours, while Computation 4.7 took about three days.

From the witness sets (see section 3.2) computed in these computations, exact defining
equations can be recovered [2], which allows each component computed to be certified, e.g.,
using Macaulay2 [21].

4.1. Planar-planar with six legs in SE(3). A planar Stewart--Gough platform has both
b1, . . . , b6 and p1, . . . , p6 lying in a plane. Since we are free to independently select the coor-
dinate frame of references \scrB and \scrP , we can, without loss of generality, assume that the third
coordinate of each point is 0, i.e., bi, pi \in \BbbC 2. Thus, planar Stewart--Gough platforms which
are Segre-dependent correspond to solving Problem 3.2 with N = 6, R = 5, and m = n = 2.
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In particular, for the 6\times 9 matrix

(4.1) A =

\left[        

1 b11 b12 p11 p12 b11p11 b12p11 b11p12 b12p12
1 b21 b22 p21 p22 b21p21 b22p21 b21p22 b22p22
1 b31 b32 p31 p32 b31p31 b32p31 b31p32 b32p32
1 b41 b42 p41 p42 b41p41 b42p41 b41p42 b42p42
1 b51 b52 p51 p52 b51p51 b52p51 b51p52 b52p52
1 b61 b62 p61 p62 b61p61 b62p61 b61p62 b62p62

\right]        ,

the problem is to describe the irreducible components of the set of points (b1, p1, . . . , b6, p6) \in 
(\BbbC 2\times \BbbC 2)6 such that rankA \leq 5. Following section 3.2, we obtain the following decomposition.

Computation 4.1. The solution to Problem 3.2 when N = 6, R = 5, and m = n = 2 is
provided by the following list of irreducible components:

1. (Two legs coincide)
\bigl( 
6
2

\bigr) 
= 15 irreducible components of dimension 20 and degree 1

such that, for distinct i, j \in \{ 1, . . . , 6\} ,
\bullet bi = bj and pi = pj.

2. (General planar case) One irreducible component of dimension 20 and degree 306. In
particular, the projection of this component onto (b1, . . . , b6, p1, . . . , p4) \in \BbbC 20 is gener-
ically one-to-one. Thus, on a Zariski dense subset (b1, . . . , b6, p1, . . . , p4) \in \BbbR 20, there
is a unique (p5, p6) \in \BbbR 4 yielding a Segre-dependent planar Stewart--Gough platform.

The general planar component in item 2 has been geometrically described [16, 36, 39, 45].
Moreover, with a left null vector \lambda = [\lambda 1, . . . , \lambda 6] \in \BbbP 5, the system \lambda \cdot A = 0 consists of nine
linear equations in the unknowns

\lambda 1, . . . , \lambda 6, p51\lambda 5, p52\lambda 5, p61\lambda 6, p62\lambda 6.

As long as \lambda 5, \lambda 6 \not = 0, which happens generically, this determines unique values of p5, p6.
If we treat (b1, . . . , b6, p1, . . . , p6) \in (\BbbC 2)12, this yields a term in the multidegree of this

general planar component. Since two linear constraints are placed on each b1, . . . , b6, p1, . . . , p4
and none of p5, p6, following the notation of [24], we can write this term as

1\omega (2,2,2,2,2,2,2,2,2,2,0,0).

In fact, due to symmetry, this actually yields a family consisting of 2 \cdot 
\bigl( 
6
2

\bigr) 
= 30 terms of the

multidegree where the 2 corresponds with selecting either the base or the platform and the
binomial coefficient corresponds to selecting two of the six locations which have no constraints.

Based on symmetry, this is just one of the 15 different families of codimension 20 linear
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slices in (\BbbC 2)12. The following table summarizes all terms of the multidegree of this general
planar component.

Term in Total number of
multidegree elements in family

1\omega (2,2,2,2,2,2,2,2,2,2,0,0) 2 \cdot 
\bigl( 
6
2

\bigr) 
= 30

1\omega (2,2,2,2,2,2,2,2,2,1,1,0) 2 \cdot 
\bigl( 
6
1

\bigr) 
\cdot 
\bigl( 
5
2

\bigr) 
= 120

1\omega (2,2,2,2,2,2,2,2,1,1,1,1) 2 \cdot 
\bigl( 
6
4

\bigr) 
= 30

3\omega (2,2,2,2,2,1,2,2,2,2,1,0) 2 \cdot 
\bigl( 
6
1

\bigr) 
\cdot 
\bigl( 
5
1

\bigr) 
= 60

2\omega (2,2,2,2,1,2,2,2,2,2,1,0) 2 \cdot 
\bigl( 
6
1

\bigr) 
\cdot 
\bigl( 
5
1

\bigr) 
= 60

1\omega (2,2,2,1,2,2,2,2,2,2,1,0) 2 \cdot 
\bigl( 
6
1

\bigr) 
\cdot 
\bigl( 
5
1

\bigr) 
\cdot 
\bigl( 
4
1

\bigr) 
= 240

2\omega (2,2,2,2,2,1,2,2,2,1,1,1) 2 \cdot 
\bigl( 
6
3

\bigr) 
\cdot 
\bigl( 
3
1

\bigr) 
= 120

1\omega (2,2,1,2,2,2,2,2,2,1,1,1) 2 \cdot 
\bigl( 
6
3

\bigr) 
\cdot 
\bigl( 
3
1

\bigr) 
= 120

1\omega (2,2,2,2,2,0,2,2,2,2,2,0)
\bigl( 
6
1

\bigr) 
= 6

0\omega (2,2,2,2,0,2,2,2,2,2,2,0)
\bigl( 
6
1

\bigr) 
\cdot 
\bigl( 
5
1

\bigr) 
= 30

2\omega (2,2,2,2,2,0,2,2,2,2,1,1) 2 \cdot 
\bigl( 
6
2

\bigr) 
\cdot 
\bigl( 
2
1

\bigr) 
= 60

1\omega (2,2,2,0,2,2,2,2,2,2,1,1) 2 \cdot 
\bigl( 
6
2

\bigr) 
\cdot 
\bigl( 
4
1

\bigr) 
= 120

3\omega (2,2,2,2,1,1,2,2,2,2,1,1) \cdot 
\bigl( 
6
2

\bigr) 
= 15

2\omega (2,2,2,1,2,1,2,2,2,2,1,1)
\bigl( 
6
2

\bigr) 
\cdot 
\bigl( 
2
1

\bigr) 
\cdot 
\bigl( 
4
1

\bigr) 
= 120

1\omega (2,2,1,1,2,2,2,2,2,2,1,1)
\bigl( 
6
2

\bigr) 
\cdot 
\bigl( 
4
2

\bigr) 
= 90

Example 4.2. To demonstrate item 2, we consider the following sufficiently general collec-
tion of points:

b1 = (0, 0), b2 = (1, 0), b3 = (2, 1), b4 = (3, - 1), b5 = ( - 2, 3), b6 = ( - 1, - 2),
p1 = (0, 0), p2 = (2, 0), p3 = (1, 1), p4 = ( - 2, - 3).

Using the ``linearity"" of \lambda \cdot A, as described above, it is easy to check that the unique planar
Segre-dependent Stewart--Gough platform has

p5 = ( - 4/9, - 2/3) and p6 = (10/37, 8/37) with left null vector \lambda = [84, 7, - 28, - 8, - 18, - 37],

as shown in Figure 4.1.

