Applying Numerical Algebraic Geometry to
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Abstract Many problems from kinematics are questions about mappiegseen

algebraic spaces. This chapter presents a mathematioadvrark for such prob-
lems and discusses how numerical algebraic geometry, awaitignal approach
based mainly on polynomial continuation, can be appliestaisg them. Publicly

available software for numerical algebraic geometry, sashhe Bertini package,
facilitates the solution of such problems, allowing kingdigians to solve with ease
problems that were previously considered extremely diffisuintractable.

1 Introduction

Advances in algorithms and computer speed have brought @oew paradigm
in kinematics. The proportion of effort a kinematician mesért in heavy manipu-
lations of algebraic expressions is greatly diminishedulh the use of computer
algorithms, and instead the kinematician may concentraferonulating the prob-
lem and interpreting the answer so as to analyze a georristdoastrained motion
or to design a device to produce desired motions. This wayarkivg requires,
however, an understanding of what kind of results the coermlgorithms are ca-
pable of providing and how to use them effectively. Thiscdetcondenses material
from [50] providing the schema ofraechanism spadbat encapsulates most of the
sorts of questions arising in kinematics and then summstipgv numerical alge-
braic geometry, a computational approach based on polyal@amtinuation, can be
applied to solving such problems. In addition to [50], thelagation of polynomial
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continuation to kinematics has been addressed specificalhe tutorials [47, 38]
and in substantial portions of the monograph [40].

Some notable milestones in the application of polynomiatication to kine-
matics include early demonstrations that the inverse katas problem of gen-
eral six-revolute serial-chain manipulators has 16 sohgi[43], that the forward
kinematics problem of general Stewart-Gough platformsAfasolutions [33], and
that the nine-point path synthesis problem for four-bakdimes has 1442 triples of
Roberts-cognate solutions [48, 49]. Some indication ofdiffeculty of these prob-
lems is that the one with the lowest root count, the “6R proljlevas once declared,
in the equivalent form of the 7R spatial loop, the “Mount Eastrof kinematics”
[13]. While the nine-point path synthesis problem was néyfsolved until nearly
70 years after its first statement in 1923 [1], the eventumtking of the problem
was presaged by partial solutions generated in 1963, inaHg éays of applying
computers to kinematics, with a heuristic version of camdition [35]. With sub-
sequent improvements in the technique of continuation aockases in computer
speed, even the nine-point problem is now a routine calounlatsed as a test case
for software packages in numerical continuation. (At pngsi is still beyond the
range of symbolic methods in computer algebra.)

These early successes all share the property that the auesti be answered
have a finite number of solutions. In other words, the sofusets to be computed
arezero-dimensionalBut it is common in kinematics to explore problems having
higher-dimensional solution sets. Examples include théanaeurve traced out by a
1-degree-of-freedom (1LDOF) mechanism, the boundary aighehable workspace
of a robot, or sets of design alternatives that satisfy aressgecified precision-
point mechanism synthesis problem. (An example of therlatise is the classical
center-point/circle-point Burmester curves for four givecations of a body in the
plane [11].) Algebraic curves, surfaces, and beyond aref atiterest in the field.

An approach for consistent treatment of higher-dimendionaes was begun
in [39], where the term “numerical algebraic geometry” wased. The essential
construct in the approach iswdtness setin which general linear equations are ap-
pended to slice out a finite number of representative podatited withess points
on a higher-dimensional algebraic set. Many propertiehefset can be gleaned
from its witness set, and the set can be explored by trackiagvitness points as
the linear slicing space is moved continuously. The sotusiet of a system of poly-
nomial equations can be factored into its irreducible congmbs, each represented
by a witness set, and given witness sets for two or more inibtkicomponents,
algorithms exist for finding their intersection.

The main techniques of numerical algebraic geometry asdyfievailable in the
software package Bertini [5, 6]. PHCpack [44] also impleisesome algorithms of
the field, while Hom4PS2 [17], POLSYBLP [52], and POLSYSSLP [42] offer
only algorithms for computing isolated solutions.

This chapter first describes a way of viewing problems fronekiatics in terms
of mappings between algebraic spaces. Mechanisms, imgudbots, that consist
of rigid links connected by the most common kinds of jointsén&inematic rela-
tions that are naturally polynomial. After establishingsthasic framework, atten-
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tion shifts to the algorithms of numerical algebraic geamand how to use them.
Beginning with the following section, the remainder of tleisapter is excerpted
from [50], with permission, edited for continuity.

2 Notation

This chapter uses the following notations.

i =+/—1, the imaginary unit.
For polynomial systerf = {f;,..., fy}, F : CN — C", andy € C",

V(F)=Y(f1,...,fn) :i= {xe CN | F(x) = 0}.

“DOF” means “degree(s)-of-freedom.”

TX is thek-dimensional torus, the cross produckdircles.

C*, pronounced “Cee-star,” I8\ 0, the complex plane omitting the origin.

P" is n-dimensional projective space, the set of lines througtotign of C"+1.
Points inP" may be written as homogeneous coordin@tgs. ., xn|, not all zero.
The coordinates are interpreted as ratios|xg0 . ., xn| = [AXo, ..., AXq] for any
AeC.

e A quaternioru is written in terms of the elementisi,j,k as

U= Upl+ Ugi + Upj +UgkK, Ug, Uy, Uz, U3 € C.

A quaternionu with ug = 0 can be interpreted as an ordinary spatial vector. We
useux Vv to denote the quaternion product arido denote quaternion conjuga-
tion.

3 Algebraic Kinematics

Kinematicians are quite accustomed to writing problemsyatems of polynomial
equations. For example, we often begin with a standard DeRavtenberg formu-
lation in which for each rotational joint angk, the trigonometric functions sth
and co$ appear. But by the simple maneuver of defining variables

G =cosf, s =sing,
and appending the trigonometric identity
4+s=1,

such expressions become polynomial. In this section, wetsiek a moment to see
why so many problems in kinematics are algebraic at theg.cor
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3.1 Rigid-Body Motion Spaces

Consider first that the six-dimensional set of rigid-bodynsformations in three-
spaceSE(3). The defining properties GE(3) are that each transformation must:

e preserve distances between points (the body is rigid), and
e preserve handedness (the body does not transmute intarits image).

The notatiorSE(3) stands for ‘special Euclidean transforms on 3-space’.

At root, rigid-body transforms are algebraic because seflidistances are alge-
braic. Translation by a vectqr € R® and orthogonal transformation by a matrix
Cc0(3) = {CeR3>3|CTC =1} preserve distance, but to preserve handedess,
must be restricted t8Q(3) by requiring deC = 1.

The most useful representations3H(3) are as follows.

e (p,C) € R®xSQ3), whereSQ3) = {C € R3*3 | CTC =I,detC = 1}. This acts
on a vectow € R3 to transform it tou = Cv + p.

e The 4x 4 homogeneous transform version of this, wh@reC) are placed in a
matrix so that the transform operation becomes

ul _ |Cp]||v
1| |01 (1|°
e Study coordinatefe,g] € S C P/, wheree = (ep,e1,€2,€3), 9= (o, 01,92, 03)
andStz5 is the six-dimensional hypersurface given by the equation

€00 + €101 + €02 + €303 = 0, 1)

known as the Study quadric. Interpretiagndg as quaternions, the transform
operation is
u=(exvx€+gx€)/(ex€).

In all three cases, the representations live on an algebedicThe transform op-
eration is also algebraic in the first two cases and equatiomdving the Study
transform operation become algebraic after cleaging from denominators.
There are several subgroups $E(3) that are of interest. Most prominent is
SE(2), the set of planar rigid-body transformations, with repreations as follows.

e (p,C) € R? xSQ2), whereSQ2) = {Cc R?*? | CTC=1,detC = 1}. The trans-
form rule looks identical to the spatial case= Cv + p.
e The unit-circle form{(x,y,s,c) € R* | ¢?+s* = 1}. This is the same as the former

with p=xi +yj and
c= {C ‘5} .
s C

e The tangent half-angle forifx, y,t) € R3, in which rotations become

R T G
T14t2| 21—t
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e Isotropic coordinate$§(p, p, 6, 6) € C*| 66 =1}. Real transforms must satisfy
p* = p and 6* = 6. The action of transfornip, p,8,68) on a vector given by
isotropic coordinateév, V) is the vector(u, u) given by

(u,0) = (p-+ Bv, p+ 6V).

