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Abstract 

We provide a brief summary of advanced battery technologies and a framework (i.e., a simple 

model) for assessing electric-vehicle (EV) architectures and associated costs to the customer.  

The end result is a qualitative model that can be used to calculate the optimal EV range (which 

maps back to the battery size and performance), including the influence of fast charge.  We are 

seeing two technological pathways emerging:  fast-charge-capable batteries versus batteries with 

much higher energy densities (and specific energies) but without the capability to fast charge.  

How do we compare and contrast the two alternatives?  This work seeks to shed light on the 

question.  We consider costs associated with the cells, added mass due to the use of larger 

batteries, and charging, three factors common in such analyses.  In addition, we consider a new 

cost input, namely, the cost of adaption, corresponding to the days a customer would need an 

alternative form of transportation, as the EV would not have sufficient range on those days.    
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Introduction 

We are at a crossroads in terms of balancing two promising technologies:  (1) higher energy 

density (Wh/L) and specific energy (Wh/kg) batteries, relative to today’s conventional 

graphite/metal-oxide lithium ion systems, and (2) fast-charge capability, defined here as greater 

than Level 2 charging, or greater than about 20 kW.  Currently in the United States, conventional 

Level 2 charging of 6.6 kW is available in homes and various community locations.  In the ideal 

case, high energy batteries would be able to accommodate fast charge, but two of the more 

promising high-energy cell technologies, Si-enhanced [1-31] and Li-metal negative electrodes 

[32-45], are problematic in this respect.  For Si-enhanced electrodes, the limiting factor is that 

the lithium diffusion coefficient in Si is about two orders of magnitude lower than in graphite 

(see, for example, [9]), whereas Li-metal electrodes suffer from dendrite-related shorting of cells 

at higher rates of charging (see [41-44] and references therein).  The tradeoff between high-

energy and fast-charge capability poses a dilemma in the design of electric vehicles (EVs). 

 

Herein we derive and implement a simple model to assist in evaluating such matters as cell 

performance, cost, life, and fast-charge capability.  The approach is useful in terms of comparing 

and contrasting battery systems and shedding light on technological tradeoffs. 

 

A framework for approaching EV design and architecture 

Because EVs are usually range-constrained relative to conventional ICEVs, we need to estimate 

the cost for the customer to adapt to a new mode of transportation when the EV fails to provide 

the needed driving distance.  Pearre et al. [46] have studied this problem and found it expedient 

to assume that the days of adaptation per year AN  is a function of the vehicle range x, and no 

other variables.  We employ the 75 percentile driver2 data of [46]. To facilitate computations, we 

fit ( )AN x with a cubic spline function, as detailed in the Appendix and plotted in Figure 1. 

 

                                                 
2 The 75 percentile driver requires adaption NA(x) days per year; on all other days of the year, the 

driver’s needs are satisfied by the EV range x.   
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For our cost function S, we consider four components, , , , and cell chg A MS S S S , corresponding to 

cell, charging, adaptation, and added-mass costs, respectively: 

1) cell chg A MS S S S S     

The variables and parameters used in this work, and base values, where appropriate, are provided 

in Table 1.   Given an EV range x based on a single (full) charge of a battery pack with useable 

capacity Q, we can immediately calculate cell and added-mass costs: cell cell cellS Qs Cxs  and

 0( / )M SE MS Cx q M s  , respectively, where C is the energy consumption per unit distance for 

the vehicle and 0M is the reference mass as described in Table 1. 

 

We shall consider two forms of EVs in terms of charging capability:  those that use a 

conventional, Level 2, 220 V charger of 6.6 kWh and those for which a fraction f of the pack 

capacity Q can be fast charged in time .  The cost for charging the vehicle over its lifetime t, in 

the absence of fast-charge capability, is given by  365chg A avg chgS N m tCs  , where 365 AN

corresponds to the days per year the EV is charged.  For fast-charge EVs, the range of the fully 

charged battery, x, plus that of one fast charge is thus (1 )f x .  We do not consider more than 

one fast-charge event, as it is less likely that the customer will want to use the EV to drive 

distances longer than (1 )f x by successively fast charging; that is, we assume that the customer 

would adapt to an alternative form of transportation if her/his trip were projected to exceed the 

range (1 )f x , and the days of adaptation/year with fast charge is AN evaluated at (1 )f x , or 