Remark 4.3. One family of planar Stewart--Gough platforms that has been extensively
studied is the family of Griffis--Duffy platforms [22]. In this family, the base and platform are
triangles with connection points at each vertex and along each edge where the legs connect
a vertex to a point on an edge in a cyclical fashion. We take the following collections to be
collinear:

\{ b1, b2, b3\} , \{ b3, b4, b5\} , \{ b5, b6, b1\} , \{ p2, p3, p4\} , \{ p4, p5, p6\} , \{ p6, p1, p2\} .

A generic element in this family is rigid with 16 assembly configurations. The following derives
the family of Segre-dependent Griffis--Duffy platforms, which is equivalent to the family of
exceptional Griffis--Duffy platforms derived using the results of [13, 30, 36, 45].
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Figure 4.1. A planar Segre-dependent Stewart--Gough platform.

Suppose that we construct a Griffis--Duffy platform where

(4.2)
p1 = p6\mu 1 + (1 - \mu 1)p2, p3 = p2\mu 3 + (1 - \mu 3)p4, p5 = p4\mu 5 + (1 - \mu 5)p6,
b2 = b1\mu 2 + (1 - \mu 2)b3, b4 = b3\mu 4 + (1 - \mu 4)b5, b6 = b5\mu 6 + (1 - \mu 6)b1.

Then the platform is Segre-dependent if and only if one of the following holds:
1. bi = bj for (i, j) = (1, 3), (3, 5), or (1, 5);
2. pi = pj for (i, j) = (2, 4), (4, 6), or (2, 6);
3. b1, b3, b5 and p2, p4, p6 are both collinear;

4.
R(\mu ) := \mu 1\mu 2\mu 3 det

\biggl[ 
\mu 4 \mu 6  - 1

1 - \mu 5 \mu 5 + \mu 6  - 1

\biggr] 
+ \mu 4\mu 5\mu 6 det

\biggl[ 
\mu 1 \mu 3  - 1

1 - \mu 2 \mu 2 + \mu 3  - 1

\biggr] 
 - det

\biggl[ 
\mu 1 \mu 3  - 1

1 - \mu 2 \mu 2 + \mu 3  - 1

\biggr] 
det

\biggl[ 
\mu 4 \mu 6  - 1

1 - \mu 5 \mu 5 + \mu 6  - 1

\biggr] 
= 0.

The quintic polynomial R(\mu ) in item 4 is linear in each \mu i. In particular, for general \mu 1, . . . ,
\mu 5 \in \BbbR , there exists a unique \mu 6 \in \BbbR such that every b1, p2, b3, p4, b5, p6 \in \BbbR 2 with (4.2) yields
a Griffis--Duffy platform that is Segre-dependent. We illustrate by considering the sufficiently
general values

\mu 1 = 1/3, \mu 2 = 4/5, \mu 3 = 1/4, \mu 4 = 2/7, and \mu 5 = 3/11.

The unique value of \mu 6 satisfying item 4 is \mu 6 = 10/11. Hence, every Griffis--Duffy mechanism
built from these values of \mu i will be Segre-dependent. We illustrate this with two examples
presented in Figure 4.2:

(a) b1 = (0, 0), b3 = (0, 1), b5 = ( - 2, 2), p2 = (0, 0), p4 = (2, 0), and p6 = (3, 1);
(b) b1 = (0, 0), b3 = (0, 5), b5 = ( - 2, 2), p2 = (0, 0), p4 = (1/2, 0), and p6 = (3, 1).

Example 4.4. Griffis--Duffy Type I platforms [30] are Griffis--Duffy platforms (see Re-
mark 4.3) whose base and platform consist of equilateral triangles with connection points
at the midpoint of each edge, i.e., \mu i = 1/2. Figure 4.3 shows an example, as does one of the
seven pictures featured on the main cover of the SIAM Journal on Applied Algebraic Geometry
(SIAGA). Every such mechanism is Segre-dependent by item 4. In fact, taking the midpoints
of each edge for any two triangles will yield a Segre-dependent mechanism.

4.2. Planar-planar with six legs in SE(3) and two degrees of freedom. In section 4.1, the
exceptional mechanisms described generically had self-motion with one degree of freedom. We
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(a) (b)

Figure 4.2. Two mobile Griffis--Duffy platforms.

Figure 4.3. Griffis--Duffy Type I platform with its coupler curve.

now consider planar Segre-dependent Stewart--Gough mechanisms with at least two degrees
of freedoms. With the setup from section 4.1, this means that the 6\times 9 matrix A in (4.1) has
rank at most 4, i.e., the dimension of the left null space of A is at least 2. We note that all
nonarchitecturally singular Stewart--Gough platforms with two degrees of freedom are given
in [42, Thm. 5].

Computation 4.5. The solution to Problem 3.2 when N = 6, R = 4, and m = n = 2 is
provided by the following list of irreducible components:

1. (Three legs coincide)
\bigl( 
6
3

\bigr) 
= 20 irreducible components of dimension 16 and degree 1

such that, for distinct i, j, k \in \{ 1, . . . , 6\} ,
\bullet bi = bj = bk and pi = pj = pk.

2. (Two pairs of legs coincide)
(62)\cdot (

4
2)

2! = 45 irreducible components of dimension 16 and
degree 1 such that, for distinct i, j, k, \ell \in \{ 1, . . . , 6\} ,

\bullet bi = bj, bk = b\ell , pi = pj, and pk = p\ell .
3. (Five points coincident) 2 \cdot 

\bigl( 
6
5

\bigr) 
= 12 irreducible components of dimension 16 and
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degree 1 such that, for distinct h, i, j, k, \ell \in \{ 1, . . . , 6\} ,
\bullet bh = bi = bj = bk = b\ell or
\bullet ph = pi = pj = pk = p\ell .

4. (Four point-pairs: one set coincident and one set collinear) 2 \cdot 
\bigl( 
6
4

\bigr) 
= 30 irreducible

components of dimension 16 and degree 3 such that, for distinct i, j, k, \ell \in \{ 1, . . . , 6\} ,

\bullet bi = bj = bk = b\ell and rank

\left[  pj  - pi
pk  - pi
p\ell  - pi

\right]  \leq 1 or

\bullet rank

\left[  bj  - bi
bk  - bi
b\ell  - bi

\right]  \leq 1 and pi = pj = pk = p\ell .

5. (Six point-pairs: both collinear) One irreducible component of dimension 16 and de-
gree 25 such that

\bullet rank

\left[      
b2  - b1
b3  - b1
b4  - b1
b5  - b1
b6  - b1

\right]      \leq 1 and rank

\left[      
p2  - p1
p3  - p1
p4  - p1
p5  - p1
p6  - p1

\right]      \leq 1.

6. (Five point-pairs: both collinear)
\bigl( 
6
5

\bigr) 
= 6 irreducible components of dimension 16 and

degree 93 such that, for distinct h, i, j, k, \ell \in \{ 1, . . . , 6\} ,

\bullet rank

\left[    
bi  - bh
bj  - bh
bk  - bh
b\ell  - bh

\right]    \leq 1, rank

\left[    
pi  - ph
pj  - ph
pk  - ph
p\ell  - ph

\right]    \leq 1, and, for \alpha , \beta \in \{ 1, 2\} ,

rank

\left[      
1 bh\alpha ph\beta bh1ph1 bh1ph2 bh2ph1 bh2ph2
1 bi\alpha pi\beta bi1pi1 bi1pi2 bi2pi1 bi2pi2
1 bj\alpha pj\beta bj1pj1 bj1pj2 bj2pj1 bj2pj2
1 bk\alpha pk\beta bk1pk1 bk1pk2 bk2pk1 bk2pk2
1 b\ell \alpha p\ell \beta b\ell 1p\ell 1 b\ell 1p\ell 2 b\ell 2p\ell 1 b\ell 2p\ell 2

\right]      \leq 3.