Again, each of these representations lives on an algelbetiansl has an algebraic
transform operation (after clearing denominators in thregéat half-angle form).
Clearly,SE(2) is a three-dimensional space.

Another subspace of interest is the sesjlifierical transformghat is, justSQ(3),
another three-dimensional space. ThiSE3) with the translational portion set
identically to zero. The terminology “spherical” derivesih the fact that this is
the set of motions allowed by a spherical ball set in a sphksiacket of the same
diameter.

It is useful to note that since points transform algebréicalo do lines and
planes, as these may be formed as linear combinations ofrtthos® points, respec-
tively. Labeling the points that define them, the order offibats defines an orien-
tation for the lines and planes. Unbound unit vectors alaostfiorm algebraically,
that is, by ignoring translation and applying only rotation

3.2 Algebraic Joints

A mechanism is a collection of rigid bodies connected bytgilvithout the joints,
each body could move with six degrees of freedom anywhe8H(3). Typically,
we declare one body to be “ground” and measure the locatioalsthe other bod-
ies relative to it, so a collection af bodies lives inSE(3)"*. Joints are surfaces
of contact between bodies that constrain the motion of thehar@sm to a subset
of SE(3)"~1. Algebraic jointsare those which constrain a mechanisnalgebraic
subsetof SE(3)" L.

The most important joints for building mechanisms are [theer-order pairs
These are pairs of identical surfaces that can stay in fullai while still allowing
relative motion. In other words, they are formed by a surfaegis invariant under
certain continuous sets of displacements. The lower-qudis form six possible
joint types, having the following standard symbols: R, tate P, prismatic; H,
helical (screw); C, cylindrical; E, plane; and S, Spheriddie importance of the
lower-order pairs derives from the fact that surface-tdeme contact spreads forces
of contact over a larger area, reducing stresses that miggt @ut the machinery.

Fortunately — from the viewpoint of an algebraic geometewe &f these six
joint types are algebraic. The exception is the H joint, vatpcoduces a translation
proportional to rotation anglé along with a rotation that depends on éoand
sinB. The mixture off with cosf and sirf makes the motion non-algebraic. An
alternative line of reasoning is to observe that a helix apldae containing its sym-
metry axis intersect in an infinite number of isolated poiAtsy algebraic curve in
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R3 intersects a plane in at most a finite number of isolated pokfiwwever, helical

joints are rarely used as a direct motion constraint in a reatirat impacts kine-
matic analysis. Instead, screws are usually used to trapsmwer along a prismatic
joint. Consequently, the geometric motion of a great mangtraaisms is governed
by algebraic joints.

To demonstrate that a joint type is algebraic, one may witerdthe constraint
conditions it imposes between the transforms for the twaddsonh contact, sa
andB. The algebraic lower-order pairs can be reduced to equsdimg: combination
of points, lines, or planes. As these are all transformeelatgjcally, equating them
gives an algebraic constraint. In brief, one may confirm ladgieity for each joint
by noting the following equivalences:

equate a point and an oriented line through Aito similar inB,
equate a line and an oriented plane containingAtto similar inB,
equate a line of\ to one ofB,

equate a plane & to one ofB, and

equate a point oA to one ofB.

amOoTvaAD

This suffices to show that the lower-order pairs R, P, C, E,%acke all algebraic.
Each joint can be described eithextrinsicallyin terms of the constraint it im-
poses, as above, ortrinsically in terms of the freedom it allows between the trans-
form for, say, bod\B relative to bodyA. Using 4x 4 transform notation, and letting

'TI be the transform for framgrelative to frame, one has

O[B _ OTAATB )

Suppose that the joint betweérandB is thekth joint of a mechanism, an algebraic
lower-order pair. Then, the relative transfoffif can be written as

ATB = AXB, 3)

whereA, andBy are constant transforms describing the location of the joibodies
A andB, resp., an is variable of the form

cosf —sinB0a

sin@ cosB Ob
=10 0o 1c| )
0 0 01

For each joint type, the contentsXfvary as follows.

Use (4) witha= b = c =0, leavingf as the joint variable.
Use (4) with8 = a= b = 0, leavingc as the joint variable.
Use (4) witha= b = 0, leavingd andc both as joint variables.
Use (4) withc = 0, leaving®, a, andb all as joint variables.

Use
X — {C 0]

wumoTvTD

01
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with C € SQ(3) as the joint freedom.

The foregoing descriptions are meant mainly to show thakithematic relations
of rigid-body mechanisms involving only algebraic jointg all algebraic. Other
formulations can sometimes be more succinct or conver@hen modeling the
joints with a low number of freedoms (R, P, C) it is usually emeonvenient to use
an intrinsic formulation, while S joints are usually bestdeted extrinsically. In
some cases, one may avoid introducing transforms for sorfedinks altogether.
For example, seg3.5.5 for a formulation of the kinematics of the Stewart-Glou
platform that avoids introducing any transforms for thésthat compose the legs.

3.3 Mechanism Types, Families, and Spaces

Having shown that mechanisms built with rigid links and &ligéc joints have kine-
matic relations that are polynomial, we move on to show thatige variety of
kinematics problems can be placed into a common formatvitvglmappings be-
tween algebraic sets. To do so, we need the definitions of &anésm type and a
mechanism family.

Definition 1. A mechanism types defined by the number of links,, and a sym-
metricn. x n_ adjacency matridx whose(i, j)th element denotes the type of joint
between links andj, one of R, P, H, C, E, S, or 0, where 0 indicates no connection
By convention, all diagonal elements are 0.

(Each joint appears twice in the matrik;; = Tj; are the same joint.) We assume
here that the joints are limited to the lower-order pairg,the list of possibilities
could be extended. The enumeration of all possible mecimatyises for each value
of n_ without double-counting mechanisms that are isomorphiteunenumbering
of the links is a problem in discrete mathematics. Choosipgoapective mecha-
nism type is the first step in a mechanism design effort, anthods for guiding
the enumeration of promising alternatives fall into theegaty oftype synthesidn
this paper, we assume that this crucial step is already dotteas we begin with a
mechanism type.

Each mechanism type has an associated parameter spacevé\ieeba irf; 3.2
one way to model each of the algebraic lower-order pairs, R, B, and S, extrin-
sically in terms of feature points, oriented lines, andmee planes. Alternatively,
in the intrinsic formulation of (3), the transforndg andBy parameterize the joints.
The cross-product space of all these geometric featuressfaruniversal parameter
space for the mechanism type. One may choose to model the joia more parsi-
monious way, but we assume that in the alternative modeg tktél exists a param-
eterization for each joint and an associated parameteedpaall the joints taken
together. For example, for a succession of R and P jointsD#hevit-Hartenberg
(D-H) formalism gives a minimal parameterization. (Se€] [@3any modern kine-
matics textbook for a definition.) The D-H parameters ark lémgths, link offsets,
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and link twist angles. Treating the twists as unit circlé®g parameter space be-
comes algebraic.

Definition 2. A universal mechanism familyT, Q) is a mechanism typ& with an
associated parameter sp&gdescribing the geometry of the joints. We assume that
Qisirreducible.

If one has a parameter spa@ehat is not irreducible, each irreducible component
should be considered to define a separate universal menhtansly.

Definition 3. A mechanism familyT, Q') is a subset of a universal mechanism fam-
ily (T,Q) restricted to an irreducible algebraic sub®et- Q.

Examples of the common sorts of algebraic restrictions dedine a mechanism
family include the condition that the axes of two R joints inextain link must be
parallel, perpendicular, or intersecting, etc. As a palicexample, consider that
the universal family of spatial 3R serial-link chains int&s the family of 3R planar
robots, wherein the R joints are all parallel. One shouldegipte that there can be
subfamilies within families, and so on.

For certain mechanisms, all points of the links move in parg@lanes, hence
the links move inSE(2) and the mechanism is said to pknar. In particular, a
mechanism family wherein all joints are either rotatioRatith axis parallel to the
world z-direction or prismatid® with axis perpendicular to the worlddirection is
planar.

Definition 4. Thelink space Zfor ann link mechanism isSE(3)"*, where one of
the links is designated as grou( C) = (0,1). Any of the isomorphic representa-
tions of SE(3) from § 3.1 can be used as models3#(3). If the mechanism family
is planar, therZ = SE(2)"~1 in any of its isomorphic representations frérs.1.

Definition 5. The mechanism space Mf a mechanism familyT, Q) is the subset
of Z x Q that satisfies the joint constraints.