 (1 )AN f x .  In addition, because we assume that the number of fast-charge events would be 

small and can be neglected in the charging cost, we estimate the lifetime charging cost based on 

the average daily mileage avgm  as: 

2)  365 (1 )chg A avg chgS N f x m tCs       

Because fast charge capability increases the number of days the EV is driven, i.e., because  

 (1 ) ( )A AN f x N x  , the charging cost increases with fast charging, but for the same reason, 

the adaption cost with fast charging,  (1 )A A AS N f x ts  , decreases from that of conventional 
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Level 2 charging, corresponding to f = 0.  Last, it is important to understand the power FCP  

needed for fast charge: 

3) FC

fQ fC
P x

 
   

 

In summary, the total cost function with fast charging is given by 

4) 

 

 

( )
( )

0

( )

( )

( ) 365 (1 )

(1 )

cell
chg

A

M

cell A avg chg

S x
S x

A A M

SE
S x

S x

S x Cxs N x f m tCs

Cx
N x f ts M s

q

     

 
    

 

 

We can identify the optimal range with respect to our total cost function by solving for x when 

/ 0dS dx  : 

5)    (1 ) 0cell A avg chg A M

SE

dS d C
Cs N f x m Cs s t s

dx dx q
          

This equation can be solved for the optimum range x for which the cost function is minimized.  

(As discussed in the Appendix, when AN is a cubic spline, /dS dx  is piecewise quadratic, so the 

optimality condition 5 can be solved analytically.)   

 

Results and discussion 

Plotted in Figure 2 are three cases.  As noted in Table 1, we examine a conventional cell 

technology (e.g., similar to that of the Chevrolet Bolt EV), the same cell with fast-charge 

capability (f = 80% of the cell capacity charged in  = 15 minutes), and a high-energy cell 

corresponding to the USABC 2020 goals, but no fast-charge capability.  The only cost 

component that decreases with range is the adaptation cost.  Hence, if the cost of adaptation is 

ignored, no minimum in the cost function results, and an optimal range cannot be determined.   

For the parameters chosen, the best value for the customer is the fast-charge scenario (middle 

plot, 52.3 L of cells and an optimal total range of (1 + f )x = 203 miles, which includes one fast 

charge at a charge rate of 90 kW).  For all three plots of Figure 2, the optimal total range and cost 

are marked by a triangular symbol and numerical values are provided.  Because we employ a 

Bolt-like vehicle, upon completing the calculation associated with Eq. 5, which employs the 
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consumption value C = 250 Wh/mile of Table 1, we must check to ensure that the volume of 

cells is less than or equal to that of a Bolt-like EV (113 liters).  The volume of cells is given by 

6) 
cell

ED

Cx
V

q
  

No credit is taken in the calculation for the cell volumes being less than 113 L.  For the fast-

charge analysis, even at 400 miles total, the net cell volume of 105 L is below the 113 L 

allocation.   For the uppermost and lowermost plots, a symbol is used to indicate the range (and 

cost) when 113 L of cells are employed; higher ranges are not of practical importance insofar as 

the cells would not fit in a Bolt-like EV without taking away interior volume from the customer 

or adding exterior volume, which would alter the vehicle energy consumption parameter C.    

 

Sensitivities to the specific costs and the fast-charge fraction are displayed in Figure 3; the 

abscissa is the indicated parameter divided by its base value specified in Table 1.  Thus, the 

ranges analyzed include 

 

As  27.5 to 82.5 $/day (curve labeled As , with a base value of 55 $/day) 

55 to 165 $/day (curve labeled 2 As ) 

cells  75 to 225 $/kWh for the 250 Wh/kg, 530 Wh/L battery with a base value of 150 $/kWh 

50 to 150 $/kWh for the 350 Wh/kg, 750 Wh/L battery with a base value of 100 $/kWh 

Ms  5 to 15 $/kg with a base value of 10 $/kg 

f 0.4 to 1 (fraction of the pack that can be fast-charged in time ), with 100 and 150 

$/kWh cell costs for the 250 Wh/kg, 530 Wh/L battery and 100 $/kWh for the 350 

Wh/kg, 750 Wh/L battery, respectively, with the base value of 0.8 

 

