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Smoothing Methods for Numerical Differentiation to Identify
Electrochemical Reactions from Open-Circuit-Potential Data
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We develop and compare methods to determine when electrochemical reactions take place within intercalation electrodes. We employ
open-circuit data from the Chevrolet Bolt EV negative and positive electrodes, lithiated graphite and NMC (Ni0.6Mn0.2Co0.2O2),
respectively. Electrochemical reactions correspond to peaks in plots of dx/dU vs. U, where U is the electrode potential and x is the
fractional state of charge (0 ≤ x ≤ 1). We employ three nonparametric methods in this work to smooth and subsequently differentiate
the data: a windowed cubic polynomial of fixed and variable window length and a cubic smoothing spline. The standard deviation
in the measurements can be used to set appropriately the window length and the analogous smoothing parameter for the spline. The
cubic polynomial with a fixed window length and the smoothing spline each have a single smoothing parameter; both methods are
shown to work well and yield comparable results. The best results were achieved with the cubic polynomial incorporating a varying,
adaptive window length, and the increased fidelity enables a completely automated procedure to identify reactions. The analysis
clarifies the multi-reaction nature of lithiated graphite, which must be addressed in cell modeling to simulate fast-charge behavior.
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The importance of differential voltage spectroscopy (DVS) is
well explained in three recent publications. Pastor-Fernández et al.1

overview the utility of incremental capacity-differential voltage
(termed DVS in this worka) to characterize degradation phenomena
in battery systems. The authors characterize the state-of-health of the
batteries by examining the shift in peaks obtained from differentiating
the open-circuit voltage (OCV) curves U(x) at low, constant-current
operation (C/25 in their investigation, where the 1C rate corresponds
to the discharge current that will discharge the cell in 1 hour). Re-
lated to work described in Ref. 1, the utility of DVS for informing
life models of lithium ion batteries, including peak shifting associ-
ated with coupled chemical degradation and fatigue mechanics, is
examined in detail for a graphite/iron-phosphate cell in Ref. 2. When
such detailed model-experiment comparisons are made, it is helpful
to smooth the data consistent with the amount of noise, and thereby
enable the robust construction of plots requiring the differential dx/dU
(or the inverse, dU/dx). The smoothing process facilitates the fitting
of model parameters to the differentiated data. Li et al.3 review the
DVS literature and apply differentials of U(x) curves for deducing
state-of-health and state-of-charge of lithium ion cells; they employ a
Gaussian filter to smooth the U(x) curves. At this time, it remains an
open question as to the merits of a Gaussian filter relative to those of
the methods described in this work. Last, Zheng et al.4 review the DVS
literature and, like Refs. 1 and 3, emphasize the utility of smoothed
U(x) curves for deducing the state of lithium ion cells and algorithms
derived by modeling the differential data for battery management
systems.

While smoothed U(x) curves are useful for the reduced-order mod-
eling for estimating state-of-health and state-of-charge, they are also
important for the modeling of porous electrodes with transport rela-
tions based on irreversible thermodynamics.5,6 We can write the flux
of lithium-filled sites N within an insertion or alloy electrode as7,8

N = cT x(1 − x)D0
F

RT

∂U

∂x
∇x + x(N + NH ) [1]

where NH is the flux of vacant sites, cT is the total concentration
of sites available for lithium, and D0 is the diffusion coefficient of
lithium in the limit as x tends to zero (a condition under which Fickian
diffusion prevails). Faraday’s constant, the universal gas constant, and
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dx/dU vs. x, dU/dx vs. U, and dU/dx vs. x, as the key challenge is accurate numerical
differentiation of U(x) curves.

absolute temperature are given by F, R, and T, respectively. From
Eq. 1, we can see that an accurate model is needed for dU/dx if the
flux expression is to be accurate.

In addition to describing lithium diffusion within insertion or alloy
electrodes, it is important to know how many electrochemical reac-
tions are needed to represent electrode behavior, a fact that is often
overlooked in the modeling of intercalation electrodes, as it is com-
mon to assume that a single electrochemical reaction, described by a
Butler-Volmer equation, prevails: this approach conflicts with the ob-
servation of multiple peaks observed in DVS. A model incorporating
multiple lithium species and associated reactions has recently been
developed10 to rectify this situation. The different species of lithium
correspond to different galleries in the host materials and were shown
to be consistent with X-ray analyses. The single Butler-Volmer equa-
tion must then be replaced with an electrochemical reaction expression
for each lithium species determined. Here again, an accurate determi-
nation of dx/dU from DVS data plays a critical role in the process. For
linear-sweep voltammetry,9 current is proportional to dx/dU at low
currents; hence, we can associate peaks in DVS plots (dx/dU plotted
against U) with current peaks in voltammograms (plots of current
vs. potential, with the potential being scanned linearly with time).
One must ascertain how many significant peaks there are in the DVS
plots, corresponding to electrochemical reactions, to model accurately
voltammetry experiments9 using information obtained only from DVS
experiments. More discussion on the similarity of DVS at very low
currents to cyclic voltammetry at low potential scan rates can be found
in Ref. 10. In this context, Figure 1 provides a schematic overview
of one of the objectives of this work. To identify electrochemical
reactions, we determine when d2U/dx2 = 0, as will be described, re-
quiring a second numerical differentiation of the data, and placing a
premium on smoothing the data but retaining sufficient fidelity in the
data features.

This work is concerned with the process of determining a differ-
entiable function U(x) from DVS data. To do this, one must filter

Figure 1. Schematic overview of the objective of this work. Given the input
date U(x), provide a feature-recognition (nonparametric) algorithm to identify
electrochemical reactions, characterized by standard potentials U 0

k (xk ) for each
reaction k.
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out noise in the data, because unfiltered noise impacts not only the
function U(x), but its derivatives even more so.

Methods for analyzing experimental data can be classified as para-
metric or nonparametric according to whether or not they are based
on a model that depends on physicochemcial parameters of the system
being studied. When a well-established mathematical model is avail-
able that captures the significant physical phenomena occurring in the
experiment, it is appropriate to regress unknown parameters in the
model. Good agreement between the regressed model and the experi-
mental data lends credence to the belief that the model is appropriate,
and studies of the sensitivity of the experiment to the parameters can
help quantify the confidence in the parameters found by regression.
However, if one applies an inappropriate model, especially if that
model is “over-parameterized,” a good agreement in the regression
might still be possible, leading to a false belief in the model that may
not stand up when faced with new evidence.

Nonparametric methods stand in contrast to the parametric ap-
proach. A nonparametric method attempts to extract functional re-
lationships from the data using minimal prior information, typically
limited to basic assumptions on the smoothness of the functions and
the accuracy of the experimental apparatus. Supposing that two exper-
imental variables have a functional relation, say y = μ(x), Eubank11

offers the following perspective:

“. . . the use of parametric methods can be quite dangerous in situations
where there is little known about the regression function. In such
cases, the bulk of the information about μ lies in the data rather than
the person conducting the study or experiment. Accordingly, it seems
more reasonable to use inferential techniques which rely heavily on the
data. It is for this reason that nonparametric regression techniques are
ideally suited to problems of inference when the available knowledge
about μ is limited in nature.”

In the work presented here, we analyze experiments on battery
electrodes and use nonparametric methods to extract a smooth open-
circuit voltage curve and its derivative. Features of the smoothed
function identify where electrochemical reactions occur as the elec-
trode is charged or discharged. In previous work,10,12 a parametric
model was used to fit the open-circuit voltage curve to data, requiring
prior knowledge of how many reactions are occurring. The methods
discussed here require no such prior knowledge. As discussed above,
the nonparametric methods provide a basis for using the parametric
model and assessing its accuracy.