Proposition 1. If a mechanism family is built with only the algebraic joilRRsP, C,
E, and S, then its mechanism space is algebraic.

Proof. Section 3.1 shows thtis algebraic an® is algebraic by assumption. That
is, Z andQ are sets defined by algebraic equations. Section 3.2 shaivththalge-
braic joints impose algebraic constraints on the coordmatZ andQ, and hence
all the defining equations favl are algebraic. O

Definition 6. A mechanisnis a member of a mechanism family, Q) given by a
set of parameterg < Q.

3.4 Kinematic Problems in a Nutshell

In this section, we present an abstract formulation thatrsarizes all the main
types of geometric problems that arise in kinematics. Inribet section, we will
discuss more concretely how to map a mechanism into thisutation.
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The key to our formulation is the following diagram:

X3 —m—K oy
I e S ©
XxQ "+ Q +—— YxQ

The main elements of the diagram are four $€ts1,Y,Q and three map3, K, iy .
The four sets are as follows.

e X is theinput spaceof the mechanism. In robotics, it is usually called the “join
space.” Its coordinates are typically quantities that weand by controlling
motors or other actuators.

e Y is theoutput spaceoften called the “operational space” in robotics. Its cor
nates are the final output(s) we wish to obtain from the masharsuch as the
location of a robot’s hand.

e Qs theparameter spacef a family of mechanisms. It is the set of parameters
necessary to describe the geometry of the joints in each liakh point inQ
is therefore a specific mechanism with designated link kes\gttc. The whole
setQ constitutes a family of mechanisms, such as the set of alloBRtrarms,
with the coordinates o representing all possible link lengths, etc. We assume
thatQ is an irreducible algebraic subset of sofff8, that is, it is an irreducible
component of/(G) for some system of algebraic functiofs: C™ — (GUN;
¥ (G) has more than one irreducible component, then each suchar@npis
considered a different family of mechanisms.

e M is the mechanism spacevhich describes all possible configurations of the
mechanism for all possible parameters. Febe the space of all possible lo-
cations of the links when they are disconnected. That isafoN-link spatial
mechanism with one link designated as groufe; SE(3)N-1. Then,M is the
subset ofZ x Q where the link locations satisfy the constraints imposedhiey
joints between them. Lef : Z x Q — C° be a set of polynomials defining the
joint constraints. ThenVl = ¥/ (F) N7 (G) is an extrinsic representation bf.
Each point(z,q) € M is a specific mechanisme Q in one of its assembly con-
figurationsz € Z. In some cases, it is more natural to desciibéntrinsically
via an irreducible set, sa@, that parameterizes the freedoms of the joints of
the mechanism, so thdt becomes x SE(3)N~1. We will use this, for exam-
ple, to describé/ for 6R serial-link robots. In such a representatiBrincludes
the equations that defir@ along with the equations relating link poses to joint
freedoms and equations for the constraints imposed byngjdshematic loops.
Formulating such equations is part of the art of kinemaéios, we will not delve
into it in this paper beyond what is necessary to presenifgpegamples.

After choosing a representation 8E(3), and if present, for the joint freedom space
O, the spaceZ is a subspace of some Euclidean spate, CY, andz € Z has
coordinateg = (z1,...,2y).

Three maps are defined dA, as follows.
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e J:M — Xis theinput map which extracts fronM the input values. The symbol
J acknowledges that the inputs are usually a set of joint dtshents.

e K:M —Y istheoutput mapwhich extracts fronM the output values.

e 7iy : M — Qis a projection that extracts the parameters fidnit is the natural
projection operator o x Q restricted taVl given by : (z,q) — Q.

If the mapsF,G,J,K are merely analytic (instead of algebraic) and the spaces
X,M,Y,Q are analytic, the above framework still applies, and we masemues-
tions in the analytic setting. In particular, H joints areabic but not algebraic.
The advantage of restricting to the algebraic setting i®#tigtence of a much more
powerful algebraic theory that enables the use of algeleaicniques, including
numerical algebraic geometry, to be employed in answehagjuestions.

The commutative diagram is completed by definihg= (J,my) and K =
(K, mv) and the associated natural projectionsr, s, .

It should be understood thdd characterizes a family of mechanisms, such as
the family of spatial 6R serial-link robots, the family ofplar four-bar linkages, or
the family of Stewart-Gough platforms. MapsandK are tailored to an application
of the mechanism. For a four-bar function generalagjves the input angle and
K gives the output angle, while for a four-bar path generdtagjves instead the
position of the coupler point.

Using the diagram of (5) succinctly summarizes the algelsaiting of almost
all kinematic problems. The problems can be broadly cla&skifito three types of
problems:

e Analysis (mobility analysis, forward and inverse kinerngtiworkspace analy-
sis),

e Synthesis (precision point problems), and

e Exceptional mechanisms.

We describe each of these in more detail next.

3.4.1 Analysis

In analysis problems, one has a specific mechanismgsayQ, and one wishes to
analyze some aspect of its motion.

Definition 7. The motion of a mechanismiven by parameterg” € Q in a family
with mechanism spadd is 75,(q*) = MN % (q—g*) € Z x Q. This can also be
called themotion fiber over ¢,

In the following, it is also convenient to define the invereés andK:

I ={zaeM|Izg=x}, Ky ={(zgeM|Kzaq =y}

These are defined forc X andy € Y, respectively. In the sét1(x) for a particular
x € X, g is not fixed, so this inverse applies across a whole mechafasmiy.
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When we wish to address just one particular mechangsimye want to consider
the inverse ofl instead:

‘j\il(xa q*) = {(Za q) eM | j(Z, q) = (qu*)}

Similarly, we have:

K™ y.q") = {(za) eM [K(zg) = (,d)}-
The basic problems in analysis are as follows.

e Motion decompositionof amechanisnmreakml(q*) into its irreducible com-
ponents, often called assembly modes by kinematiciane§(Bé&r a description
of irreducible components.) The numerical irreducibleateposition oml(q*)
finds the dimension and degree of each assembly mode andipsavset of wit-
ness points on each.

e Motion decompositionof amechanism familgreakaM into its irreducible com-
ponents. IfA C M is one of these components, tha@(A) C Q is the subfamily
of mechanisms that can be assembled in that moderd{®) is the dimension
of the subfamily, and dirA — dim7g (A) is the mobility of that mode.

e Mobility analysis seeks to find the degrees of freedom (DOFs) of the mecha-
nism, that is, mobility is dimlml(q*). As the dimension of an algebraic set is
always taken to be the largest dimension of any of its compisnhis definition
of mobility picks out the assembly mode (or modes) havingléngest number
of DOFs. There are simple formulas, known as the Gruebldetxach formulas,
that correctly estimate the mobility for a wide range of neukms, and even
more mechanisms submit to refined analysis based on dispdategroup the-
ory, but there exist so-called “paradoxical” mechanisras iave higher mobility
than these methods predict. To handle all cases, one neadslyze the equa-
tions definingM in more detail taking into account thgt may be on a subset of
Q having exceptional mobility.

e Local mobility analysis finds the mobility of a mechanism in a given assembly
configuration. That is, give(z',q") € Z x Q, one wishes to find

Local mobility := dim ¢ 75, (). (6)

A mechanism can have more than one assembly mode, corrésgaadhe ir-
reducible components oi‘,gl(q*). The local mobility is the dimension of the
assembly mode that contains the given configuratigrgr if there is more than
one such mode, the largest dimension among these.

e Forward kinematics seeks to find the output that corresponds to a given input
x* for a mechanisng*. That is, forx* € X andq* € Q, one wishes to find

FK(X'.q") :=K(J (<", q")). (7)

Example: given the joint angles of a particular 6R seriakliobot, find its hand
pose.
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e Inverse kinematicsis similar to forward kinematics but goes from output to
input. Fory* € Y andg* € Q find

IK(y",q") = IRy a"). (8)

Example: given the hand pose of a particular 6R serial-lofdot, find all sets of
joint angles that reach that pose.

e Singularity analysis finds configurations where the maps lose rank. If we have
found a motion decomposition of the mechanism, then for @askembly mode
A c m,}(q) there is an associated input spd¢8) and an output spadé(A).
The input and output maps have Jacobian maté¥®z and K /dz. Assume
for the moment tha is a reduced algebraic set. (For exampléx—y) is a re-
duced line in théx, y)-plane, while the double ling ((x—y)?) is non-reduced.)
For generic pointgz,g*) € A, the Jacobian matrices have a constant rank, say
rankdJ/0z(z,q*)] = ry and rankdK/dz(z,q*)] = rk. Then, there may be input
and output singularities, as follows.