7. (Six points collinear) Two irreducible components of dimension 16 and degree 583 such
that

\bullet rank

\left[      
b2  - b1
b3  - b1
b4  - b1
b5  - b1
b6  - b1

\right]      \leq 1 and, for \alpha \in \{ 1, 2\} ,

rank
\bigl[ 
1 b:\alpha p:1 p:2 b:1 \cdot p:1 b:1 \cdot p:2 b:2 \cdot p:1 b:2 \cdot p:2

\bigr] 
\leq 4

or
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\bullet rank

\left[      
p2  - p1
p3  - p1
p4  - p1
p5  - p1
p6  - p1

\right]      \leq 1 and, for \alpha \in \{ 1, 2\} ,

rank
\bigl[ 
1 b:1 b:2 p:\alpha b:1 \cdot p:1 b:1 \cdot p:2 b:2 \cdot p:1 b:2 \cdot p:2

\bigr] 
\leq 4,

where 1 is the vector of 1's and ``:"" corresponds to all values 1 to 6.
8. (Two legs coincide and three point-pairs: one set coincident and one set collinear)

2 \cdot 
\bigl( 
6
2

\bigr) 
\cdot 
\bigl( 
4
3

\bigr) 
= 120 irreducible components of dimension 15 and degree 2 such that, for

distinct h, i, j, k, \ell \in \{ 1, . . . , 6\} ,

\bullet bh = bi, bj = bk = b\ell , ph = pi, and rank

\biggl[ 
pk  - pj
p\ell  - pj

\biggr] 
\leq 1 or

\bullet bh = bi, rank

\biggl[ 
bk  - bj
b\ell  - bj

\biggr] 
\leq 1, ph = pi, and pj = pk = p\ell .

9. (Two legs coincide and four point-pairs: both collinear)
\bigl( 
6
4

\bigr) 
= 15 irreducible compo-

nents of dimension 15 and degree 24 such that, for distinct g, h, i, j, k, \ell \in \{ 1, . . . , 6\} ,

\bullet bg = bh, rank

\left[  bj  - bi
bk  - bi
b\ell  - bi

\right]  \leq 1, pg = ph, rank

\left[  pj  - pi
pk  - pi
p\ell  - pi

\right]  \leq 1, and, for \alpha , \beta \in 

\{ 1, 2\} ,

rank

\left[    
1 bi\alpha pi\beta bi1pi1 bi1pi2 bi2pi1 bi2pi2
1 bj\alpha pj\beta bj1pj1 bj1pj2 bj2pj1 bj2pj2
1 bk\alpha pk\beta bk1pk1 bk1pk2 bk2pk1 bk2pk2
1 b\ell \alpha p\ell \beta b\ell 1p\ell 1 b\ell 1p\ell 2 b\ell 2p\ell 1 b\ell 2p\ell 2

\right]    \leq 3.

10. (Two collections of three point-pairs: one coincident and one collinear)
\bigl( 
6
3

\bigr) 
= 20 irre-

ducible components of dimension 14 and degree 4 such that, for distinct g, h, i, j, k, \ell \in 
\{ 1, . . . , 6\} ,

\bullet bg = bh = bi, rank

\biggl[ 
bk  - bj
b\ell  - bj

\biggr] 
\leq 1, rank

\biggl[ 
ph  - pg
pi  - pg

\biggr] 
\leq 1, and pj = pk = p\ell .

4.3. Planar-spatial case with six legs in SE(3). For a Stewart--Gough platform where
one body is planar and one is spatial, we can, without loss of generality, assume that the
points in the base b1, . . . , b6 lie in \BbbC 2, i.e., the third coordinate of each bi is zero. Thus, solving
Problem 3.2 with N = 6, R = 5, m = 2, and n = 3 requires computing where the 6 \times 12
matrix

(4.3) A =

\left[        

1 b11 b12 p11 p12 p13 b11p11 b12p11 b11p12 b12p12 b11p13 b12p13
1 b21 b22 p21 p22 p23 b21p21 b22p21 b21p22 b22p22 b21p23 b22p23
1 b31 b32 p31 p32 p33 b31p31 b32p31 b31p32 b32p32 b31p33 b32p33
1 b41 b42 p41 p42 p43 b41p41 b42p41 b41p42 b42p42 b41p43 b42p43
1 b51 b52 p51 p52 p53 b51p51 b52p51 b51p52 b52p52 b51p53 b52p53
1 b61 b62 p61 p62 p63 b61p61 b62p61 b61p62 b62p62 b61p63 b62p63

\right]        
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has rank at most 5.

Computation 4.6. The solution to Problem 3.2 when N = 6, R = 5, m = 2, and n = 3 is
provided by the following list of irreducible components:

1. (Two legs coincide)
\bigl( 
6
2

\bigr) 
= 15 irreducible components of dimension 25 and degree 1 as

in item 1 of Computation 4.1.
2. (Three point-pairs: base coincident, platform collinear)

\bigl( 
6
3

\bigr) 
= 20 irreducible compo-

nents of dimension 24 and degree 3 such that, for distinct i, j, k \in \{ 1, . . . , 6\} ,

\bullet bi = bj = bk and rank

\biggl[ 
pj  - pi
pk  - pi

\biggr] 
\leq 1.

3. (Three point-pairs: base collinear, platform coincident)
\bigl( 
6
3

\bigr) 
= 20 irreducible compo-

nents of dimension 23 and degree 2 such that, for distinct i, j, k \in \{ 1, . . . , 6\} ,

\bullet pi = pj = pk and rank

\biggl[ 
bj  - bi
bk  - bi

\biggr] 
\leq 1.

4. (Four point-pairs: base coincident, platform coplanar)
\bigl( 
6
4

\bigr) 
= 15 irreducible components

of dimension 23 and degree 3 such that, for distinct i, j, k, \ell \in \{ 1, . . . , 6\} ,

\bullet bi = bj = bk = b\ell and rank

\left[  pj  - pi
pk  - pi
p\ell  - pi

\right]  \leq 2.

5. (Four point-pairs: both collinear)
\bigl( 
6
4

\bigr) 
= 15 irreducible components of dimension 23

and degree 42 such that, for distinct i, j, k, \ell \in \{ 1, . . . , 6\} ,

\bullet rank

\left[  bj  - bi
bk  - bi
b\ell  - bi

\right]  \leq 1, rank

\left[  pj  - pi
pk  - pi
p\ell  - pi

\right]  \leq 1, and, for \alpha \in \{ 1, 2\} and \beta \in \{ 1, 2, 3\} ,

rank

\left[    
1 bi\alpha pi\beta bi1pi1 bi1pi2 bi1pi3 bi2pi1 bi2pi2 bi2pi3
1 bj\alpha pj\beta bj1pj1 bj1pj2 bj1pj3 bj2pj1 bj2pj2 bj2pj3
1 bk\alpha pk\beta bk1pk1 bk1pk2 bk1pk3 bk2pk1 bk2pk2 bk2pk3
1 b\ell \alpha p\ell \beta b\ell 1p\ell 1 b\ell 1p\ell 2 b\ell 1p\ell 3 b\ell 2p\ell 1 b\ell 2p\ell 2 b\ell 2p\ell 3

\right]    \leq 3.