Intercalation and alloy electrodes that contain many phases are dif-
ficult to model, and many parameters appear in, for example, porous
electrode models.5,6,13 Recently, the difficulty in isolating meaning-
ful values led us to perform a sensitivity analysis to examine the
impact of the 20 physicochemical parameters used in the model-
ing of a lithium.12 More information that allows for clarification of
individual electrode reactions would be of high value in terms of for-
mulating models for porous electrodes comprising intercalation and
alloy active materials. It has been previously shown (see Ref. 10 and
references therein) that reactions in electrochemical systems can be
identified by differentiation of the potential U of an electrode (rel-
ative to that of a reference electrode) with respect to composition
(e.g., fractional state of charge x, with 0 ≤ x ≤ 1); i.e., plots of
dx/dU vs. U, as embodied in the terminology “differential voltage
spectroscopy” (DVS). For the extraction of dx/dU from the com-
mon experiments that involve a low but constant current, numerical
differentiation of the potential trace is required. Thus, we seek to un-
derstand features in plots of dx/dU vs. U, and that is the subject of this
work.

Differentiation of data is a challenging endeavor that has a long
history. The most common approach can be broken down into two
parts: first, a function is fit to the data, and, second, the fit function
is differentiated. Polynomial regression estimators are routinely em-
ployed as fitting functions. Eubank (section 3.5 of Ref. 11) reviews
the history of polynomial regression and points out the motivation
for the method based on theoretical underpinnings: Taylor’s Theorem

and the Weierstrass Approximation Theorem can be used to bound
the error of a finite order polynomial regression estimator. This does
not mean the error will be small, however, particularly for a lower or-
der polynomial estimator. Regression with a lower order polynomial
(e.g., a cubic polynomial) can be expected to work well for low-
frequency components of data, and, if the data is primarily composed
of low-frequency information, a smooth and useful fitting function is
rendered. Attempts to modify lower order polynomial estimators to
address the remainder terms (e.g., high-frequency components) have
led to the development of smoothing splines11,14,19 and least-squares
spline estimators.11,19 Conte and de Boor quantify the error in the
differentiation of a cubic interpolation spline, and they specifically
underscore the utility of such splines for differentiation of data (sec-
tion 6.7 of Ref. 15). Richardson et al.16 show the utility of a cubic
interpolation spline for machine learning purposes with comparison
to neural networks and fuzzy systems. Feng17 discusses the utility
of a cubic smoothing spline (for equally spaced data points) in the
context of data differentiation and shows that a smoothing spline is “a
lowpass filter with the maximum flatness property,” a statement that
is further explored in that work. Russell and Norvig18 overview the
use of nonparametric regression in the context of agent (or machine)
learning, which requires the repeated use of feature recognition.

This short perspective on the differentiation of data, and the need
to determine dx/dU for electrochemical systems, such as battery elec-
trodes, motivate the application of nonparametric regression to fit U(x)
based on (1) a windowed cubic polynomial estimator (including the
use of a variable window length of data) and (2) a cubic smoothing
spline. The resulting regressions are then differentiated to estimate
dx/dU. We employ the open-circuit potential data of Ref. 10 for lithi-
ated graphite and the lithiated metal oxide Ni0.6Mn0.2Co0.2O2; both
are relevant materials that are employed in the Chevrolet Bolt electric
vehicle. Accurate modeling of electrode systems, such as graphite and
Ni0.6Mn0.2Co0.2O2 that are used today, is key to designing batteries and
control systems that can accommodate faster charge rates and avoid
unwanted side reactions, such as lithium plating on overcharge.20–22

We also discuss and formulate methods to determine how many points
should be included in the cubic window regression (cf. Eqs. A7 and
A10 and for the determination of L for a constant window width and
Li for an adaptive window width, respectively), and the smoothing
parameter p for the smoothing spline (cf. Eq. B23).

Numerical Methods

We provide the numerical details for the implementation of a win-
dowed cubic polynomial estimator (including the use of a variable
window length of data), and in Appendix A, we show how to apply
a cubic smoothing spline in Appendix B. Common to all methods
examined in the work is the use of cubic polynomials combined with
a penalty on curvature in the smoothing functions in a manner that
scales with the noise in the measurements. For the windowed cubic
polynomial estimator with a fixed length of data points L, Equation
A7 provides a relationship to determine the window length consistent
with the noise in the data σ. Equation A10 provides the correspond-
ing relationship for the variable window length estimator. For the
smoothing spline, Equation B23 provides a relationship to determine
the smoothing parameter p consistent with the noise in the data σ. We
shall describe in the next section of this paper how we estimate σ (cf.
Figure 3 and the related discussion).

We are not aware of a publication treating a cubic polynomial
estimator with a variable window length of data, including the head,
middle, and tail regions of the data (cf. Algorithm 2 in Appendix A).
For the smoothing spline, the incorporation of proper scaling has not,
to our knowledge, been reported previously (cf. Eqs. B9 and B10).

Results and Discussion

Cubic polynomial regression over a constant-width moving win-
dow for lithiated graphite.—The application of the cubic fit with a
constant-width window (cf. Algorithm 1 of Appendix A) is shown in
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Figure 2. Cubic polynomial fit to the graphite data based on U(xi) approximated by Algorithm 1 of Appendix A, where σ = 0.17 mV is consistent with
2L + 1 = 479 points for the constant-width moving frame over which the cubic polynomial is regressed.

Figure 2. The inset plots of Figure 2 show blue curves for the first and
last of L = 239 data points. We exclude data below 80 mV and above
250 mV for calculating the sum of squared residuals in Eq. A6, as the
slope in the actual U(x) data is significant below 80 mV and above 250
mV, so we don’t penalize curvature for those potential ranges. For the
graphite data, there were 14,132 total data points, with 12,692 within
the range 80 mV ≤ U ≤ 250 mV (see the shaded potential regions
that are excluded in the inset plot of Figure 3); hence, N = 12,692 in

Figure 3. Residual in the cubic polynomial fit shown in Figure 4. Within
the inset figure, the dashed lines correspond to ± 0.17 mV, consistent with
σ = 0.17 mV, and the shaded portions indicate voltage ranges (below 80 mV
and above 250 mV) excluded from use in calculating the squared residuals to
determine L (cf. Eq. A6).

the use of Eqs. A6 and A7 to determine the window length using the
standard deviation σ = 0.17 mV (to be discussed below).