Input Singularities: {(z,q*) € A| rank%(z, g*) <rj}. Inthe common case that
dJ/0dzis square and generically full rank, these are the specrdigurations
where, to first order, the mechanism can move without anygdanits input.

Output Singularities: {(z.g*) € A| rank%—'é(z, g*) < rk}. In the common case
thatdK/dzis square and generically full rank, these are the specidlguo
rations where, to first order, the mechanism can move withoytchange in
its output.

If A'is a non-reduced assembly mode, one might wish to considéngut and
output singularities of the reduction 8f which can be analyzed via a deflation
of A. (See§ 7.3.

e Workspace analysisseeks to find all possible outputs of a robot or mechanism.
Ignoring limits on the inputs, this is just the Sé(n;gl(q*)). The main concern
in practice is the set of outputs for real assembly configamat so lettingAx
denote the real points in an assembly médé¢he corresponding workspace is
K(Ag). Output singularities and joint limits induce boundariegtie workspace.
Example 1: for a 6R serial-link robot, find all possible potiea the hand can
reach.

Example 2: for a given four-bar linkage with output definedresposition of its
coupler point, find the coupler curve.

Example 3: for a 6-SPS (Stewart-Gough) platform robot wiithits on the leg
lengths, find all possible poses of the moving platform.

The motion of a mechanism over the complexes contains itsnmetion, but the
extraction of the real motion from the complex one can bedliffj all the more so
as the dimensionality of the motion grows. Se&5 for a discussion.

The problems presented above mainly concern the geome#ryrefchanism’s
motion, where principally angles, positions, and posesrethie picture. As indi-
cated by the questions of singularity analysis, one maylasooncerned with dif-
ferential relations between these, so that joint ratesalitvelocity, and angular ve-
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locity may become objects of study. Since these are alleelad the mechanism
spaceM through its derivatives, these too fit into the algebraitirsgtas do static
forces and torques, through the principles of virtual work.

3.4.2 Synthesis

While analysis determines how a mechanism moves, syntfiedis mechanisms
that move in a specified way. Synthesis problems begin witbt @fsdesired out-
puts or a set of input/output pairs and seek to find the meshenthat will pro-
duce these. Synthesis tends to be harder than analysisseecae must consider
the ability of the mechanism to reach each desired statessenee, we must
consider multiple copies dfl simultaneously. The relevant construction in alge-
braic geometry is called thiéber product Instead of studyingvl, one works with

M xoM =7 (F(z;0),F (2;0)), which comprises two copies of the motion for the
same mechanism. Clearly, the fiber product operation carteaded to triple fiber
products and higher. Forming tkeold fiber product

ME =M xq - xqM,
~——————
ktimes

if Ty« is the projection fronMé that picks out its parameters, then m}((q*) for
g* € Q gives backk copies of the motion fiber over*. We may also define a map
Kk acting onM(kg to producek outputs and a mapKy acting onM(kg to producek
input/output pairs.

With these maps, we may define several kinds of synthesidgnsh The follow-
ing problems are known ggecision poinproblems, since there is a set of specified
points which the mechanism must interpolate exactly.

e Output synthesisseeks mechanisms that can reach a set of specified outputs.
For(y1,...,Yk) € YK, we wish to find the set

{d€ Q| Ku(Th3(@) = (V1,-- -, Yi)}-
Kinematicians distinguish between different types of otigynthesis.

Path synthesis finds mechanisms where the path of a poineahédthanism
interpolates a set of given points. In this cakeis defined onM such that
Y cC3

Body guidance In this case, the output is the pose of one bbtheanecha-
nism, that isy € SE(3). The purpose of the mechanism is to guide that body
through a set of specified poses.

e Input/output synthesisseeks mechanisms that produce a coordinated input/output
relationship specified by a set of input/output pairs. §a&i,y1),..., (X, Yk)) €
(X x Y), we wish to find the set
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{d€ Q IKe(T5, 3 (A) = ((X1,¥2), -, (%, Y)) }-

A common case is a 1DOF mechanism, such as a four-bar, witinple being
the angle of one link with respect to ground. Then, Wtllefined as in a path
synthesis problem, the input/output problem becopatk synthesis with timing
Similarly, one can haveody guidance with timingThe nomenclature derives
from an assumption that the input moves at a constant rdtég linput and
output are both angles of the mechanism, then input/outmihesis becomes
function generationas the precision points approximate some desired furaition
relationship between input and output.

What makes these problems difficult is that the whole systeagoations defining
M is repeatedk times, increasing the total degree of the system exporigritiak.

For any precision point problem, there is a maximum numbere¢ision points
that can be specified. Roughly speaking, this is the totalbmirof independent
parameters in the mechanism family under consideratioietivby the number
of constraints placed on the parameters by each precisiio. pfomore than the
maximum number of precision points is specified, then thellemgeneral be no
mechanism that interpolates them exactly. One may thenmeflate the problem by
defining an error metric and seek mechanisms whose motidritsethe specified
approximation points. This is analogous to finding a bedir# that approximates
three or more points.

We should note that all these synthesis problems have begwlfated only at
the geometric level. It is also possible to specify motiontha level of velocity or
acceleration or to mix specifications at several levels.a=bDOF motion, differen-
tial relations can be approximated by limits as precision{sapproach each other.
For this reason, classical synthesis theory sometimesgiisshes betweefinitely-
separated precision poin@ndinfinitesimally-separated precision pointé/e will
not discuss synthesis problems involving differentiahtieins further here.

3.4.3 Exceptional Mechanisms

While M describes the motion of an entire family of mechanismg(q*) is the
motion of a particular mechanism in the family. For any gengre Q, attributes
such as the mobility of the mechanism or the local mobilitiiss assembly modes
all stay constant. However, there may be algebraic subsefsvehere mobilities
increase. These exceptional mechanisms are often calexiconstrained mecha-
nisms,” as a slight perturbation of the parameters off ofakeeptional set into a
generic position suddenly brings in extra constraints thdtice mobility. One may
define subsets d¥l where the local mobility is constant, that is,

i ={(z.9) e M | dim(,q) 15, (q) = k}. 9)

The closures of thesgj = ?; are algebraic sets. When C %, j > k, we say that
2j is an exceptional set of mechanisms, a family of overcoimgicemechanisms.
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The discovery of exceptional mechanisms is perhaps the diifisult kind of
kinematics problem. One may think of these as a kind of syishgroblem where
the only thing that is specified about the motion is its mopiks in the precision-
point synthesis problems, it turns out that fiber producyg plcentral role. We leave
further discussion of this t§ 7.6.

3.5 Fitting into the Nutshell

Sections 3.1 and 3.2 show that any mechanism composedgifl links connected
by any combination of R, P, C, E, or S joints leads to a set oftaint equations
that is algebraic in the link location®;,Cj) € SE(3), j =1,...,n and is also al-
gebraic in the parameters defining the jointsg B13,3.4, we put forward a schema
that formulates a wide variety of kinematics problems imieof spaceX,M,Y,Q
and maps), K, T between them. In this section, we will detail how some exampl
mechanism types fit into this schema.

3.5.1 Planar 3R Robots

Consider first the universal family of 3R planar serial-lnokots. These havg =4
links, one of which is ground. The adjacency matrix has R itheglement of the
super- and sub-diagonals and 0 everywhere else. Sincedtieamism is planar, the
link space isZ = SE(2)3. Using the reference frames as indicated in Figure 3.5.1,
we have coordinates fat as

= (PXv Pvalvyl)v 2= (Qx7Qy7X27YZ)7 3= (va Ry,X3,Y3), (10)

where(R, R) are the coordinates of poif etc., andk; = cosy;, yj =sing;, j =
1,2,3. Here,gn, @, 3 are the absolute rotation angles of the links. Accordirtky,
algebraic equations defining the link spacare

X +y5—1=0, j=1,2,3. (11)

The parameters of the mechanism are just the link len@tlis c), so the parameter
spaceQis C3. In the plane, the constraint imposed on two links by a roteti joint
is the coincidence of the point of connection. Pdnt (0,0) in the ground must
coincide with point—a, 0) in the reference frame of link 1:

(0,0) = (Pc—axi, R, —ay1). (12)
Similarly, the other two joints impose the constraints

(PXv Py) = (QX - sz, Qy - byZ) and (QX7 Qy) = (RX —CX3, Ry - Cy3) (13)
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Accordingly, Egs. 11-13 define the mechanism space

Fig. 1 Planar 3R robot with
reference frames.