For each curve in Figure 3, the parameter in question begins at the left abscissa value, at 0.5 

times its base value, and the labeled parameter increases linearly with the abscissa value until it 

reaches 1.5 times it base value.  All other parameters are held constant and equal to their base 

value unless otherwise indicated.  For all curves, f = 0 unless it is specified.  The results of Figure 

3 indicate that a greater EV range is optimal for higher adaptation costs, lower cell costs, and 

lower costs for added mass.  Improved fast-charge capability (larger f ) leads to lower vehicle 

range for the fully charged pack (lower dashed lines of the plots), but larger total range when one 

additional fast-charge is included (upper solid lines).  The curve labeled 1.95 As bears similarity to 

the Chevrolet Bolt EV in terms of pack size and range.  All curves associated with fast charging 
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end at an abscissa value of 1.25/0.8 = 1, or 100% of the battery pack can be fast charged.  The 

maximum cell volumes are called out in Figure 3; all cell volumes are below 113 L for the 

calculations depicted.  For much lower cell costs or higher adaptation costs, the volume limit 

would be exceeded, which would then limit the battery pack size and energy. 

 

Using the optimal ranges displayed in Figure 3, the cost function of Eq. 4 can be evaluated, and 

commensurate results are presented in Figure 4.  Steeper slopes in the curves are indicative of a 

greater impact on the cost function for changes in the associated parameter.  We see that the cost 

function is more sensitive to the cell and adaptation costs and less sensitive to the added-mass 

cost.   

 

Summary and conclusions 

A framework is described that allows one to calculate the optimal range for an EV, including the 

influence of fast charging.  Because of the real-world complexity of the problem, the presented results 

must be viewed as qualitative, but the approach does identify key factors that should be considered in 

battery sizing.  (The time value of money is not considered in the model.)  

 

Of particular note is the cost of adaptation.  When we exercise the model with inputs one can associate 

with a battery like that of the Chevrolet Bolt EV, we find that the net cell volume and the vehicle range 

are consistent with an adaptation cost of $165/day, three times the average cost per day to rent a car in the 

United States.  This adaptation cost would be appropriate for customers having a strong desire to avoid 

relying on some alternative method of transportation for the days in which the EV could not supply the 

needed miles. (Per Figure 1, the Bolt EV’s 238 miles range would mean that drivers would need an 

alternative form of transportation—that is, they would need to adapt—about 5 days per year.) 

 

The results of Figure 2 allow one to assess whether fast-charge of a conventional lithium ion battery is 

superior to the implementation of a high-energy density cell that cannot be fast charged.  For the 

parameters chosen, fast-charge of a conventional lithium ion battery offers superior value to the customer 

relative to the high-energy density cell.  Sensitivity of the model to parameter values are the subject of 

Figure 3 and Figure 4. 

 

Our approach of using the cost of adaptation days to determine the optimum range is new; we 

acknowledge, however, that the actual adaptation cost will vary across the pool of potential EV buyers.  
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Many customers can be expected to own an ICEV (a vehicle with an internal combustion engine) as well 

as an EV, so the adaptation cost would be minimal.  Regional influences (e.g., a city versus a rural 

location) would be important.  Shared-use mobility solutions also offer lower cost adaptation, but they are 

not identical in customer value with personal transportation.  More generally, as noted above, while the 

framework presented in this analysis identifies key factors to consider in EV architectural design, battery 

sizing, and the value of fast charging, many open questions remain in terms of quantifying key parameter 

values.  As more demographic data on driver needs becomes available, refinements to the model might 

include a Monte Carlo approach with probability distributions for various quantities. 

 

Appendix 

For the piecewise spline, three intervals are used; the intervals and the spline coefficients for 

each interval are provided in the following table. 

 

Range 

(miles) Interval j aj bj cj dj 

100 to 150 1 8.6452 -76.3887 242.1196 -263.1208 

150 to 325 2 1.6775 -6.7117 9.8629 -5.0579 

325 to 500 3 0.209 0.066 -0.5643 0.2894 

 

The cubic splines for each interval j can be used to represent the adaptation days: 

3 2
(1 ) (1 ) (1 )

25 500 500 500

A
j j j j

N x f x f x f
a b c d

       
        

     
  

which is plotted along with the data in Figure 1 (with f = 0).  The constants 25 and 500 have 

units of days and miles, respectively.  The curve in Figure 1 is the least-squares fit of a cubic 

spline to the indicated data points for a choice of break points at 150 and 325 miles, subject to 

the constraint that the first derivative be monotonic, or equivalently, that the second derivative be 

always positive.  A description of how to construct cubic splines and their utility can be found in 

[47]. 