Shown in Figure 4 are expanded views of the potential traces
along two of the potential plateaus of Figure 2, which occur near
89 and 215 mV. From this plot (and many others not shown in this
publication), we find that the measurement error in our equipment is
about 0.15 mV for the graphite experiments. Hence, we expect σ to
be near this value. We differentiate the cubic regression to approx-
imate dx/dU, dx/dU ≈ 1/(a1 + 2a2x + 3a3x2), and by plotting U(x)
versus dx/dU, we obtain the result shown in Figure 5. We find that
window lengths less than 2L + 1 = 479 data points did not provide

Figure 4. Noise in the experimental data on the approximately 89 and 215 mV
U(x) plateaus for the lithiated graphite.
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Figure 5. Differential voltage spectroscopy plot constructed with the cubic
regression depicted in Figure 2. The inset plot shows influence of changing σ,
and thus L (cf. Eq. A7).

enough smoothing, with the result that dx/dU at 89 mV became pos-
itive, which is not physically possible (batteries do not increase in
potential energy upon discharge, and dx/dU must always be negative
for lithiated graphite). The inset plot of Figure 5 for 2L + 1 = 477
shows that dx/dU transitions abrupty to 0 at 89 mV. (The maximum
in the abscissa of Figure 5 is zero, and the positive values for dx/dU
are not depicted as plotted.) When 2L + 1 is set to 479 (i.e., L is set to
239), we find from Eq. A6 that σ = 0.17 mV. From this observation,
and that of σ being near 0.15 mV per Figure 4, we conclude that a
value of σ = 0.17 mV is appropriate. The influence of changing σ, and
thus L, is depicted in the inset plot of Figure 5. Larger values of σ and
L give rise to more smoothing and loss of peak and valley amplitudes.
For σ greater than about 0.25 mV, one can no longer see the small peak
associated with the uppermost arrow. For σ greater than about 0.75
mV, the smoothing is excessive, and aberrations evolve, such as the
positive value for dx/dU at about 89 mV, which, as noted previously,
is not physically reasonable.

Smoothing spline regression for lithiated graphite.—For treating
lithiated graphite with a smoothing spline, we determine the appro-
priate level of smoothing using the same settings as was done for the
windowed cubic polynomial regression, that is, (i) we use σ = 0.17
mV for the noise in the voltage measurements and (ii) we penalize
curvature only for data in the potential range 80 mV ≤ U ≤ 250 mV,
leading to N = 12,692. For that range, the scaling factor s from Eq.
B10 evaluates to 17.92 mV, which with xN −x1 = 1 and σ = 0.17 mV,

leads to N (xN − x1)3 σ2

s2 = 1.137 in Eq. B12. This happens to be close
to 1, so we simplify Eq. B12 to

λ = 1 − p

p
or p = 1

1 + λ
[2]

as N (xN − x1)3 σ2

s2 is sufficiently close to 1 for this work. When we
specify the value of p in the figures to be discussed, Eq. 2 is employed
for λ, and the smoothing spline coefficients are calculated by means
of Eqs. B18–B22.

The general behavior of the smoothing spline is shown in Figure
6. Different values of the smoothing parameter p, corresponding to
different values of σ (cf. Eq. B23), are provided in the legend of Fig-
ure 6. Because p = 1− (p less than but tending to 1) corresponds to
no smoothing, that extreme gives an interpolation spline that passes
through each data point, i.e., yi = ai = U(xi) vs. xi. The opposite ex-
treme of p = 0+ gives the least-squares best-fit line l(xi ), which enters
Eq. B10 for the calculation of s = 17.92 mV, the value mentioned
above. Curves for values of p between 0 and 1 smoothly transition
between the two limiting cases.

Figure 6. Impact of the parameter p on the smoothing spline. For p = 1−
(i.e., p tending to but less than 1, corresponding to λ tending to 0), a cubic
interpolation spline results, which passes through each data point. For p = 0+
(λ growing to infinity), a least-squares fit of a line through the data results. As
shown in the legend, a value of σ can be associated with each p (cf. Eq. B23).
The implication of the p−σ relationship is that lower standard deviations
in the measurements are to be associated with higher p values, with p = 1
corresponding to no noise in the measurement.

The plots in Figure 7 for the smoothing spline analysis of lithiated
graphite are analogous to those of Figure 2 for the windowed cubic
polynomial. For the smoothing spline, there are no end regions, in
contrast to the treatment of the first and last L data points for the
windowed cubic, but the errors are highest near the end points, as is
evident in Figure 7 and Figure 8. The inset plot of Figure 8 shows
an expanded view for both ordinates. Evident are the dashed lines for
σ = ± 0.17 mV and the shaded regions for potential outside the range
of 80 mV ≤ U ≤ 250 mV.

A differential voltage spectroscopy plot using the fit smoothing
spline coefficient 1/bi (see line 2 of Eq. B2) is provided in Figure 9.
For the smoothing spline applied to the graphite data, we find that
for σ values below 0.1 mV, positive values of dx/dU result near U =
89 mV; the results for σ = 0.1 mV and σ = 0.17 mV (the latter
plotted in Figure 9) are difficult to distinguish, as are the results for

Figure 7. Smoothing spline fit to the graphite data based on U(xi) approxi-
mated by ai (cf. first line of Eq. B2). Per Eq. B23, σ = 0.17 mV is consistent
with p = 0.999995.
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Figure 8. Residual in the smoothing spline fit shown in Figure 7. The residual
corresponds to U(xi) − ai. Within the inset figure, the dashed lines correspond
to ± 0.17 mV, consistent with σ = 0.17 mV, and the shaded portions indi-
cate voltage ranges (below 80 mV and above 250 mV) excluded from use in
calculating the squared residuals to determine p (cf. Eq. B23).

the windowed cubic and smoothing spline employing σ = 0.17 mV,
both of which are displayed in the inset plot of Figure 9. As with the
windowed cubic, for σ = 0.75 mV, dx/dU turns positive near U =
215 mV, indicating excessive smoothing (see the green curve in the
inset plot of Figure 9).

In general, the results for the windowed cubic polynomial (Fig-
ure 2–Figure 5) are quite similar to those for the cubic smoothing
spline (Figure 7–Figure 9). However, the relationships between the
standard deviation in the data σ and the window length L and the
smoothing parameter p are quite different when plotted as in Fig-
ure 10. The vertical dashed line corresponds to σ = 0.17 mV, L =
239, and p = 0.999995. For 0.15 mV ≤ σ ≤ 0.8 mV, L varies linearly,
to good approximation, with σ, with L ranging from about 200 to 500
data points. Conversely, over the same σ-range, p changes over a very
small range near unity (about 0.9985 to 1−), and the relationship is
nonlinear over the range 0.15 mV ≤ σ ≤ 0.8 mV.

Smoothing spline regression for lithiated Ni0.6Mn0.2Co0.2O2.—
Plots for the application of the cubic smoothing spline regression
applied to lithiated Ni0.6Mn0.2Co0.2O2 can be seen in Figure 11 and

Figure 9. Differential voltage spectroscopy plot constructed with the smooth-
ing spline depicted in Figure 7. Also shown is the differentiated, windowed
cubic from Figure 5 (σ = 0.17 mV), which is closest to the cubic smoothing
spline curve with σ = 0.17 mV.

Figure 10. Smoothing spline parameter p and windowed cubic parameter L.
For σ = 0.17 mV, p = 0.999995 and L = 239, corresponding to the dashed,
vertical line and Figure 2 and Figure 7, respectively. Symbols correspond to
calculations, and the solid lines are provided to guide viewing.

Figure 12. Equation 2 was employed for λ−p relationship. To avoid
penalizing curvature where it is significant in the data, we do not
penalize curvature for potentials below 3.6 V vs. Li. Figure 11 provides
plots of U vs. x and U vs. dx/dU. The sensitivity of the U vs. dx/dU
regression to the value of σ (and thus p) is shown in the left plot of
Figure 12. The plot on the right shows the error in the regressed U
vs. x curve relative to the data. The inset plot of Figure 12 shows an
expanded view for both ordinates. Evident are the dashed lines for
σ = ± 0.25 mV and the shaded region for potentials below 3.6 V,
which are not included in the calculation of the squared error term of
Eq. B23.