To complete the picture, we need the masJ, K. The projectiorngy : M — Q
simply picks out the parameters:

m: (z1,2,23,a,b,c) — (a,b,c). (14)

Assuming the input spacé = T2 is the relative rotation anglg®;, 6,, 83) repre-
sented by cosine/sine pairs, the difference formulas fsinecand sine give

J:(z1,22,23,a,b,C) = (X1, Y1), (XoX1 +Y2Y1, Y2X1 — X2Y1), (XaX2 +Y3Y2, Y3X2 — XaY2) ).

(15)
Finally, assuming the output spa¥e= SE(2) is the location of reference frame 3,
the output map is

K:(z1,2,23,a,b,C) — (23). (16)

If instead the robot is applied to just positioning pdwin the plane, we havé = C?
with the output map
K':(21,22,23,8,b,¢) = (R, Ry). 17)

With these definitions, the problems of forward kinematiogerse kinematics,
reachable workspace, and exceptional sets all fit neathtlr nutshell schema.

3.5.2 Spatial 6R robots

The case of spatial 6R robots is quite similar to the 3R plaaae, but we shall
choose to handle the joint constraints by introducing \desimplicitly modeling
the freedom of the joints rather than explicitly writing abraint equations. A 6R
serial-link chain has = 7 links, one of which is ground. The adjacency matrix
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has entries of R on the super- and sub-diagonals and 0 edsewitet the link space
be Z = T x SE(3)®, with unit circle representations of the joint angles and 4
4 homogeneous transforms for the link locations, so tha represented as=
{(CJ,SJ‘,OTJ), j=1,...,6} with

2 _ H—
+s-1=0, j=1,...,6. (18)

The first factor ofZ is precisely the joint spac¥ = T® and the output is the lo-
cation of the “hand,” the last frame in the chaffi;6. The link parameters are
4 x 4 transform#; € SE(3), j =0,1,...,6. One can use general transforms, but the
Denavit-Hartenberg formalism shows that by choosing esfee directions aligned
with joint axes and their common normals, it suffices to pastamze theA; as

10 O a;

~_ |0aj —Bj —Bjd; .

Aj = 0B a ad |’ j=0,...,6. (19)
00 0 1

In this expression(aj,B;j) are a cosine/sine pair for the twist of link a; is the
length of the link (along itx-direction), andl; is the link offset distance (along its
z-direction). To keep\; in SE(3), these must satisfy

a?+p2-1=0, j=0...,6 (20)

With this parameterization, the parameter spad® is T’ x C'#4 with coordinates
qg={(aj,Bj,aj,dj), j =0,...,7}. Joint rotationR,(c;j, ;) of the form

c—-s00
s c0O0
0 010"
0001

R:(c,s) = (21)

alternate with relative link displacemems to give the transforms of the link loca-
tions as

OT1 = AgR(C1,51)Ad, o1l = OTI-1R(cy, 5))A, i=2....6. (22

Combining these gives
6
OT® = Ker(2.0) == Ao I_LRZ(CJ'vSJ')AJ (23)
=

Equations 18-21 define the mechanism spdda terms of coordinate&, q). The
associated maps froM to Q, X = T®, andY = SE(3) are
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v : (z9) — q, J:(zq) — ((cj,8)),j =1,...,6), K =Ker: (z,q)— °T®.
(24)

3.5.3 Four-Bar Linkages

The four-bar has four links with four R joints. If we call theogind link 0, the two
links connected to ground as links 1 and 2, and the couplénla8) then the adja-
cency matrix has entrief 3 = To3 = To1 = Tp2 = R. Using isotropic coordinates
(see§3.1), let(o, @) represent the orientation of the coupler link and &t 6, ) and
(62, 6,) be the rotations of links 1 and 2, and (gt p) be the coupler point position.
[Recall that in isotropic coordinates, we represent a restya = ai + f3j, by a
complex numbea = a + i and its conjugata = o — Bi.] Hence, the link spacg
is given by coordinatez= (p, p, @, @, 61, 61, 62, 6>) subject to the unit length con-
ditions of _ B _

PPp=06,6=6,,6,=1 (25)

Referring to Figure 2, a four-bar can be parameterize@ byC° with coordinates
g = (a1,a1,a,a,b1,b1,b2, by, ¢1,¢2). With these notations, the mechanism space
for four-bar linkages is the solution set of the equations

0161 = p+ @by —ay, /51@ =p+ @1—51,
(26, =p+pbp—ag,  (262=p+@by—ay, (26)
91912 1, 92922 1, PP = 1.

Fig. 2 Vector diagram of a
four-bar linkage.

o

The input and output spaces and their associated maps depéine application
of the mechanism. For path generation, we have otpaC? with mapK = Kpath:
(z,q) — (p, p). For body guidancey, = SE(2) with K = Kguige: (z,0) — (P, P, @, @).
If timing along the coupler curve or timing of the body motiare of concern, we
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Fig. 3 3-RPR planar platform
robot.

may name the angle of one of the links connected to groundpas,isayX = T*
given byJ: (z,q) — (61, 61). For function generation, the input is the angle of link 1
and the output is the angle of link 2, 80 (z,q) — (61, 61) andK =Ksen : (z,q) —
(62,02).

The raw equation sets that come out of the above formulafiem denefit from
further algebraic manipulation before submitting the sgsto a numerical solution
procedure. In particular, for the path synthesis problécam be beneficial to elim-
inate some variables. In the nine-point path synthesislenob-in general, nine is
the maximal number of precision points that can be exactbrpolated—we wish
to find parameterg such that the coupler curw"q,ath(ml(q)) C C? passes through
points(pi, pi), i =0,...,8. With a little algebra, this can be reduced to solving a
system of eight polynomials

fcc(pjap_qu):Oa J:17787 (27)

each of degree seven. See [48, 50] for derivations, basedsonilar formulation
from Roth and Freudenstein [35].

3.5.4 Planar 3-RPR Platforms

A 3-RPR planar platform robot has a moving triangle supgbftem a stationary
triangle by three RPR legs, as in Figure 3. Coordinates femtlechanism space
M of the 3-RPR planar platform are an extension of those forfole-bar with
as, ag, B3, 03, /3 appended with the additional equations:

(363 =p—as, (363=p—a, and 6363=1. (28)

However, there is a shuffle in which coordinates are paraatel which are vari-
ables of the motion. The new maps are
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m . (Zaq) — (alaa_-laa27a_21a31a_37blab_lab27t_)2)
3:(20) = (tr.la.la) (29)
K (za)—(p,p,0,9)

3.5.5 Stewart-Gough Platforms

For the forward and inverse kinematics problems of the 6-8B$orm, we do not
need to explicitly represent transforms for the upper ameetdeg segments. It is
enough to use the leg lengths and the transform for the mget§porm. Hence,
the link space i€ = C® x SE(3), and if we use Study coordinates f8E(3), the
space iZ = C8 x &, whereS ¢ P’ is the Study quadric given by (1). With leg
lengthsLy,...,Lg, the coordinates of are(Ly,...,Ls),[€e g]. The parameter space
Q consists of the vectors;,bj € C3, j =1,...,6, that specify the centers of the S
joints in the base and moving platforms. The mechanism sphtgiven by the
Study quadric along with the leg-length equations

L2 =||(gx€+exbjx€)/(ex€)—aj|[5, j=1,...,6, (30)
which after expanding and clearing denominators beconmres$al, ..., 6

Ozg*g/+(bj*b/j+aj*a/j—LJZ)e*e/+(g*b/j*e/+e*bj*g/)

31
—(gx€xaj+ajrexg)— (exbj«€xaj+ajxexb|+¢€) 1)
The input spacX = C® is the set of leg lengthisy, ..., L, and the output space
isY = Sé is the Study quadric for the transform of the moving platfofithe maps
J,K are the associated natural projections.