6. (Five point-pairs: base collinear, platform coplanar)
\bigl( 
6
5

\bigr) 
= 6 irreducible components of

dimension 23 and degree 216 such that, for distinct h, i, j, k, \ell \in \{ 1, . . . , 6\} ,

\bullet rank

\left[    
bi  - bh
bj  - bh
bk  - bh
b\ell  - bh

\right]    \leq 1, rank

\left[    
pi  - ph
pj  - ph
pk  - ph
p\ell  - ph

\right]    \leq 2, and, for \alpha \in \{ 1, 2\} and distinct

\beta , \gamma \in \{ 1, 2, 3\} ,

rank

\left[      
1 bh\alpha ph\beta ph\gamma bh1ph1 bh1ph2 bh1ph3 bh2ph1 bh2ph2 bh2ph3
1 bi\alpha pi\beta pi\gamma bi1pi1 bi1pi2 bi1pi3 bi2pi1 bi2pi2 bi2pi3
1 bj\alpha pj\beta pj\gamma bj1pj1 bj1pj2 bj1pj3 bj2pj1 bj2pj2 bj2pj3
1 bk\alpha pk\beta pk\gamma bk1pk1 bk1pk2 bk1pk3 bk2pk1 bk2pk2 bk2pk3
1 b\ell \alpha p\ell \beta p\ell \gamma b\ell 1p\ell 1 b\ell 1p\ell 2 b\ell 1p\ell 3 b\ell 2p\ell 1 b\ell 2p\ell 2 b\ell 2p\ell 3

\right]      \leq 4.

7. (Six base points collinear) One irreducible component of dimension 23 and degree 369
such that
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\bullet rank

\left[      
b2  - b1
b3  - b1
b4  - b1
b5  - b1
b6  - b1

\right]      \leq 1 and, for \alpha \in \{ 1, 2\} ,

rank
\bigl[ 
\bfone b:\alpha p:1 p:2 p:3 b:1 \cdot p:1 b:1 \cdot p:2 b:1 \cdot p:3 b:2 \cdot p:1 b:2 \cdot p:2 b:2 \cdot p:3

\bigr] 
\leq 5,

where 1 is the vector of 1's and ``:"" corresponds to all values 1 to 6.
8. (Planar-planar) One irreducible component of dimension 23 and degree 1700 as in

item 2 of Computation 4.1.

4.4. Planar-spatial with six legs in SE(3) and two degrees of freedom. Similarly to
section 4.2, we next consider where the 6\times 12 matrix A in (4.3) has rank at most 4.

Computation 4.7. The solution to Problem 3.2 when N = 6, R = 4, m = 2, and n = 3 is
provided by the following list of irreducible components:

1. (Three legs coincide)
\bigl( 
6
3

\bigr) 
= 20 irreducible components of dimension 20 and degree 1 as

in item 1 of Computation 4.5.

2. (Two pairs of legs coincide)
(62)\cdot (

4
2)

2! = 45 irreducible components of dimension 20 and
degree 1 as in item 2 of Computation 4.5.

3. (Six base points coincident) One irreducible component of dimension 20 and degree 1
such that

\bullet b1 = b2 = b3 = b4 = b5 = b6.
4. (Five point-pairs: base coincident, platform coplanar)

\bigl( 
6
5

\bigr) 
= 6 irreducible components

of dimension 20 and degree 6 as in item 3 of Computation 4.5.
5. (Four point-pairs: base coincident, platform collinear)

\bigl( 
6
4

\bigr) 
= 15 irreducible components

of dimension 20 and degree 6 as in item 4 of Computation 4.5.
6. (Four point-pairs: base collinear, platform coincident)

\bigl( 
6
4

\bigr) 
= 15 irreducible components

of dimension 19 and degree 3 as in item 4 of Computation 4.5.
7. (Two legs coincide and three point-pairs: base coincident, platform collinear)

\bigl( 
6
2

\bigr) 
\cdot 
\bigl( 
4
3

\bigr) 
=

60 irreducible components of dimension 19 and degree 3 as in item 8 of Computa-
tion 4.5.

8. (Five point-pairs: both collinear)
\bigl( 
6
5

\bigr) 
= 6 irreducible components of dimension 19 and

degree 186 as in item 6 of Computation 4.5.
9. (Six point-pairs: base collinear, platform coplanar) One irreducible component of di-

mension 19 and degree 2547 as in item 7 of Computation 4.5.
10. (Five platform points coincident)

\bigl( 
6
5

\bigr) 
= 6 irreducible components of dimension 18 and

degree 1 as in item 3 of Computation 4.5.
11. (Two legs coincide and four point-pairs: base coincident, platform coplanar)

\bigl( 
6
4

\bigr) 
= 15

irreducible components of dimension 18 and degree 3 such that, for distinct g, h, i, j, k,
\ell \in \{ 1, . . . , 6\} ,

\bullet bg = bh, bi = bj = bk = b\ell , pg = ph, and rank

\left[  pj  - pi
pk  - pi
p\ell  - pi

\right]  \leq 2.

12. (Two collections of three point-pairs: base coincident, platform collinear)
(63)
2! = 10 irre-
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ducible components of dimension 18 and degree 9 such that, for distinct g, h, i, j, k, \ell \in 
\{ 1, . . . , 6\} ,

\bullet bg = bh = bi, bj = bk = b\ell , rank

\biggl[ 
ph  - pg
pi  - pg

\biggr] 
\leq 1, and rank

\biggl[ 
pk  - pj
p\ell  - pj

\biggr] 
\leq 1.

13. (Platform coplanar, two legs coincide, and four point-pairs: both collinear)
\bigl( 
6
4

\bigr) 
= 15

irreducible components of dimension 18 and degree 50 as in item 9 of Computation 4.5.
14. (Six point-pairs: both collinear) One irreducible component of dimension 18 and de-

gree 75 as in item 5 of Computation 4.5.
15. (Six platform points collinear) One irreducible component of dimension 18 and de-

gree 1329 as in item 7 of Computation 4.5.
16. (Two collections of three point-pairs: one set coincident and one set collinear)

\bigl( 
6
3

\bigr) 
= 20

irreducible components of dimension 17 and degree 6 as in item 10 of Computation 4.5.

Remark 4.8. Items 6, 8, 9, 10, 13, 14, 15, and 16 of Computation 4.7 are all planar-planar
mechanisms. Moreover, for item 3, even though the generic rank of the 6 \times 12 matrix A
in (4.3) is 4 corresponding with a two-dimensional left null space, a generic element of this
family actually has three degrees of freedom. This does not occur in any other family in the
computations presented throughout this section; i.e., for the other families, the generic dimen-
sion of the left null space of the matrix in (3.2) is equal to the mobility of the corresponding
Stewart--Gough platform.