A larger value for the standard deviation in the data σ was em-
ployed for the Ni0.6Mn0.2Co0.2O2 material (0.25 mV) vs. that for the
graphite material (0.17 mV), consistent with our finding slightly larger
variations in the NMC experiments, which can be seen by compar-
ing Figure 4 with Figure 13. In both cases, the values of σ are small
insofar as the 5V full-scale measurement range has an error of about
0.17/5000 or 0.0034% for the graphite measurements and 0.25/5000
or 0.005% for the NMC measurements.

Automated reaction recognition enabled by an adaptive
window.—To fulfill the objective associated with the schematic in
Figure 1, that is, to identify when reactions are taking place, we rec-
ognize that for a cubic regression:

p(x) ≈ U (x), p(x) = a0 + a1x + a2x2 + a3x3, and
p′ = dp

dx = a1 + 2a2x + 3a3x2

d2x
d p2 = d

dp
dx
dp = dx

dp
d

dx
dx
dp = 1

p′
d

dx (p′)−1 = − p′′
(p′)3 where

p′′ = 2a2 + 6a3x

[3]

The quantity 1/p′ ≈ dx/dU is always negative. Hence, to deduce
when a maximum or minimum occurs in 1/p′ ≈ dx/dU , we can
track p′′ ≈ d2U/dx2. A reaction is identified by a positive-slope
crossing of d2U/dx2 through the line d2U/dx2 = 0, corresponding to
a minimum (a reaction peak) in the dx/dU trace. A negative-slope
crossing corresponds to a maximum (valley) in the dx/dU trace.

While the constant-width window for the cubic regression and the
smoothing spline provide similar and useful results for representing
U(x) and dx/dU, the smoothing afforded by these two methods is
insufficient for the lithiated graphite system for p′′ ≈ d2U/dx2 in
the vicinity of the two largest peaks, as is seen in the left plot of
Figure 14. (The results for the constant-width window for the cubic
regression is effectively identical to those plotted in Figure 14.) The
values for p′′ ≈ d2U/dx2 are sufficiently smooth to treat the data for
the Ni0.6Mn0.2Co0.2O2 host material.
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Figure 11. Smoothing spline fit to the Ni0.6Mn0.2Co0.2O2 data based on U(xi) approximated by ai (cf. first line of Eq. B2), which is obtained ultimately through
the use of Eq. B22. Per Eq. B23, σ = 0.25 mV is consistent with p = 0.99908 for the Ni0.6Mn0.2Co0.2O2 regression analysis.

Figure 12. Left: regressed potentials for the Ni0.6Mn0.2Co0.2O2 for varying σ (and p) values. Right: Residual U(xi) − ai in the smoothing spline fit shown in
Figure 11 (σ = 0.25 mV). Within the inset figure, the dashed lines correspond to ± 0.25 mV, consistent with σ = 0.25 mV, and the shaded portion indicates the
voltage range excluded (below 3.6 V) from use in calculating the squared residuals to determine p (cf. Eq. B23).

Figure 13. Noise in the Ni0.6Mn0.2Co0.2O2 experimental data near the peak
in the dx/dU plot (cf. Figure 11). The noise is roughly twice that for the graphite
trace (cf. Figure 4).

The unwanted noise in Figure 14 can be removed by going to
the adaptive window width, corresponding to Algorithm 2 of Ap-
pendix A. Shown in Figure 15 are results for the adaptive-width win-
dowed smoothing with a cubic polynomial. (The adaptive window
regression yields results that are indistinguishable from those of the
constant window regression for U(x) and dx/dU as plotted in Figure
2 and Figure 5, respectively.) Larger window widths result about the
larger potential plateaus, corresponding to larger reaction peaks, which
gives more smoothing about the reaction peaks. Because the smooth-
ing can be done locally with the adaptive window, the smaller value in
the standard deviation in the data (0.15 mV, consistent with Figure 4)
could be employed, allowing for more detail to be captured in the data
without excessive noise in determiningp′′ ≈ d2U/dx2, as is made
clear by comparing and contrasting Figure 16 with Figure 14. No-
tice that in contrast to the fixed-width windowing and the smoothing
spline algorithms, the adaptive-width approach does not require any
restriction on the voltage range over which smoothing is determined,
as the global error measures of Eqs. A6 or B8, for the fixed-width
algorithm and the smoothing spline, respectively, are replaced by the
local error measure of Eq. A9. Numerical values for the reaction char-
acteristics extracted from the data using Algorithm 2 of Appendix A,
without any other user judgement, are provided in Table I. In sum-
mary, the use of the adaptive window as described in Algorithm 2,
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Figure 14. Smoothing spline analysis for reaction identification, characterized by a positive-slope crossing by d2U/dx2 about the line d2U/dx2 = 0, corresponding
to a minimum (a reaction peak) in the dx/dU trace. Left plot: graphite. Right plot: NMC 622. Significant noise is seen for the two largest peaks in the case of
graphite, corresponding to the regions identified by the two leftmost arrows. The inset plot for the NMC 622 analysis shows the positive-slope crossing by d2U/dx2

for the two reactions.

Figure 15. Adaptive-width windowed smoothing with a cubic polynomial (cf. Algorithm 2 of Appendix A). Left figure: lithiated graphite open-circuit potential
and window half width L. The circles in the left plot correspond to the reaction potentials, as discussed in the context of Figure 16. The dashed lines correspond to
± 0.15 mV, consistent with σ = 0.15 mV (cf. Figure 4). The dashed green curve is a 6th order polynomial fit of the entire data set to represent the low-frequency
trend in the data.

Figure 16. Adaptive-width windowed smoothing with a cubic polynomial for reaction identification, characterized by a positive-slope crossing by d2U/dx2 about
the line d2U/dx2 = 0 (denoted by circles), corresponding to a minimum (a reaction peak) in the dx/dU trace for lithiated graphite. These results can be compared
and contrasted with those of Figure 14. The right plot expands the ordinate values relative to those of the left plot.
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Table I. Regressed values corresponding to the symbols (circles)
in Figure 15 and Figure 16.

x Smoothed U(x), V dU/dx, V dx/dU, V−1

0.747 0.0886 −0.0071 −141
0.373 0.128 −0.0228 −43.8
0.192 0.156 −0.4646 −2.15
0.158 0.180 −0.842 −1.19
0.0918 0.215 −0.118 −8.51

while computationally more difficult, does allow us to provide an
algorithm that satisfies the objective outlined in Figure 1; i.e., the
autonomous identification of reactions by means of a nonparametric
regression routine.

Summary

The focus of this work is enabling accurate DVS analyses, which
requires an accurate method to differentiate numerically experimental
data. Techniques employed for nonparametric regression and feature
recognition are used to identify when electrochemical reactions take
place in two commercially important intercalation electrode materials,
lithiated graphite and nickel-manganese-cobalt oxide. The differenti-
ation challenge is particularly significant for intercalation electrodes
that undergo staging (similar to phase changes), as the peaks in plots
of dx/dU vs. U are very sharp, as is seen for lithiated graphite (cf.
Figure 5 and Figure 9). We analyze a moving window of data that
are fit with a cubic polynomial (Appendix A) and a cubic smoothing
spline (Appendix B). For the cubic polynomial, we investigate con-
stant and adaptive window lengths. The three techniques are shown
to work well for constructing DVS plots. For all three methods, we
show how the standard deviation in the measurement method and the
sum of the squared differences between the data and the regression fit
can be used to estimate how large the moving window frame should
be (Eqs. A6 and A9) and what the spline smoothing parameter should
be (Eq. B23).