4 Overview: Numerical algebraic geometry

The fundamental problem in numerical algebraic geometty isumerically com-
pute and manipulate the solution set of a system of polynlesmia

f(x) 1= [f1(x),..., fa(X)], (32)

wherex = (xq,...,xy) € CN. As we have seen in the preceding sections, problems
in kinematics often concern parameterized systems, thpblgnomial systems of
the form

f(X,Q) = [fl(xaq)a"'vfn(xvq)] (33)

with x € CN andq € Q, whereQ is an irreducible algebraic set. We may have simply
Q = CM, a Euclidean space ® independent parameters, but we may also have a
Q formed with elements fron$E(3) or the unit circle. It is important to note that

in practice, an engineer might not know the exact twist aofji link, but when it
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comes to solving the associated polynomial system, it isskrthat the sine/cosine
pair of the angle must lie on the unit circle.

Historically, within numerical algebraic geometry, theoplem of finding iso-
lated solutions fosquare systems.e., systems such as Eq. 32 in the caseN,
came first. The most basic tool is homotopy continuation ¢mtiouation for short),
which consists of studying a square system of polynonfi&i$ by starting with a
simpler systeng(x) that we know how to solve and deformig@) and the solutions
of g(x) = 0 to f(x) and the solutions of (x) = 0. A good source for explication of
this basic approach is the book [25], with more modern treatsgiven in [20, 40].

The solution of non-square systenmsA£ N in Eq. 32) came considerably later
than methods for square systems. The techniques we emplaysakreformulate
such problems to reduce them once again to finding isolatetisus.

At first sight, the case ofi > N (more equations than unknowns) would seem
to be numerically unstable, as a small perturbation of ttetesy can obliterate a
solution. The is true for any solution sets of dimension ggetihanN — n. The fact
that saves the day is that the existence of such solutiorendispon the parameters
lying exactly on a parameter space, and we assume we knowdbeezjuations that
define that space. Consider a pair of parameters that shewld & unit circle. When
we work numerically, the pair will rarely lie exactly on th&ate, but the exact unit
circle condition is known, and by using extra digits, therpdiparameters can be
placed as close as needed to the true parameter space.dlimage the computation
of sets of dimension greater th&h— n robust, the Bertini software package [5]
implementsadaptive multiprecision arithmetisee§6.3) that adjusts the number of
digits as needed. This same technology stabilizes the nicsrarisolated singular
and near-singular roots of square systems.

To provide a complete ability to solve systems of polynosjiahe must be able
to deal not just with isolated roots but also with higher-dimsional solution sets
(curves, surfaces, etc.). Obviously, this arises whenN, as there are not enough
equations to determine an isolated rddthe approach of dealing with this in nu-
merical algebraic geometry is a data structure calledtaess setn which extra
linear equations are introduced in order to cut out genswhied points on the
higher dimensional sets. These points can then be compsteg the techniques
for finding isolated solution points. To cut out isolatedrgsion a set of dimension
m, one must augment the original system with- mgeneral linear equations. Thus,
if the solution set is has dimensiom> N — n, the augmented system has m> N
equations, which has the potential for being numericallgtable. The procedure
for stabilizing this situation depends camdomizationas described if6.9.

1 At least not in complex space. In real space, singular isdladots are possible with< N. See
§7.5.



22 Charles W. Wampler and Andrew J. Sommese

5 Finding Isolated Roots

In this section we briefly discuss the continuation methodirafing isolated so-
lutions of a polynomial system (32). Various aspects of hbis process is made
robust and efficient are highlighted. From the viewpoint osar of software pack-
ages for continuation, a few things, particularly the diuisof variables into groups
for multihomogenization, requires some level of experfisen the user, but most
of these measures can be automated without user input. Ttiveatian for a user to
understand the basic solution processes is for making amirgfd choices of which
software to use, as discussed furthef& and which algorithms to use within a
chosen software package. Although it will not be addresszd,fadvanced users
may also change configuration settings that can affect ttedspnd robustness to
adapt performance to the specific needs of their applicaition

5.1 Homotopy

For the square case &f polynomials inN unknowns, one of the most classical
homotopies is the total-degree homotopy that usesytieck” of [27]:

f1(x) 91(x)
H(xt) :=(1-t) : +wt : , (34)
fn(X) ON(X)

where each polynomiajj has degree the same &sand the solution set of the
system(gi(x),...,gn(X)) = O consists ofd; - --dy nonsingular isolated solutions.
Wheny is chosen as a random complex number, then with probabitig; the
homotopy satisfies the properties:

1. {(x.t)|t € (0,1];x € CN;H(x,t) = 0} is a union ofd; ...dy full-rank paths, say
X1(t),...,Xd,--dy (1), Starting at the solutions ¢f(x,1) = 0; and

2. the set of limits lim,oX;(t) that are finite include all the isolated solutions of
H(x,0) =0.

This theory justifies the use of the very simple start systefindd byg;(x) =

X —1,j=1...N.

6 Multihomogeneous homotopies

Constructing good homotopies with the number of paths rmtlttierent from the
number of isolated solutions dfwas an important research topic at the end of the
20th century. There is detailed discussion of this topicid, [Chap8]. For systems
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that are not too large, which includes many mechanism systemltihomogeneous
can be quite useful. Multihomogeneous homotopies weregdlicgiosed in [26] and
discussed in [40; 8.4].

For a hint of what difference the selection of homotopy cakenaonsider the
3-RPR forward kinematics problem &$ec:3RPR, which is to solve the 10 equa-
tions (26,28) for the 10 unknowr{$y, 6,65, @, p, 61, 62, 6>, @, p). Six of the equa-
tions are linear but the four unit-length equations are eegd, for a total degree
of 16. Yet, as a 2-homogeneous system, with variables divid® two groups
as(61,6,,6,,¢0,p),(01,65, 6., 0,p), the system has at mo@) = 6 isolated roots,
which is in fact the exact root count for general cases. IrBtbgini software pack-
age, the move from a total degree homotopy to a 2-homogermmis done by
simply using two separatear i abl e_gr oup statements to declare the variables.

A more impressive example is the nine-point path synthesislpm mentioned
in §3.5.3. In the Roth-Freudenstein formulation of (27), theltdegree of the sys-
tem is 2 = 5,764,801. An alternative in [48] uses a 2-homogeneous formulatio
of the problem that has a root count of just 286,720. A spématotopy that takes
advantage of a 2-way symmetry reduces the number of pathd3(8@0, which is
about one-fortieth (1/40) that of the total degree homat®pis formulation lead to
the first complete solution of this classical problem in kiradics.

6.1 Sparse homotopies

A polynomial of degreal in N variables can hav(aN,jd) different monomials but
problems arising in applications typically have many fewsn this. Multihom-
geneous homotopies take advantage of sparseness assdaifteited mixing of
products between variables within groups. This is a comneoniwence in kinemat-
ics, but it does not capture all the kinds of sparseness thgtarise. In particular,
in a multihomogeneous formulation, variable groupingg fiteed across the whole
system of polynomials.

Linear product homotopies capture sparseness at a finey;, soeluding, for ex-
ample, groupings of variables that change from one polyabtoithe next. The
main alternatives are laid out in [40, chap. 8], based onrthdeveloped in [45]
and generalized in [30]. Versions of this are available in.B®S PLP [52] and
POLSYSGLP [42].

Polyhedral homotopies take full advantage of any sparsetsite in a polyno-
mial system. While the multihomogeneous and linear protioototopies require
the user to identify good groupings of the variables—no ieffitmethod is known
for finding the best groupings—the polyhedral method cotepfeautomates the
creation of a homotopy with the minimal number of paths fosteyns with the
sparse structure of the target system. The leading appfoagwolyhedral homo-
topies is described in [21] and is implemented in HOM4PS2.[17

Unfortunately, the formation of a polyhedral homotopy dege on an intri-
cate combinatorial calculation, called the mixed volumbpae complexity grows
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rapidly with the number of variables and which is not easdyatlelizable. So while
itis an excellent approach for small to medium size problénb&comes untenable
for large ones.

6.2 Regeneration homotopy

For larger systems, the regeneration approach discusakss sip more readily than
the polyhedral approach [15, 14]. Moreover, it can take athge of structure in the
system beyond just sparsity. In particular, the coeffigehat appear in a polyno-
mial system may satisfy interrelationships that reducer¢io® count. In the kine-
matics context, this might arise as parameters that satisfyit circle condition or
that lie inSE(3). Regeneration does not build this structure into the hopotimm
the beginning, as is done in the sparse homotopies, butriiattiscovers structure
by treating the system equation-by-equation. Regeneratgthods are available in
the Bertini software package.