 

Using the derivative  
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2A
j j j

dN
a x b x c

dx
    

where 

3 2
1 1 1

3(25) ,  2(25) ,  25
500 500 500

j j j j j j

f f f
a a b b c c

       
       

     
 

and Eq. 5, we can write 

 
2

cell M

SEA
j j j

avg chg A

C
Cs s

qdN
a x b x c p

dx m Cs s t

 
 

     


 

By using the quadratic formula, we can determine the optimal range: 

2 4 ( )

2

j j j j

j

b b a c p
x

a

   
  

The solution of interest corresponds to the positive branch of the square root.  We can identify 

the crossover point between range intervals by the value of p.  For example, the crossover 1,2p  

between intervals 1 and 2 is at 150 miles; hence,

2 2

1,2 1 1 1 2 2 2(150) (150) (150) (150)p a b c a b c      . 
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Quantity Description Base values Reference 

C Energy consumption, Wh/mile 250 Wh/mile (*) 

f  Fraction of capacity Q that can 

be delivered by fast charge 

0 

0.8 

No fast charge 

USABC 2020 Goal 

avgm  Average number of miles 

driven per day 

30 miles/day Pearre et al. [46] 

M Pack mass, kg  / /SE SEM Q q Cx q   

0M  Reference pack mass 100 kg†  

NA Number of adaptation days per 

year 

 See Figure 1 and the Appendix 

EDq   Energy density 530 Wh/L 

750 Wh/L 

(*) 

USABC 2020 Goal 

SEq  Specific energy, Wh/kg 250 Wh/kg 

350 Wh/kg 

(*) 

USABC 2020 Goal 

Q Pack energy, kWh  Q = Cx 

As  Adaptation cost 55 $/day Representative rental car cost 

in the Unites States 

cells  Cell cost per unit energy, $/Wh 150 $/kWh 

100 $/kWh 

(*) 

USABC 2020 Goal 

chgs  Electricity cost for charging 0.1 $/kWh Representative electricity cost 

Ms  Cost of added mass, $/kg  10 $/kg Representative cost for added 

mass in the United States 

S Total cost, $  Equation 1 

AS  Total cost of adaptation, $   (1 )A A AS N f x ts   

chgS  Total cost over the pack life for 

charging, $ 

 Equation 2 

MS  Total cost of added mass, $   0( / )M SE MS Cx q M s   

t Battery life, years 8 years Representative warranty on an 

EV battery 

x EV Range  miles Independent variable for this 

work 

 Charge time, hours 0 

0.25 hours 

No fast charge 

USABC 2020 Goal 

†100 miles range, 250 Wh/mile, and 250 Wh/kg, yielding 0 100M   kg. 

(*) Similar the that of the 2017 Chevrolet Bolt EV. 

 

Table 1.  Nomenclature and base values.  Care must be taken to use consistent units in the 

equations. 

 



                                                  10 

 

 

 

Figure 1.  Solid line corresponds to piecewise cubic spline of the Appendix, and the data are 

from [46].    
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Figure 2.  Base scenarios.  The conventional lithium ion system (uppermost plot), with fast 

charge (middle plot), and advanced (high energy density) technology consistent with USABC 

2020 goals (and no fast charge) in the lowermost plot. 
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Figure 3.  Optimal value of EV range x.  The displayed calculations result from solutions to Eq. 5.  The ordinate is common to both 

plots.  For the curves labeled ,  ,  and A cell Ms s s , f = 0 (no fast charge).  Base values for the cell cost ($/kWh) and specific energy 

(Wh/kg) are provided in each plot.  The dashed lines result from subtracting off the range contribution from one fast charge, xf, from 

the upper curves that reflect the total vehicle range, (1+f)x, including one fast charge.   
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Figure 4.  Summation of cost components making up the cost function (Eq. 4) using the optimal 

value of EV range x plotted in Figure 3.  The color code in the legend corresponds to the color of 

the curve and identifies the parameter being varied.  The parameter cells has two ranges:  one for 

the 350 Wh/kg case (symbols, 150 to 50 $/kWh) and one for the 250 Wh/kg case (solid line, 225 

to 75 $/kWh).  For all cases plotted, f = 0 (no fast charge). 
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