For the smoothing spline, we provide a rational means to nondi-
mensionalize and scale the equation that is minimized (see Eqs. B9–
B12); these matters appear to have been overlooked in the literature
associated with smoothing splines. Allowing the window length for
the cubic polynomial regression to adapt and vary yields the best re-
sults of all methods examined, as the adaptive window length enables
more smoothing in the data where needed (e.g., around reaction peaks
in dx/dU vs. U plots). The adaptive window method also removes the
necessity for the user to restrict the range of data used in determining
the smoothing.

An open issue that we do not address in this work is that of
constraining the regression procedures to ensure that the fit function
always has a negative slope, dU/dx < 0, as required by thermo-
dynamic principles (i.e., the potential of a lithium-ion battery must
always decline on discharge). Constrained regressions could be em-
ployed to enforce a negative slope, but the additional computational
complexity and cost are significant. Mammen et al.31 discuss this topic
in the general context of polynomial regression, kernel smoothing, and
smoothing splines. Turlach32 discusses the topic in detail for smooth-
ing splines. More research accommodating the methods discussed in
Refs. 31 and 32 in the context of differential voltage spectroscopy may
prove beneficial. In the work presented here, rather than imposing a
constraint on the slope, we use any violation of that constraint as a
signal that more smoothing is necessary.

Appendix A. Windowed Polynomial Smoothing

This Appendix describes methods for approximating a smooth function f (x) given
noisy data points

yi = f (xi ) + εi , i = 1, . . . , N [A1]

where εi , i = 1, . . . , N , are random errors. The methods will use polynomial approx-
imations to subsets of the points to smooth out the random errors. We will begin by
reviewing how to compute a least squares polynomial approximation to a set of points,
and then describe how this can be used iteratively on a sliding window of data points to
approximate a long sequence of points with a succession of low-order polynomials.

For integer d ≥ 1, let

p (x) = p (x ; a) = p (x ; a0, . . . , ad ) = a0 + a1x + . . . + ad xd [A2]

be a polynomial of degree d with coefficient array a = [ a0 · · · ad ]T . Given any d + 1
points (xi , yi ), for i = 0, . . . , d, all xi distinct, there exists a unique polynomial p(x)
that interpolates the points. Due to effects related to the Runge phenomenon,b even for
noise-free data points, this interpolating polynomial may be a poor approximation to
f (x), and especially as N grows, p(x) may oscillate wildly. The problem of oscillations is
exacerbated by noise and further amplified if one evaluates derivatives of the polynomial.

A remedy for this situation is to use a polynomial of lower degree to approximate the
data points, and possibly to use different low-order polynomials on different subsets of
the points. As one option, one might opt to partition the data into intervals and construct
a piecewise polynomial approximation with continuity conditions enforced where the
intervals meet; spline functions are constructions of this type. In this section, we consider
instead an approach that, for each abscissa xi , approximates f (x) at x = xi using a
polynomial fit to the points within a sliding window containing xi . For interior points,
this window will be symmetrically centered on xi , but for points near either extreme of
the range of the data, the window must necessarily become asymmetric.

To describe this method, we begin by considering how to fit a polynomial to n points.
Later we will address the problem of selecting for each abscissa xi which subset of points
to use in constructing an approximation there.

For n > d distinct points, we may find the unique least squares approximant, that is,
the polynomial p(x ; a) that minimizes the sum of squares

S (a) =
n∑

i=1

(p (xi ; a) − yi )
2

One may consider the optimal p(x ; a) to approximate the first d + 1 terms of the Taylor
series for f (x) centered at x = 0. The differences p(xi ; a) − yi are called the residuals of
the fit.

Computation of the least squares polynomial is most easily described in matrix
notation. First, we gather the data into arrays x = [ x1 · · · xn ]T and y = [ y1 · · · yn ]T

and let

p (x; a) = [
p(x1; a) · · · p (xn ; a)

]T

Then, the objective function S(a) can be rewritten as S(a) = ‖p(x; a) − y‖2. It is
convenient to explicitly show the linear dependence of p(x; a) on its coefficients via the
so-called the Vandermonde matrix,23,28 the n × (d + 1) matrix with entries Vi j = x j−1

i :

V =

⎡
⎢⎢⎣

1 x1 · · · xd
1

.

.

.
.
.
.

. . .
.
.
.

1 xn · · · xd
n

⎤
⎥⎥⎦

This allows us to write

p (x; a) = V a, S (a) = (V a − y)T (V a − y)

Equating the partial derivatives of S with respect to a to zero, we obtain the following
optimality criterion, often called the normal equation for least squares:25

V T V a = V T y

For d < n with at least (d + 1) of the xi distinct, it can be shown that square matrix V T V
is nonsingular,23 hence there is a unique set of least squares coefficients:

a = (
V T V

)−1
V T y [A3]

In more detail, writing the normal equation as Ma = b, with M = V T V, b = V T y, we
have formulas for the entries of M and b as

Mi j =
n∑

k=1

xi+ j−2
k and bi =

n∑
k=1

xi−1
k yk [A4]

The coefficients of the least squares fit are a = M−1 b. As detailed in Ref. 25 the same
least-squares solution can be computed more robustly using either the pseudoinverse V †

of V to write a = V † y, or a so-called QR decomposition of V = Q R, where Q is
orthogonal and R is upper triangular, in which case a = R−1 QT y. The algorithms for
pseudoinversion and QR decomposition are available in any modern software package for
linear algebra, so we omit further details here.

bSee de Boor19 and especially Berrut and Trefethen24 for discussions of the Runge
phenomenon. The phenomenon can be suppressed by careful spacing of the samples
near the ends of the interval, such as in Chebyshev interpolation, but we seek a method
not dependent on such spacing. Indeed, experimental data is often produced at uniform
intervals for which the Runge phenomenon is severe.
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We note that for numerical robustness, it is also a good idea to scale and translate the
x-coordinates so that the transformed coordinates range over 0 to 1 or −1 to 1.

Special case: uniformly spaced points.—Suppose that the x-coordinates of samples
are uniformly spaced, that is, xi = ih for some constant increment h. Suppose further
that we elect to fit a polynomial to n = 2L + 1 consecutive points, L integer. Then, if
we translate coordinates to place the origin at the middle point and re-index the points
as x−L , x−L+1, . . . , xL−1, xL , we have a symmetrical arrangement where x−k = −xk ,
k = 1, . . . , L . As a consequence, by Eq. A4, for i + j equal to any odd number, Mi j = 0.
To take advantage of this, we rearrange the ordering of the coefficients in a to place the
even terms first and followed by the odd ones; for example, for d = 3 (cubic polynomial),
we use a = [ a0 a2 a1 a3 ]T . When the columns of V are rearranged to match, the
matrix M becomes block diagonal:

M = V T V =
[

M1 0
0 M2

]

Rather than writing general expressions for M1 and M2, we illustrate for the specific case
of cubic polynomials, for which M and the associated right-hand vector b become

M =

⎡
⎢⎢⎣

�1 �x2
i 0 0

�x2
i �x4

i 0 0
0 0 �x2

i �x4
i

0 0 �x4
i �x6

i

⎤
⎥⎥⎦ and b =

⎡
⎢⎢⎣

�yi

�x2
i yi

�xi yi

�x3
i yi

⎤
⎥⎥⎦

where each sum is taken over i = −L , . . . , L . The block diagonal structure allows one
to solve for the odd and even coefficients independently, thereby reducing the original
4 × 4 matrix solve to two 2 × 2 solves. The generalization for larger d is straightforward.
Moreover, one may simplify the entries of M using �xk

i = hk�i k . Because we invoked
a translation of the origin to xmid , in the original coordinates the polynomial becomes
p(x − xmid ; a).