4.5. Spatial-spatial case with six legs in SE(3). For spatial Stewart--Gough platforms,
we consider where the 6\times 16 matrix A, namely
(4.4)\left[      

1 b11 b12 b13 p11 p12 p13 b11p11 b12p11 b13p11 b11p12 b12p12 b13p12 b11p13 b12p13 b13p13
1 b21 b22 b23 p21 p22 p23 b21p21 b22p21 b23p21 b21p22 b22p22 b23p22 b21p23 b22p23 b23p23
1 b31 b32 b33 p31 p32 p33 b31p31 b32p31 b33p31 b31p32 b32p32 b33p32 b31p33 b32p33 b33p33
1 b41 b42 b43 p41 p42 p43 b41p41 b42p41 b43p41 b41p42 b42p42 b43p42 b41p43 b42p43 b43p43
1 b51 b52 b53 p51 p52 p53 b51p51 b52p51 b53p51 b51p52 b52p52 b53p52 b51p53 b52p53 b53p53
1 b61 b62 b63 p61 p62 p63 b61p61 b62p61 b63p61 b61p62 b62p62 b63p62 b61p63 b62p63 b63p63

\right]      ,

has rank at most 5.

Computation 4.9. The solution to Problem 3.2 when N = 6, R = 5, and m = n = 3 is
provided by the following list of irreducible components:

1. (Two legs coincide)
\bigl( 
6
2

\bigr) 
= 15 irreducible components of dimension 30 and degree 1 as

in item 1 of Computation 4.1.
2. (Three point-pairs: one set coincident and one set collinear) 2 \cdot 

\bigl( 
6
3

\bigr) 
= 40 irreducible

components of dimension 28 and degree 3 corresponding to items 2 and 3 of Compu-
tation 4.6.

3. (Four point-pairs: both collinear)
\bigl( 
6
4

\bigr) 
= 15 irreducible components of dimension 27

and degree 72 as in item 5 of Computation 4.6.
4. (Four point-pairs: one set coincident and one set coplanar) 2 \cdot 

\bigl( 
6
4

\bigr) 
= 30 irreducible

components of dimension 26 and degree 3 as in item 4 of Computation 4.6.
5. (Five point-pairs: one set collinear and one set coplanar) 2 \cdot 

\bigl( 
6
5

\bigr) 
= 12 irreducible

components of dimension 26 and degree 444 as in item 6 of Computation 4.6.
6. (Planar-planar) One irreducible component of dimension 26 and degree 8445 as in
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item 2 of Computation 4.1.
7. (Six points collinear) Two irreducible components of dimension 25 and degree 924 as

in item 7 of Computation 4.6.

We note that the ``2"" in several of these families arises due to symmetry of swapping the
base and platform.

Remark 4.10. Theorem 2 of [31] states that every architecturally singular Stewart--Gough
platform with six distinct legs satisfies at least one of the following conditions:

\bullet b1, . . . , b6 are coplanar;
\bullet p1, . . . , p6 are coplanar;
\bullet four points of b1, . . . , b6 are collinear;
\bullet four points of p1, . . . , p6 are collinear.

This theorem must trivially hold for Segre-dependent Stewart--Gough platforms which we can
observe by reviewing the last six families provided in Computation 4.9.

Remark 4.11. In Karger's classification of architecturally singular Stewart--Gough plat-
forms [31] (see also [37, 38]), there was a chosen system of Cartesian coordinates. This choice
simplified the computation but resulted in additional components as compared with leaving
a fully general coordinate system, e.g., as in Computation 4.9. With respect to this general
coordinate system, each irreducible component of the families described in items 1, 2, 3, 5,
and 6 of Computation 4.9 is an irreducible component of the set of architecturally singular
mechanisms.

Each irreducible component of item 4 of Computation 4.9 is a codimension 1 subset of
the architecturally singular set where four points are coincident, corresponding to Family 5
in [31]. In particular, coplanarity is needed for Segre-dependency but not for architectural
singularity.

Each irreducible component of item 7 of Computation 4.9 is a codimension 3 subset of
the architecturally singular set where six points are collinear, corresponding to Family 1 in
[31]. In particular, the additional rank constraints are needed for Segre-dependency but not
architectural singularity.

4.6. Spatial-spatial case with 10 legs in SE(4). Since SE(3) is 6-dimensional, spatial
Stewart--Gough platforms utilize six legs. One can consider a Stewart--Gough platform moving
in four dimensions using SE(4) (e.g., see [41]) with dimSE(4) = 10. Thus, Problem 3.2 with
N = 10, R = 9, and m = n = 3 corresponds with Segre-dependent Stewart--Gough platforms
having a spatial base and platform that move in 4-dimensional space.

Computation 4.12. The solution to Problem 3.2 when N = 10, R = 9, and m = n = 3 is
provided by the following list of irreducible components:

1. (Two legs coincide)
\bigl( 
10
2

\bigr) 
= 45 irreducible components of dimension 54 and degree 1.

2. (General spatial case) One irreducible component of dimension 53 and degree 147,816.
In particular, the projection onto (b1, . . . , b10, p1, . . . , p7, p81,p82) \in \BbbC 53 is generically
one-to-one. Thus, on a Zariski dense subset (b1, . . . , b10, p1, . . . , p7, p81, p82) \in \BbbR 53,
there is a unique (p83, p9, p10) \in \BbbR 7 yielding a Segre-dependent spatial Stewart--Gough
platform that moves in 4-dimensional space.

Conceptually, spatial Stewart--Gough platforms which move in 4-dimensional space is anal-
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ogous to the case considered in section 4.1, namely planar Stewart--Gough platforms which
move in 3-dimensional space. Computationally, the Segre-dependent mechanisms have a sim-
ilar decomposition. In particular, we can follow a similar approach to compute the remaining
seven coordinates in the general spatial component of item 2. That is, for a left null vector
\lambda = [\lambda 1, . . . , \lambda 10] \in \BbbP 9, the system \lambda \cdot A = 0, where A is the 10 \times 16 matrix where each row
has the form of each row in (4.4), consists of 16 linear equations in the unknowns

\lambda 1, . . . , \lambda 10, p83\lambda 8, p91\lambda 9, p92\lambda 9, p93\lambda 9, p101\lambda 10, p102\lambda 10, p103\lambda 10.

Example 4.13. To demonstrate item 2, we consider the following sufficiently general col-
lection of points:

b1 = (0, 0, 0), b2 = (1, 0, 0), b3 = ( - 1, 4, 0), b4 = (3, 4, 2), b5 = (2, 2, - 1),
b6 = (1, - 3, 2), b7 = ( - 4, - 2, - 4), b8 = ( - 4, 3, 2), b9 = ( - 2, 4, - 4), b10 = ( - 1, - 1, 2),
p1 = (0, 0, 0), p2 = (2, 0, 0), p3 = (1, 1, 0), p4 = (1, 2, 2), p5 = ( - 2, 2, 1),
p6 = ( - 3, - 3, 4), p7 = ( - 1, 1, - 2), p8 = ( - 3, - 2, p83).

Using the ``linearity"" of \lambda \cdot A as described above, it is easy to check that the unique spatial
Segre-dependent Stewart--Gough platform that moves in 4-dimensional space has

p83 =  - 3794462/313611,
p9 = ( - 7809731, - 17364829, - 1001946)/4163483, and
p10 = ( - 16495001, 6880823, - 29032984)/22069647

with left null vector

\lambda = [ - 76731972, 30802104, 6959736, - 5925332, 12436712, 4871861, 2608205, - 1254444, 4163483, 22069647].