6.3 Adaptive multiprecision

Higher-precision arithmetic (i.e., greater than doubégsion) makes the basic pro-
cess of path tracking more bulletproof, while adaptive iptatcision, in which pre-
cision is adjusted up or down as needed, accomplishes thisngth greater effi-
ciency. Consider the nine-point path-synthesis problarfolar-bars just mentioned
above. Of the 143,360 paths in the homotopy used in [48], &ll4326 end on
various degenerate sets. The 4326 roots of interest appeathree-way symme-
try, as expected from the classical result known as Robegsates [11, 34]. The
original computations in 1992 on this problem were condiigtedouble precision
followed by a check for any points missing from the expectgdmsetry groups.
Reruns in extended precision cleaned up any paths havirgignable numerical
stability, filling in the missing points and thereby estabihg with high confidence
that the solution list was complete. More recent experisievith a path-tracker
having adaptive multiprecision found that in order to bekexd accurately, 83%
of the paths required precision higher than double pretisaamewhere in the mid-
dle of the paths before returning to double precision (se&98]). This approach
consistently finds the entire solution set without req@ramy reruns or other cor-
rective actions. Although in the early 1990s, this was amaexdinarily difficult
computation, we now use this problem as a moderately ditfieat system.
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6.4 Parallelism

One of the highly advantageous features of polynomial comtiion is that all the
paths of a homotopy can be tracked independently. For mgoayitims in the field,
this makes the bulk of the computation “embarrassinglylprarhe Bertini soft-
ware package offers a parallel version for the Linux opagasystem [5]. Unfortu-
nately, it is much harder to efficiently parallelize the stéipat set up a polyhedral
homotopy, so that, as of this writing, the leading polyhégackage, Hom4PS2
[17], is only available for single-processor systems.

6.5 Solutions at infinity

One difficulty in path tracking is paths that go to infinitytas> 0. Tracking such a
path may be computationally expensive as it is infinitelygl@md numerical con-
ditioning may be poor as the magnitudes of the solution éegmgrow. Morgan'’s
projective transformation trick [24] is to work on a randopocdinate patch in the
projective space containir@". This maneuver keeps the magnitude of the variables
and the path lengths finite. Itis common for polynomial conétion packages, such
as Bertini, to perform homogenization automatically.

6.6 Multiplicities and Deflation

It is widely appreciated that for a polynomial in one varghthe multiplicity of
a solution is governed by the number of derivatives thatsfatthere. In several
variables, multiplicity still makes sense, but directibderivatives and algebraic
relations between them come into play, so the situation iermomplicated.

For the moment, consider only isolated solutions of a patyiab system. (We
take up multiplicity as it applies to higher-dimensiondkse §7.3.) When the mul-
tiplicity p of solutionz® is greater than one; is said to be a singular solution.
Such solutions are difficult to work with numerically. A pramy problem is that the
vanishing derivatives ruin the convergence propertieseffdn’s method near the
singular point. For this reason, tracking pathgtdrom a good homotopy far* is
computationally expensive and often impossible in doubéeigion. To deal with
these points effectively, we use endgames (&) and adaptive precision (see
§6.3).

Deflation is another approach for dealing with singular po{32, 31, 18, 12,
19, 14]. Since singularities are caused by the vanishingo¥atives, deflation is a
process for re-establishing regularity by including edpres that are only satisfied
by solutions with derivatives that vanish to the correcteorat the singular point.
The main difficulty with this procedure lies in determinirgetrank of certain ma-
trices formed from derivatives of the equations. This le@ads vicious circle, since
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computing the singular solution accurately is the initiajextive, and one needs an
accurate value for the solution to determine the ranks. Tishat is that for iso-
lated solution points the cost of computing a deflation systéten dwarfs the cost
of computing the point accurately using the endgame methotle next subsec-
tion. Yet, deflation can be of great service when working wiiggher dimensional
solution sets of multiplicity greater than one. (S&e3.)

6.7 Endgames

LetH(x,t) = 0 be a homotopy, and left) with t € (0,t] be one of its solution paths.
Endgames refer to the process of computing= lim;_,oz(t). We may assume by
using Morgan’s projective transformation triglg.5, thatx* is finite, i.e.,x* € CN.
However, wherx* is singular, more than one path may be converging to the same
spot, and all those paths become more and more difficult ti tiat approaches
Zero.

There are several ways to circumvent this problem, but gledd on the fact
that instead of just tracking along the real line, we can consider what happens
ast moves into the complex plane near the origin. One of the nfésttere ways
of computingx® is to trackt in a small circle around the origin and to compute a
Cauchy integral [29], parallelized in [3].

6.8 Parameter homotopy

The schema for kinematics problems;B14 shows that they naturally arise as sys-
tems of parameterized polynomials. This fact can be useddoce the computa-
tional cost of solving more than one problem from the samampaterized family.
The power of this concept when applied to finding isolatedgaerives from the
fact that once one has solved a single general example frareangterized family,
one has a bound on the number of isolated roots of any othetberenfithe family.
Moreover, one can find all isolated roots of any subsequearheles in a parameter
homotopy that tracks solutions from the first example as Hrarpeters are moved
along a general, continuous, path in parameter spacenstattthe parameters of
the first example and ending at those of the new target system.

As a first example, consider the forward kinematics problengéneral Stewart-
Gough (6-SPS) platforms, given by (1,31). These are 7 emsin|e,g] € P/, all
quadratic. One can solve a general member of this familygustotal-degree homo-
topy having Z = 128 paths and find the problem has just 40 solutions. One da® so
any other example in the family with a coefficient-parambtanotopy that has just
40 paths. Moreover, there are several different subfasilfénterest wherein some
of the S joints coincide. One of these is the octahedral famiiere the base and
moving links are both triangles, with two legs terminatirigeach vertex. For this
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family, the problem has only 16 roots, appearing in a two-syaymetry. (Reflection
of the mechanism through the plane of the base does not ladtgretometry.) Since
a coefficient-parameter homotopy respects this symmetty,&ght paths need to
be tracked. As discussed in [49,7.7], after solving one general member of any
Stewart-Gough subfamily, the remaining ones can be solvgdam optimal num-
ber of paths by coefficient-parameter homotopy. Althougtséhproblems are all
simple enough that a elimination approach can be devised-thismhas been done
for most cases—each special case requires a new derivitioontrast, homotopy
methods cover all the cases seamlessly.

A more extreme illustration of the power of the coefficieargmeter homotopy
technique is provided by the nine-point path-synthesiblera for four-bars. As we
mentioned earlier, the best multihomogeneous formuldtamnd for the problem
has 143,360 paths of which only 4326 have finite endpointsaf®&os a one-time
execution of that homotopy for a general example, all subseexamples can be
solved with a coefficient-parameter homotopy having onlg6@iB8aths. But the story
gets even better, because the 4326 solutions appear ineavttagesymmetry called
Robert’'s cognates [34]. The coefficient-parameter hompoteppects this symme-
try, so only one path in each symmetry group needs to be tdacksulting in a
homotopy with only 1442 paths. This is nearly a 100-fold éase in the number of
paths compared to the original multihomogeneous homotehjch was already a
40-fold decrease from the total degree homotopy).

6.9 Randomization

Situations may arise where the number of equationis greater than the number
of variables,N. A case in point is the B inverse kinematics problem, which is
to (23) for (ci,s), i = 1,...,6 subject to the unit circle conditions? + & = 1,
i=1,...,6. Since the transform equation (23) is equivalent to 12 mpatyials (the
bottom row of the 4< 4 matrices is trivial), we have altogether 18 equations in
only 12 variables. Even so, we expect solutions, becaude teacsform lives on
SE(3), so the equations are compatible. We have seen that polghoamtinuation
is capable of finding all isolated solutions in the squareeqas= N), butn > N
requires extra measures.

Sometimes, one can pick out a subset of equations and befsyeting all iso-
lated roots, the remaining equations being redundant Histakes extra knowledge
about the structure of the system, because there existsysthere solving a subset
does not work. An example is the system

xy=0, X(x-y—-1)=0, y(x-y—-1)=0, (35)

which has 3 isolated roots, (0,0), (1,0), and (0,1), wheeaah subsystem formed
by any two of the three equations has only one isolated root.
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A method which does work in general is to taMerandom linear combinations
of the equations. With probability one, this preservessallated roots of the orig-
inal system, although it may introduce additional extrargemots. In the case of
(35), the randomized system has four isolated roots: thggnadi three and an ex-
traneous one that depends on the random coefficients cho$enriing the linear
combinations. We call this procesndomization

An important property of randomization is that it numerigadtabilizes solu-
tions. Numerical evaluation of a polynomial inevitablergduces small perturba-
tions: the evaluation is not exact. In a strict sense, thearigally evaluated system,
consisting ofn > N randomly perturbed equations, will have no solutions. But a
perturbed randomized system, being square, still has sgadtons, and these will
be close to the solutions to the original exact system.