Moving window smoothing.—It often happens that a single low-order polynomial
cannot adequately approximate a given data set. For example, a polynomial of degree d
has at most d − 1 stationary points (maxima, minima, and inflections) and the function
to be approximated could have more than this. One approach is to break the data set into
pieces and fit a polynomial on each piece separately. Enforcing continuity of the piecewise
polynomial and some number of derivatives yields a spline function. The smoothing spline
discussed in the next section falls into this class.

Moving window smoothing takes a related, but different, approach. For each abscissa
xi , we propose to compute a polynomial pk1:kn (x) that is the least squares fit to a window
of neighboring data points (xk , yk ), k = k1, . . . , kn , choosing k1 and kn to include i, i.e.,
k1 ≤ i ≤ kN . Then, evaluating this polynomial at xi gives a value fi = pk1:kN (xi ) that
we take as the approximation to f (xi ). We may similarly use the derivatives of pk1:kN (x)
evaluated at xi to approximate the derivatives of f (x) at xi .

One may develop a variety of smoothing algorithms following this same basic plan.
The choices that must be made are the degree d of the polynomials and the window
to use around each point. We have found that cubic polynomials (d = 3) work well in
our applications. In what follows, we propose two different prescriptions for choosing
windows around the points. The first is simpler to implement, while the second shows
clear advantage on some more challenging data sets.

Algorithm 1: constant-width windowed smoothing.—For this approach, we use an
odd number, n = 2L + 1, of successive points for each approximation. Assume the given
data points are numbered from 1 to N . For points in the middle of the data set, specifically,
for indexes L < i < N − L , we use a window centered on xi to approximate there, while
the ends of the data set must use unbalanced windows. Specifically, we use

fi (L) =
⎧⎨
⎩

p1:(2L+1) (xi ) , i ≤ L;
p(i−L):(i+L) (xi ) , L < i < N − L;
p(N−2L):N (xi ) , i ≥ N − L .

[A5]

This leaves just the window half-width, L , to be specified. We will determine L so as to
make residuals in the fit consistent with our knowledge of the accuracy of the process
that produced the data. Suppose that the errors in the data points are independent, zero-
mean, with a standard deviation of σ, that is, the errors εi in Eq. A1 are independent
with expectations E(εi ) = 0 and E(ε2

i ) = σ2. For a given L , we obtain a sum of squared
residualsc

SSR (L) =
N∑

i=1

( fi (L) − yi )
2. [A6]

We expect SSR ≈ Nσ2. (For more on squared residuals and nonparametric fitting, see
chapter 2 of Eubank.11) If SSR(N/2) ≤ Nσ2, that is, if our polynomial fit to the entire
data set falls within the expected residual, then we accept that polynomial as the smoothed
fit. Otherwise, some smaller width is appropriate. For 2L ≤ d, the polynomials in Eq. A5

cIn the statistics literature, instead of SSR, the term residual sum of squares and abbrevi-
ation RSS are sometimes used to mean the same thing.

interpolate the data, thus giving SSR(L ≤ d/2) = 0. As L increases from its minimum
size to its maximum size, at some point SSR(L) must cross its target value of Nσ2, and
we aim to choose the largest L such that SSR(L − 1) ≤ Nσ2 as the window width for the
smoothed approximation.

To determine the appropriate value of L , it is not necessary to increment through all
its possible values. Instead, one may approach the problem using any available numerical
root finder, such as bisection or the secant method, to solve SSR(L) = Nσ2. Of course,
the iterates for L must be rounded off to integers, and the root finder must terminate upon
finding an L such that

SSR (L − 1) ≤ Nσ2 ≤ SSR (L) . [A7]

If SSR(N/2) > Nσ2, we know that such an L must exist, although it may not be unique.
Ideally, if there is more than one such width, we would use the largest one, but our
experience is that any L satisfying this criterion is acceptable.

It is not necessary to pinpoint L meeting the criterion in Eq. A7, as a nearby value
will give almost the same fit. According to Reinsch’s recommendation for the smoothing
spline,14,19 one could terminate the search upon finding a window width such that∣∣∣∣ SSR (L)

σ2
− N

∣∣∣∣ ≤
√

2N . [A8]

This criterion is justified on the assumption that the errors εi are independent and Gaussian,
in which case the sum of squared errors is a chi-square distribution that has a mean of
Nσ2 and a standard deviation of

√
2Nσ2. More precisely, since we are solving for (d + 1)

coefficients in each polynomial fit, it may be more appropriate to seek a value of L such
that SSR(L) = (N − d − 1)σ2, but in our work N 
 d, so this minor adjustment would
be of no substantial consequence.

Immediately below, we provide a pseudo-code summary of Algorithm 1.

Begin Constant-width Window Smoothing Algorithm
Inputs: data arrays x, y of length N ; standard deviation σ.

Outputs: half-width L; smoothed function values f .
Comment: floor(z) = greatest integer less than z
Initialize: L0 = floor(d/2), S0 = 0; L1 = floor(N/2);
Evaluate: [S1, f ] = SSR(x, y, L1);
Comment: check if one polynomial fits the whole data set
If S1 ≤ Nσ2, L = L1; Return; end.
Comment: use bisection to find window width that satisfies Eq. A7
While L1 > L0 + 1

L = nearest integer((L0 + L1)/2)
Evaluate [Stest , f test ] = SSR(x, y, L)
If Stest ≤ Nσ2, then L0 = L , else L1 = L , f = f test .
L = L1; Return.

End Algorithm

Algorithm 2: adaptive-width windowed smoothing.—Some functions, including the
open-circuit voltage curve for graphite, have regions with very low curvature punctuated
by rapid transitions of high curvature. For such a function, the flat regions can be well
approximated with a wider window than can be used where curvature changes quickly,
so it is inappropriate to use a fixed window width. Letting the window width vary and
denoting its value at point i as Li , we may modify Eq. A5 to use fi (Li ) instead of a fixed
L . More precisely, we will determine an initial window of width L1 that is used for all
fi , i ≤ L1 + 1, and a final window of width L N that is used for all fi , i ≥ N − L N . In
between these, the Li must respect the limits of the indexes, Li < i and Li < N − i , and
also the lower limit, Li ≥ d/2, below which the local polynomial is an exact interpolant
of all points in the window. For the sake of robustness, it can be useful to set a somewhat
larger minimum width, and in fact, we used cubic polynomials, d = 3, and set Li ≥ 6 in
this article.

To determine the window widths, let us define a local sum of squared residuals for
the window centered on point i , named SSRi to distinguish it from SSR above:

SSRi(i, L) =
i+L∑

k=i−L

(
p(i−L):(i+L) (xk ) − yk

)2
. [A9]

This formula is only defined for i > L and i ≤ N − L , otherwise the indexes in the fit
extend beyond the ends of the data set. As we did in Eq. A5 for the fixed window width
algorithm, we will have to use an asymmetric set of points to approximate function values
near the beginning and end of the data set.