5. Special Euclidean and special orthogonal groups. The planar pentad consists of two
triangles, say \bigtriangleup ABC and \bigtriangleup A\prime B\prime C \prime , in the plane with three binary links constraining the
distances | AA\prime | , | BB\prime | , and | CC \prime | . The spherical pentad is a similar mechanism, except the
two triangles each lie on a common sphere. The Stewart--Gough platform may be viewed
as the natural generalization of these arrangements from plane to sphere to three-space, as
summarized in Table 5.1. In this section, we show how the number of assembly configurations
of these three mechanical arrangements all fall naturally into a sequence that generalizes to
higher dimensions. In particular, as discussed in [17, 46] and summarized in section 2, the
reason that a Stewart--Gough platform generically has 40 assembly configurations is due to
the fact that deg\scrS \scrE 3 = 40, where \scrS \scrE 3 is the Zariski closure of a representation of SE(3) where
each leg imposes a linear condition. The generic number of assembly configurations for the
planar and spherical pentads follows from exactly the same kind of reasoning applied to the
spaces SE(2) and SO(3). This idea can be generalized abstractly to mechanisms related to the
special orthogonal group SO(N) consisting of N \times N orthogonal matrices with determinant
equal to 1 and the special Euclidean group SE(N) in \BbbR N . In each case, the number of ``legs,""
i.e., the number of point-pair distance constraints, is equal to the dimensionality of the space
in question, e.g., 10 for 4-dimensional Stewart--Gough platforms as in section 4.6 (see also
[11, 41]).
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Table 5.1
Mechanisms related to the special Euclidean and special orthogonal groups.

Generic number
Mechanism of assembly configurations Corresponding group

planar pentad 6 SE(2)
spherical pentad 8 SO(3)

Stewart--Gough platform 40 SE(3)

To understand the generic number of assembly configurations, we consider the following
three varieties:

\scrS \scrO N = \{ M \in \BbbC N\times N | MTM = MMT = I, detM = 1\} ,(5.1)

\scrS \scrR \scrT N = \{ (x, y,M) \in \BbbC N \times \BbbC N \times \BbbC N\times N | M \in \scrS \scrO N ,Mx+ y = 0\} ,(5.2)

\scrS \scrE N = \{ (r, x, y,M) \in \BbbC \times \BbbC N \times \BbbC N \times \BbbC N\times N | (x, y,M) \in \scrS \scrR \scrT N , 2r + xTx = 0\} .(5.3)

In particular, \scrS \scrO N is the Zariski closure of SO(N), \scrS \scrR \scrT N is the Zariski closure of a represen-
tation of rotations and translations in \BbbR N , and \scrS \scrE N is the Zariski closure of a representation
of SE(N). The data in Table 5.1 corresponds with

deg\scrS \scrE 2 = 6, deg\scrS \scrO 3 = 8, and deg\scrS \scrE 3 = 40.

Thus, we aim to understand the degrees of these varieties in general. We start with deg\scrS \scrO N

from [14]:

(5.4) deg\scrS \scrO N = 2N - 1 \cdot det
\biggl[ \biggl( 

2(N  - i - j)
N  - 2i

\biggr) \biggr] 
1\leq i,j\leq \lfloor N

2
\rfloor 
.

In particular, the generic number of assembly configurations for spherical pentads is

deg\scrS \scrO 3 = 22 \cdot 
\biggl( 
2

1

\biggr) 
= 8.

The following theorem was motivated by simply observing that

deg\scrS \scrO 4 = 23 \cdot det
\biggl[ 
6 1
1 1

\biggr] 
= 40 = deg\scrS \scrE 3

with further computational evidence generated by Bertini [7] using [28] presented in Ta-
ble 5.2.

Theorem 5.1.
1. For N \geq 1, dim\scrS \scrR \scrT N = dim\scrS \scrO N+1 and deg\scrS \scrR \scrT N = 1

2 \cdot deg\scrS \scrO N+1.
2. For k \geq 0 and N = 2k + 1, dim\scrS \scrE N = dim\scrS \scrO N+1 and deg\scrS \scrE N = deg\scrS \scrO N+1.
3. For k \geq 1 and N = 2k, dim\scrS \scrE N = dim\scrS \scrO N+1 and deg\scrS \scrE N < deg\scrS \scrO N+1.

One consequence of the proof provided in section 5.1 is that, for N = 2k \geq 2,

deg\scrS \scrE N \leq deg\scrS \scrO N+1  - 2k - 1 \cdot deg\scrS \scrO N .

Since this inequality is sharp for N = 2, 4 but is not for N = 6, we have the following open
problem.
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Table 5.2
Dimensions and degrees for various varieties.

\scrS \scrO N+1 \scrS \scrR \scrT N \scrS \scrE N

N dim deg dim deg dim deg

1 1 2 1 1 1 2
2 3 8 3 4 3 6
3 6 40 6 20 6 40
4 10 384 10 192 10 304
5 15 4768 15 2384 15 4768
6 21 111,616 21 55,808 21 90,496

Problem 5.2. For even N \geq 8, compute deg\scrS \scrE N .

Since the degree describes the generic number of assembly configurations over the complex
numbers, a natural question to ask is whether all assembly configurations can be real. For
Stewart--Gough platforms, this was answered affirmatively by Dietmaier [15], who produced
a Stewart--Gough mechanism where all 40 assembly configurations are real. Since each leg
corresponds with intersecting \scrS \scrE 3 with a hyperplane, one can view Dietmaier's result as
producing a linear space of codimension 6 which intersects \scrS \scrE 3 in 40 real points. That is,
there exists a witness set (see section 3.2) for \scrS \scrE 3 such that all 40 witness points are real.
This motivates the following, another open problem.

Problem 5.3. For N \geq 4, determine the maximum number of real witness points for \scrS \scrE N .

To help understand the odd and even cases, we explicitly consider Theorem 5.1 for N = 1
and N = 2.

Example 5.4. For N = 1, we have

\scrS \scrO 2 =

\biggl\{ \biggl[ 
s  - c
c s

\biggr] \bigm| \bigm| \bigm| \bigm| s2 + c2 = 1

\biggr\} 
,

\scrS \scrR \scrT 1 = \{ (x, y, 1) | x+ y = 0\} , and \scrS \scrE 1 = \{ (r, x, y, 1) | x+ y = 2r + x2 = 0\} .

Clearly, dim\scrS \scrO 2 = dim\scrS \scrR \scrT 1 = dim\scrS \scrE 1 = 1 with deg\scrS \scrO 2 = deg\scrS \scrE 1 = 2 \cdot deg\scrS \scrR \scrT 1 = 2.
For the embedding \BbbC 4 \lhook \rightarrow \BbbP 4 where \alpha \mapsto \rightarrow [1, \alpha ], the Zariski closure of \BbbC \times \scrS \scrR \scrT 1 is

\{ [h, r, x, y, h] | x+ y = 0\} \subset \BbbP 4.

Hence, the set of points at infinity (corresponding with h = 0) is the projective line

\{ [0, r, x, y, 0] | x+ y = 0\} \subset \BbbP 4.

In particular, xTx is generically nonzero at infinity in the Zariski closure of \BbbC \times \scrS \scrR \scrT 1 in \BbbP 4

so that the hypersurface 2r + xTx = 0 intersects \BbbC \times \scrS \scrR \scrT 1 transversely.