As in the fixed-width case, we seek a window width compatible with the assumed
noise covariance, that is, we seek a width Li such that SSRi(i, Li ) = (2Li + 1)σ2 for all
i . Since Li is an integer, we cannot generally obtain equality, so instead we seek a window
width that simultaneously satisfies

SSRi (i, Li − 1) < (2Li − 1) σ2 and SSRi (i, Li ) ≥ (2Li + 1) σ2. [A10]

We expect the window widths for neighboring points to be close to each other. Accordingly,
after finding the initial width for the head of the data set, for every point thereafter, we
use Li as the initial guess for the search for Li+1. Since the window width only changes
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gradually, it is effective to simply increment Li if SSRi(i, Li ) is too small and decrement
it if SSRi(i, Li − 1) is too big, subject to the width limits discussed above.

Caveat: Any least squares process can be skewed by outlier data points. For the
adaptive window smoother, the sum of squares criterion for the window width is based
on a local window of points instead of the whole data set, so outliers may have a bigger
impact on the result in the region nearby than it will for the fixed-width smoother, although
on the positive side, that impact will be more localized. If possible, one should remove
outliers before computing the final smoothed output. Outliers were not observed in the
data sets treated here.

Immediately below, we provide a pseudo-code summary of Algorithm 2.

Begin Adaptive-width Window Smoothing Algorithm
Inputs: data arrays x, y of length N ; standard deviation σ; minimum half-width Lmin .
Outputs: array of half-widths L; smoothed function values f .

Initialize: L0 = Lmin − 1; L1 = Lmin , Lmax = floor(N/2).
[S, F] = SSRi(x, y, L1 + 1, L1, ‘head’)

Comment: bracket initial half-width by doubling L1 as necessary
While S < (2L1 + 1)σ2 and L1 < Lmax

L0 = L1; L1 = min(2L1, Lmax );
[S, F] = SSRi(x, y, L + 1, L , ‘head’);

If L1 = Lmax and S < (2L1 + 1)σ2

Comment: all data falls into the first window
Else

Comment: find initial half-width by bisection
While L1 > L0 + 1
L = nearest integer((L0 + L1)/2)
[Stest , Ftest ] = SSRi(x, y, L + 1, L , ‘head’);
If Stest ≤ (2L + 1)σ2, then L0 = L , else L1 = L , F = Ftest .

Comment: we have found an acceptable head section. Record it.
L = L1; i = L + 1; L1:i = L; f 1:i = F;
Comment: loop to fill in middle points
While i + L < N

i = i + 1;
Comment: try using the same window width as for the previous point
[S, F] = SSRi(x, y, i, L , ‘mid’);
If S < (2L + 1)σ2 and i + L < N

Comment: S is too small. Increment L until Eq. A10 is satisfied
While S < (2L + 1)σ2 and i + L < N

L = L + 1;
[S, F] = SSRi(x, y, i, L , ‘mid’);

Else if S > (2L + 1)σ2 and L > Lmin

Comment: S is big enough. Decrease L until Eq. A10 is satisfied
[S, F0] = SSRi(x, y, i, L − 1, ‘mid’);
While S > (2L − 1)σ2 and L > Lmin

F = F0; L = L − 1;
[S, F0] = SSRi(x, y, i, L − 1, ‘mid’);

Li = L; f i = F;
Comment: we have arrived at the tail with a valid window width
[S, f i :N ] = SSRi(x, y, i, L , ‘tail’);
Return;

End Algorithm

Derivatives and interpolation between points.—The forgoing algorithms for win-
dowed smoothing only specify a formula for the smoothed function values fi . If one
additionally requires a first derivative, one may use f ′

i = pi
′(xi ), where pi (x) is the appli-

cable polynomial according to Eq. A5. Higher derivatives may be approximated similarly.
We note that all of these approximations are computed only at the sample abscissas. If
one requires a function to approximate f (x) between sample points, some kind of inter-
polation function must be employed. One option is a spline, say s(x), that interpolates
(xi , fi ), i = 1, . . . , N . It is reasonable to expect that s′(xi ) will be close to pi

′(xi ), but in
general, these will not be exactly equal. Alternatively, one could find the cubic on each
interval that matches the smoothed function value and derivative value at both ends of the
interval, pushing any disagreement to the second derivative. For the plots shown in this
article, we linearly interpolate the function values between samples and do the same for
derivatives.

Appendix B. Smoothing Spline

Smoothing splines are an alternative to windowed polynomial regression. In a manner
analogous to the development of the cubic polynomial regression, we consider the cubic
spline function Si (x), as described by de Boor,19 for the data (xi , yi ), i = 1 to N :

Si (x) = ai + bi (x − xi ) + ci (x − xi )
2 + di (x − xi )

3, xi ≤ x ≤ xi+1 [B1]

The fitting function Si (x) is analogous to p(x) in Eq. A2. In what follows, it will be useful
to recognize that

Si (xi ) = ai = yi

S′
i (x) = bi + 2ci (x − xi ) + 3di (x − xi )2 S′

i (xi ) = bi

S′′
i (x) = 2ci + 6di (x − xi ) S′′

i (xi ) = 2ci

S′′′
i (x) = 6di

[B2]

where primes denote differentiation with respect to x. Continuity relations at each node
(or knot) yield

Si−1(xi ) = Si (xi )
ai−1 + bi−1hi−1 + ci−1h2

i−1 + di−1h3
i−1 = ai

S′
i−1(xi ) = S′

i (xi )
bi−1 + 2ci−1hi−1 + 3di−1h2

i−1 = bi

S′′
i−1(xi ) = S′′

i (xi )
2ci−1 + 6di−1hi−1 = 2ci

[B3]

where hi = xi+1 − xi . Using the Equations in B3, we can eliminate the coefficients di

and bi by means of B4 and B5, respectively:

di−1 = ci − ci−1

3hi−1
or di = ci+1 − ci

3hi
[B4]

ai−1 + bi−1hi−1 + ci−1hi−1
2 + di−1hi−1

3 = ai or ai + bi hi + ci hi
2 + di hi

3 = ai+1

bi = ai+1−ai
hi

− 1
3 (ci+1 + 2ci )hi

[B5]
Using continuity of the first derivative (second line of B2) and Eqs. B4 and B5, we

can write

hi−1ci−1 + 2(hi + hi−1)ci + hi ci+1 = 3

hi
(ai+1 − ai ) − 3

hi−1
(ai − ai−1) [B6]

which can be rewritten in matrix notation as

Rc = 3QT a [B7]

where

R is an (N − 2) × (N − 2) tridiagonal symmetric matrix,

c is a vector of length N − 2,

QT is an (N − 2) × N tridiagonal symmetric matrix, and
a is a vector of length N .

Equation B7 can also be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(h1 + h2) h2

h2 2(h2 + h3) h3

. . .
. . .

. . .

hN−3 2(hN−3 + hN−2) hN−2

hN−2 2(hN−2 + hN−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

c2

c3

.

.

.
cN−2

cN−1

⎤
⎥⎥⎥⎥⎥⎥⎦

=

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

η1 −η1,2 η2

η2 −η2,3 η3

. . .
. . .

. . .

ηN−3 −ηN−3,N−2 ηN−2

ηN−2 −ηN−2,N−1 ηN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

a1

a2

.

.

.
aN−1

aN

⎤
⎥⎥⎥⎥⎥⎥⎦

where

ηi = 1

hi
and ηi, j = 1

hi
+ 1

h j

Smoothing and appropriate scaling.—To penalize curvature, the function P, which
is to be minimized, is commonly employed:19,26

P = p
N∑

i=1

(
yi − ai

σi

)2

+ (1 − p)
∫ xN

x1

[ f ′′(x)]2dx [B8]

where σi is the standard deviation in the data for the ith point associated with many
measurements (from repeated experiments of the same kind), and 0 < p < 1. The
integration of the square of the second derivative of the function f(x) represents the
accumulation of the squares of all local curvatures f ′′(x) from x1 to xN. As p nears 1,
no smoothing results, and we obtain an interpolating polynomial, wherein the regression
passes through each point. As p nears 0, smoothing is complete, no local curvature is
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allowed, and we obtain a least-squares linear regression of the data. There is a problem
with this well-used formulation, however: the first term on the right side of Eq. B8 is
dimensionless, whereas the second term has dimensions of (u f )2/(ux )3, where u f are the
units of f (x) and ux are the units of x. In this work, x is dimensionless, but to fix Eq. B8
so that is has a more general applicability, we replace it with

P = p

N

N∑
i=1

(
yi − ai

σi

)2

+ (1 − p)
(xN − x1)3

s2

∫ xN

x1

[ f ′′(x)]2dx [B9]

where both terms on the right side are dimensionless, even if x and y have dimensions
associated with them, and we suggest employing

s =
√√√√ 1

N

N∑
i=1

[yi − l(xi )]2 [B10]

that is, s the square root of the sum of the squared deviation of the data yi (xi ) from a best-fit
line l(xi ) for the data, which, being a line, has no curvature, thus providing a reference to
scale f ′′(x). The units of s are those of the data yi and the function f (x). One can argue
as to whether s formulated in Eq. B10 is the right scaling for f ′′(x), and we shall revisit
this topic in the Results and Discussion section. Equation B9 has an additional benefit
insofar as one can then employ an ascending or descending series in the independent
variable, as the sign(xN − x1)3 = sign(dx), where dx is the differential increment in the
integral of Eq. B9. (For the treatments in Refs. 19 and 26 the independent variable must
be in ascending order. This is not a problem for problems having ascending time as the
independent variable.) It is common to assume a constant standard deviation in the data,
σi = σ, an assumption we employ in this work, and this allows us to recast Eq. B9 with
the lone dimensionless group λ:

Pλ =
N∑

i=1

(yi − ai )
2 + λ

∫ xN

x1

[ f ′′(x)]2dx [B11]

where

λ = N (xN − x1)3 σ2

s2

(
1 − p

p

)
[B12]

Solving the matrix equation for the smoothing spline coefficients.—In discretized
form,d Eq. B11 can be written as

Pλ =
N∑

i=1
(yi − ai )2 + 4

3 λ
N−1∑
i=1

hi
(
c2

i + ci ci+1 + c2
i+1

)
= (y − a)T (y − a) + 2

3 λcT Rc
[B13]

Differentiating Pλ with respect to a and setting the result equal to zero leads to

a = y − 2λQc [B14]

Eliminating a from Eq. B14 by means of Eq. B7 leads to

[
R + 6λQT Q

]
c = 3QT y [B15]

where QT Q is an (N − 2) × (N − 2) symmetric, pentadiagonal matrix. For notational
convenience, we seek a solution to

Ac = β where A = R + 6λQT Q and β = 3QT y [B16]

In expanded form, for N = 7, A can be written as the matrix sum

A = R + 6λQT Q=⎡
⎢⎢⎢⎢⎣

2(h1 + h2) h2

h2 2(h2 + h3) h3

h3 2(h3 + h4) h4

h4 2(h4 + h5) h5

h5 2(h5 + h6)

⎤
⎥⎥⎥⎥⎦+

6λ

⎡
⎢⎢⎢⎢⎣

η2
1 + η2

12 + η2
2 −η12η2 − η2η23 η2η3

−η12η2 − η2η23 η2
2 + η2

23 + η2
3 −η23η3 − η3n34 η3η4

η3n2 −η23η3 − η3η34 η2
3 + η2

34 + η2
4 −η34η4 − η4η45 η4η5

η3η4 −η34n4 − η4η45 η2
4 + η2

45 + η2
5 −η45η5 − η5η56

η4η5 −η45η5 − η5η56 η2
5 + η2

56 + η2
6

⎤
⎥⎥⎥⎥⎦

[B17]

dHere we employ the fact that for any straight line w(x),
xi+1∫
xi

[w(x)]2dx =
(

xi+1−xi
3

)
[w(xi )2 + w(xi )w(xi+1) + w(xi+1)2], along with Eq. B2,

S′′
i (xi ) = 2ci .

and β can be written as

β = 3QT y = 3

⎡
⎢⎢⎢⎢⎣

η1 −η12 η2

η2 −η23 η3

η3 −η34 η4

η4 −η45 η5

η5 −η56 η6

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

y4

y5

y6

y7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 3

⎡
⎢⎢⎢⎢⎣

η1 y1 − η12 y2 + η2 y3

η2 y2 − η23 y3 + η3 y4

η3 y3 − η34 y4 + η4 y5

η4 y4 − η45 y5 + η5 y6

η5 y5 − η56 y6 + η6 y7

⎤
⎥⎥⎥⎥⎦ [B18]

More generally, the symmetric, pentadiagonal matrix A has elements

Ai,i = 2(hi + hi+1) + 6λ(η2
i + η2

i,i+1 + η2
i+1), i= 1 to N − 2

Ai,i+1 = Ai+1,i = hi+1 − 6λ(ηi,i+1ηi+1 + ηi+1ηi+1,i+2), i= 1 to N − 3
Ai,i+2 = Ai+2,i = 6ληi+1ηi+2, i= 1 to N − 4

[B19]

and the vector β has elements

βi = 3(ηi yi − ηi,i+1 yi+1 + ηi+1 yi+2), i = 1 to N − 2 [B20]

Equation B16, Ac = β, can be solved by using efficient methods for pentadiagonal sys-
tems. From a storage perspective, A and β can be represented as

Ai,i Ai,i+1 Ai,i+2 β c
A11 A12 A13 β1 c2

A22 A23 A2,4 β2 c3

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

. AN−4,N−2

.

.

.
.
.
.

.

.

. AN−3,N−2

.

.

.
.
.
.

AN−2,N−2 βN−2 cN−1

[B21]

No entries are shown in B21 for Ai+1,i or Ai+2,i , as A is symmetric (hence, Ai,i+1 =
Ai+1,i and Ai,i+2 = Ai+2,i ).

In this work, Ac = β (reflected by entries of B21) was solved using the algorithm
described in Cheney and Kincaid.27 Upon solving Eq. B16, one can use Eq. B14 to recover
a:

For i = 1
a1 = y1 − 2λη1c2

For i = 2 to N − 1
ai = yi − 2λ(ηi−1ci−1 − ηi−1,i ci + ηi ci+1)

For i = N
aN = yN − 2ληN−1cN−1

[B22]

Having a and c, one can employ Eqs. B4 and B5 to determine the di and bi coefficients,
respectively.

Determination of the smoothing parameter p.—The same logic used to determine
an appropriate value of L for polynomial regression can be applied to determine an
appropriate value of p. Hence, an equation for the smoothing spline that is analogous to
that of Eq. A9, with SSR = Nσ2, is employed:

σ =
√√√√ 1

N

N∑
i=1

[ f (xi ) − S(xi ; ai , bi , ci , di , p)]2 =
√√√√ 1

N

N∑
i=1

(yi − ai )2 [B23]

This provides a (nonlinear) relation that can be used to determine an estimate for λ, and
thus p, (cf. Eq. B12) once the standard deviation in the measurement σ is provided. Helpful
expositions on Generalized Cross Validation devoted to smoothing splines can be found
in Refs. 29 and 30; and the use of Eq. B23 represents a pragmatic method for addressing
a complicated subject.
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