Example 5.5. For N = 2, we have

\scrS \scrO 3 = \{ M \in \BbbC 3\times 3 | MTM = I, detM = 1\} ,

\scrS \scrR \scrT 2 =

\biggl\{ \biggl( \biggl[ 
x1
x2

\biggr] 
,

\biggl[ 
y1
y2

\biggr] 
,

\biggl[ 
m11 m12

 - m12 m11

\biggr] \biggr) \bigm| \bigm| \bigm| \bigm| m2
11 +m2

12  - 1 = m11x1 +m12x2 + y1
= m12x1  - m11x2  - y2 = 0

\biggr\} 
,

and \scrS \scrE 2 = \{ (r, x, y,M) \in \BbbC \times \scrS \scrR \scrT 2 | 2r + x21 + x22 = 0\} .
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One can verify that dim\scrS \scrO 3 = dim\scrS \scrR \scrT 2 = dim\scrS \scrE 2 = 3 with deg\scrS \scrO 3 = 2 \cdot deg\scrS \scrR \scrT 2 =
8 > 6 = deg\scrS \scrE 2. To understand the reason for this drop in degree, we consider the embedding
\BbbC 9 \lhook \rightarrow \BbbP 9 where \alpha \mapsto \rightarrow [1, \alpha ]. The Zariski closure of \BbbC \times \scrS \scrR \scrT 2 is\biggl\{ \Bigl[ 

h, r,
\Bigl[ 

x1

x2

\Bigr] 
,
\Bigl[ 

y1
y2

\Bigr] 
,
\Bigl[ 

m11 m12

 - m12 m11

\Bigr] \Bigr] \bigm| \bigm| \bigm| \bigm| m2
11 +m2

12  - h2 = x2
1 + x2

2  - y21  - y22
= m11x1 +m12x2 + hy1 = m12x1  - m11x2  - hy2
= m11y1  - m12y2 + hx1 = m12y1 +m11y2 + hx2 = 0

\biggr\} 
\subset \BbbP 9 .

The set of points at infinity (corresponding with h = 0) has dimension 3 with three irreducible
components:\bigl\{ \bigl[ 

0, r,
\bigl[ 

x1
x2

\bigr] 
,
\bigl[ 

y1
y2

\bigr] 
, 0
\bigr] \bigm| \bigm| x21 + x22 = y21 + y22

\bigr\} 
,
\bigl\{ \bigl[ 
0, r, x1 \cdot 

\bigl[ 
1
\pm i

\bigr] 
, y1 \cdot 

\bigl[ 
1
\mp i

\bigr] 
,m11 \cdot 

\bigl[ 
1 \pm i
\mp i 1

\bigr] \bigr] \bigr\} 
,

where i =
\surd 
 - 1. Since the two linear irreducible components at infinity have xTx = 0,

these two will yield two lines contained in the hypersurface h = 0 when intersecting the
Zariski closure of \BbbC \times \scrS \scrR \scrT 2 in \BbbP 9 with the hypersurface 2rh + xTx = 0. Hence, we have
deg\scrS \scrE 2 = 2 \cdot deg\scrS \scrR \scrT 2  - 2 = 6.

There are two vectors and two matrices of interest in Example 5.5, namely

(5.5) u =

\biggl[ 
1
i

\biggr] 
, u =

\biggl[ 
1
 - i

\biggr] 
, B =

\biggl[ 
1 i
 - i 1

\biggr] 
, and B =

\biggl[ 
1  - i
i 1

\biggr] 
.

These, together with the following lemma, are used in the proof of Theorem 5.1 presented in
section 5.1.

Lemma 5.6. For B and B as in (5.5), the following hold:
1. there does not exist M \in \scrS \scrO 2 such that B \cdot M = M \cdot B;
2. there exists M \in \BbbC 2\times 2 with MTM = I and det(M) =  - 1 such that B \cdot M = M \cdot B;

and
3. there exists M \in \scrS \scrO 3 such that\biggl[ 

B 0
0 0

\biggr] 
\cdot M = M \cdot 

\biggl[ 
B 0
0 0

\biggr] 
.

Proof. For M \in \scrS \scrO 2, we can write

M =

\biggl[ 
m11 m12

 - m12 m11

\biggr] 
,

where m2
11 +m2

12 = 1. If we ignore this quadratic condition, B \cdot M = M \cdot B is equivalent to
m11 = m12 = 0. Hence, no such M \in \scrS \scrO 2 can exist.

For the second and third statements, it is easy to verify that

M =

\biggl[ 
1 0
0  - 1

\biggr] 
and M =

\left[  1 0 0
0  - 1 0
0 0  - 1

\right]  
satisfy the requirements, respectively.
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5.1. Proof of Theorem 5.1. Let N \geq 1. We first address the equality of dimensions. By
comparing (5.2) and (5.3), it is clear that dim\scrS \scrR \scrT N = dim\scrS \scrE N . Moreover, it is well known
that dim\scrS \scrO N = 1

2N(N  - 1), and thus

dim\scrS \scrR \scrT N = dim\scrS \scrE N = dim\scrS \scrO N +N =
1

2
N(N  - 1) +N =

1

2
(N + 1)N = dim\scrS \scrO N+1.

We now turn to degrees and assume that (x, y,M) \in \scrS \scrR \scrT N and \scrP \in \scrS \scrO N+1 are generic.
Define

\scrM =

\biggl[ 
M y
xT 1

\biggr] 
.

Let \scrM 1:N and \scrP 1:N be the N \times (N + 1) matrices corresponding to the first N rows of \scrM 
and \scrP , respectively, and let \scrM N+1 and \scrP N+1 be the last rows of \scrM and \scrP , respectively. We
know that the row spans of \scrM 1:N and \scrP 1:N are both an N -dimensional linear space in \BbbC N+1

with \scrM 1:N \cdot \scrM T
N+1 = \scrP 1:N \cdot \scrP T

N+1 = 0. In particular, it follows that \scrM N+1 and \scrP N+1 are
each uniquely defined given \scrM 1:N and \scrP 1:N , respectively.

We now consider the vector in Pl\"ucker coordinates corresponding with \scrM 1:N and \scrP 1:N ,
namely v\scrM and v\scrP , respectively. Since detM = 1, we can write

v\scrM = [1 v1 \cdot \cdot \cdot vN ]T .

Since \scrP 1:N \cdot \scrP T
1:N = I, we have vT\scrP v\scrP = 1. Hence, the firstN rows of\scrM correspond with vectors

in the Pl\"ucker embedding defined on the affine coordinate patch where the first coordinate
is 1. In addition, the first N rows of \scrP correspond with vectors in the Pl\"ucker embedding
for which vT v = 1. In particular, due to the selection of coordinate patches (linear versus
quadratic), there is a generically 1-to-2 relationship between \scrM 1:N and \scrP 1:N which yields a
generically 1-to-2 relationship between \scrM and \scrP so that

deg\scrS \scrR \scrT N =
1

2
\cdot deg\scrS \scrO N+1.

By (5.2) and (5.3), we see that \scrS \scrE N is obtained by intersecting \BbbC \times \scrS \scrR \scrT N with the degree
2 hypersurface defined by 2r + xTx = 0. Hence, B\'ezout's theorem yields

(5.6) deg\scrS \scrE N \leq 2 \cdot deg\scrS \scrR \scrT N = deg\scrS \scrO N+1.

We will show that this is an equality for odd N and a strict inequality for even N .

Assume that N = 2k+1. Following Example 5.4, we show that xTx is generically nonzero
at infinity for \scrS \scrR \scrT N so that the intersection of \BbbC \times \scrS \scrR \scrT N with the hypersurface 2r+xTx = 0
is transverse, i.e., equality holds in (5.6). For every M \in \scrS \scrO N , there exists O \in \BbbC N\times N with
OTO = I such that

OTMO =

\left[       
A1

A2

. . .

Ak

1

\right]       ,
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where each Ai \in \scrS \scrO 2. In particular, the points at infinity of \scrS \scrO N lie in the Zariski closure
of matrices of the form

P = O

\left[       
\gamma 1 \cdot B1

\gamma 2 \cdot B2

. . .

\gamma k \cdot Bk

0

\right]       OT ,

where \gamma j \in \BbbC and Bj \in \{ B,B\} with B and B as in (5.5). By Lemma 5.6(3), we can
assume without loss of generality that Bj = B so that the set of points at infinity for \scrS \scrO N is
irreducible.

Affinely, belonging to \scrS \scrR \scrT N implies Mx+y = 0. Thus, if we write x = O \cdot \widetilde x and y = O \cdot \widetilde y,
then \widetilde xN + \widetilde yN = 0, which must also hold at infinity. Since we also need Px = 0, P T y = 0,
and xTx = yT y at infinity, we must have x = O \cdot (\alpha 1 \cdot x1 + \cdot \cdot \cdot + \alpha k \cdot xk + \alpha k+1 \cdot eN ) and
y = O \cdot (\beta 1 \cdot y1 + \cdot \cdot \cdot + \beta k \cdot yk  - \alpha k+1 \cdot eN ) for any \alpha j , \beta j \in \BbbC , where

x1 = [uT , 0, . . . , 0]T , . . . , xk = [0, . . . , 0, uT , 0]T , y1 = [uT , 0, . . . , 0]T , . . . , yk = [0, . . . , 0, uT , 0]T ,

where u and u as in (5.5). In particular, we know that xTx = yT y = \alpha 2
k+1 is generically

nonzero as required.
All that remains to be shown for the odd case is that no other components for \scrS \scrR \scrT N can

arise at infinity of projective dimension equal to dim\scrS \scrR \scrT N  - 1 by taking some \gamma j = 0, e.g.,
as in Example 5.5. If, without loss of generality, \gamma k = 0, then suppose x = O \cdot (\alpha 1 \cdot x1 + \cdot \cdot \cdot +
\alpha k - 1 \cdot xk - 1 +\alpha k \cdot eN - 2 +\alpha k+1 \cdot eN - 1 +\alpha k+2 \cdot eN ) and y = O \cdot (\beta 1 \cdot y1 + \cdot \cdot \cdot + \beta k - 1 \cdot yk - 1 + \beta k \cdot 
eN - 2 + \beta k+1 \cdot eN - 1 + \beta k+2 \cdot eN ) with \alpha 2

k + \alpha 2
k+1 + \alpha 2

k+2 = \beta 2
k + \beta 2

k+1 + \beta 2
k+2. Hence, the total

affine degrees of freedom for this setup is (k + 2) + (k + 2)  - 1 = 2k + 3 = N + 2, meaning
that the best case scenario is a gain of two degrees of freedom over the case above. However,
the codimension of matrices P where \gamma k = 0 is 3, showing that the total affine dimension is
strictly smaller than dim\scrS \scrR \scrT N .

Now we turn to the case that N = 2k. Following Example 5.5, we show that there exists
at least one irreducible component at infinity for \scrS \scrR \scrT N for which xTx = 0, showing that
the intersection of \BbbC \times \scrS \scrR \scrT N with the hypersurface 2r + xTx = 0 is not transverse, i.e., the
inequality in (5.6) is strict. For every M \in \scrS \scrO N , there exists O \in \BbbC N\times N with OTO = I such
that

OTMO =

\left[     
A1

A2

. . .

Ak

\right]     ,

where each Ai \in \scrS \scrO 2. In particular, the points at infinity in \scrS \scrO N lie in the Zariski closure
of matrices of the form

(5.7) P = O

\left[     
\gamma 1 \cdot B1

\gamma 2 \cdot B2

. . .

\gamma k \cdot Bk

\right]     OT ,
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where \gamma j \in \BbbC and Bj \in \{ B,B\} with B and B as in (5.5). Hence, by Lemma 5.6, the set
of points at infinity for \scrS \scrO N is reducible. To focus on one irreducible component, we take
Bj = B for all j, which affinely has dimension equal to the dimension of \scrS \scrO N . We can then
produce a family of points at infinity for \scrS \scrR \scrT N by taking x = O \cdot (\alpha 1 \cdot x1 + \cdot \cdot \cdot +\alpha k \cdot xk) and
y = O \cdot (\beta 1 \cdot y1 + \cdot \cdot \cdot + \beta k \cdot yk), where \alpha j , \beta j \in \BbbC and

x1 = [uT , 0, . . . , 0]T , . . . , xk = [0, . . . , 0, uT ]T , y1 = [uT , 0, . . . , 0]T , . . . , yk = [0, . . . , 0, uT ]T ,

with u and u as in (5.5). Hence, since xTx = yT y = 0 for such points, the only item that
remains is to show that the Zariski closure of the collection of such points has projective
dimension equal to dim\scrS \scrR \scrT N  - 1. Since there are k degrees of freedom in both x and y, this
collection of points has affine dimension equal to dim\scrS \scrO N+2k = dim\scrS \scrO N+N = dim\scrS \scrR \scrT N

so that the projective dimension is dim\scrS \scrR \scrT N  - 1 as required.
It is interesting to note that, in the even case, the set of all P with, for example, \gamma k = 0,

has codimension 1 with respect to when \gamma k is general. Moreover, replacing \alpha k \cdot xk and \beta k \cdot yk
with \alpha k \cdot eN - 1+\alpha k+1 \cdot eN and \beta k \cdot eN - 1+\beta k+1 \cdot eN , respectively, where \alpha 2

k+\alpha 2
k+1 = \beta 2

k+\beta 2
k+1,

yields a gain in one degree of freedom. Hence, the even cases have at least one irreducible
component at infinity where xTx \not = 0 generically.

6. Conclusion. The relationship between leg constraints of a Stewart--Gough platform
and the Segre embedding yields a geometric class of exceptional Stewart--Gough platforms
via linear dependency of point-pairs under the Segre embedding. We considered the planar-
planar, planar-spatial, and spatial-spatial cases for Stewart--Gough platforms, the planar-
planar and planar-spatial Stewart--Gough platforms with two degrees of freedom, and the
spatial-spatial Stewart--Gough platforms that move in 4-D space. The complete classification
of all exceptional Stewart--Gough platforms remains an open problem.

Since the generic number of assembly configurations of a Stewart--Gough platform is equal
to the degree of a representation of the special Euclidean group in 3-D space, we also considered
the degree of the special Euclidean group in other dimensions. We show that the degree of
a representation of the special Euclidean group in odd dimensions is equal to the degree of
the special orthogonal group in one higher dimension. For the corresponding case of special
Euclidean groups in even dimensions, we give a inequality, but we leave as an open problem
the determination of a sharp result for \scrS \scrE N , even N \geq 8.

Acknowledgments. We thank Manfred Husty for suggesting to compute Stewart--Gough
platforms with two degrees of freedom and the referees for their helpful comments.
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