A similar trick works for higher dimensional sets. The caé&solated solutions
forn> N is them = 0 special case of a solution set of dimensiowith m > N —n.
With probability one, a system &f — mrandom linear combinations of the original
nequations preserves all solution sets of dimensipout may introduce extraneous
sets at that dimension as well. This leads us into the neid:tppsitive-dimensional
solution sets.

7 Computing Positive-Dimensional Sets

We already mentioned i# that in numerical algebraic geometry, positive-dimenalo
sets (curves, surfaces, etc.) are represented by witnissg\sarreducible algebraic
setis an algebraic set that cannot be expressed as a unifinitd aumber of proper
algebraic subsets. One of the main goals in numerical adgebeometry is to com-
pute, for a given polynomial systef all the irreducible components ®f(F ). This
is called thenumerical irreducible decompositipand it consists of one witness set
for each irreducible component of (F). In kinematics, wherF(z,q) = 0 is the
polynomial system for a mechanism family, as in the scherasgated ir$3.4, then
for a particular mechanism, say € Q, the irreducible components ¢f(F (z,q*))
are theassembly modes the mechanism. Although it may seem nonintuitive, the
assembly modes might not all have the same dimension: the ss@ohanism can
sometimes have a different number of DOFs depending on whiotie it is as-
sembled in. It is even possible for such assembly modes td, Mmeaning that a
mechanism could change its number of DOFs at certain spaméigurations. Such
mechanisms have been called “kinematotropic” mechanisSiis [

A witness set,«7, for an m-dimensional irreducible algebraic s&tc CN is a
data structure having three members:

e apolynomial systenk such thatA is an irreducible component of (F),

¢ ageneric linear spatec CN of dimensiorN — m (equivalentlymrandom linear
equations), and

e the set of isolated poini&/ = LNA.
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Fig. 4 Griffis-Duffy platform
of Type I.

We usually write this as the triple/ = {F,L,W}, and by contextL may mean
either the set of linear equations or the linear space thégeldn the numerical
irreducible decomposition of (F), F itself plays the role of the first member, the
random linear equations are constructed by use of a randamengenerator, and
the witness point8V are found by polynomial continuation. Whem= N — n, the
system formed by appending linear equations to the original equations of~
produces a square system\Waan be found using a conventional homotopy. When
m > N — n, randomization is used, as described9, to produce a system of
only N — mequations so that once again we obtain a square system wdénear
equations are appended.

A complete description of the procedures for computing a enical irreducible
decomposition are beyond the scope of this chapter. In shroetproceeds by test-
ing every possible dimensian and factoring the witness points at each dimension
according to the irreducible components. In numerical wibri use of intersections
with a linear spaces to find higher dimensional sets was ficgigsed in[39], where
the termnumerical algebraic geometryas coined. See [40] for a full exposition or
[50] for a briefer summary of the various techniques used akercomputation of
the numerical irreducible decomposition practical. Theent preferred approach
for descending through the dimensions is the regeneraseacle [15], which is the
default method in the Bertini software package.

One interesting example of the application of the numeiicaflucible decom-
position is a special case of the Stewart-Gough platforiedahe Griffis-Duffy
Type | architecturally-singular platform. These have kasg&moving platforms that
are equilateral triangles, with legs connecting verticethe base to midpoints of
the moving platform and vice versa in a cyclic pattern [16, 8® matter what the
leg lengths are, a general case of this type of platform hastemmcurve in Study
coordinates of degree 28. This is illustrated in Figure 4emgtthe path of a small
sphere attached to the moving plate is shown. This path lgeeld0 inR3. For a
special case of this in which the two triangles are congraadtthe leg lengths are
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equal, this curve factors into five pieces: four sextics amelquartic. The numerical
irreducible decomposition is able to find all of these [38].

7.1 Membership Tests

If one has a witness se¥ = {F,L,W}, as above, fom-dimensional irreducible
componenA C ¥ (F) and a poinz € ¥ (F), it can sometimes be of interest to
know if Z* is in A. The main membership tests used in practice are varianteof t
monodromy membership test (see [40, Chap. 15.4] for dithilshort, we form a
linear systenl/(z) = B(z— z*) = 0 (soZz" is a solution) withB a random matrix in
C™N and set up a homotopy

H(zt) = {F(2),tL(2) + (1-t)L'(2)} =0 (36)

whereL is the system of linear equations from. Then,z* € A if and only if one
of the homotopy paths starting from the point&\hfor t = 1 lands org* ast — 0.
The Bertini package provides this test.

7.2 Component sampling

It can also be of interest to generate additional points oinraducible component,
that is, to sample the component. To do so randomly, one yn&rkdws the same
homotopy as in (36), except thiatis chosen completely at random. This function-
ality is also provided by Bertini.

7.3 Deflation Revisited

Just as isolated solution points may appear with multigligieater than one (dou-
ble points, triple points, etc.), positive-dimensionedducible solution components
also may appear with higher multiplicity. Such solution gmnents are said to be
nonreducedThe generic multiplicity of an irreducible component i€ thame as
the multiplicity of the witness point&/ considered as isolated solutions of the aug-
mented systeniF, L} = 0. The methods for deflating isolated solutions mentioned
in §6.6 can be applied to the augmented system at the witnests paird the con-
ditions placed on derivatives can be carried forwardl & deformed. Deflation is
necessary to efficiently carry out monodromy membershipargonent sampling
on a nonreduced irreducible component, as otherwise thetomy paths of (36)
would be singular at every step along
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7.4 Local Dimension

Given a solutiornx* of a polynomial systenf (x) = 0, it can be of interest to deter-
mine the local dimension at of the solution set’(f). This means the dimension
of the irreducible component of (f) that containx*, or if there is more than one
such component, the largest dimension among them. This beashaical use in
computing the numerical irreducible decomposition, whasats must be sorted
by dimension. The method in [4] handles this task.

The determination of local dimension also has direct applity to kinematics
in finding the local mobility of a mechanism in some given pase defined in
(6). The rank of the Jacobian matrix tells a kinematician many infinitesimal
DOFs exist, but does not indicate how many of these extendite finotion DOFs.
To settle the issue often requires the computation of higinéer derivatives. In
general, without computing an irreducible decompositanttie whole solution set,
one does not have enough information to limit the number af/déives that must
be checked, but pre-specifying the order of the derivatieeps computation finite
and yields the depth-bounded local dimension [46]. Fordamgough depth, this is
the correct local dimension, but even if one stops shortefhikeoretically sufficient
depth, one may obtain a practically sufficient result, asdifference between an
infinitesimal DOF associated to a very high multiplicity amdrue finite DOF can
become academic. A high multiplicity isolated root in thgidibody model may in
fact exhibit substantial motion when small elastic defdiores of the links, which
are always present in a physical device, enter the pictwe [86] for the method
and some kinematic examples.

7.5 Real Sets

Throughout this article we have dealt almost exclusivelthwiomplexsolutions,
even though isolated and positive dimensioeall solutions are the main interest
for most applications.

For isolated solutions, we may simply pick the isolated sedlitions out of the
isolated complex solutions. For positive dimensional,setsra work is required,
and the complexity of extracting a complete descriptionhefiteal set, every start
and stop and every self-crossing, can be high. One illustraif the difficulty is
that in singular situations, the real and complex dimerssgam differ. For example,
consider the equatioxf + y? = 0, which when considered in complex space defines
a pair of lines (namely = +iy), but which only has an isolated real solution at the
origin, where the lines cross in a singularity.

One-dimensional sets (curves) are relatively straightéod [22]. The key notion
is to consider a family of parallel hyperplanes sweepingss®RN. Each hyperplane
that kisses the curve in a tangency marks a turning pointerrélal curve, and in
between, the planes cut the curve transversely. Thus, ewrergf the real curve
is found by first solving for the tangency condition and thécirgg the curve in
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between the turning points. Isolated real points, if thegteare found as real tan-
gencies that have no incoming real arcs. Recently, an ghgotias been developed
along similar lines for solving the more difficult problemfoiding the real points
in a complex surface [10].

Fig. 5 Selected poses of
the foldable Stewart-Gough

platform. From [22] by per-
mission,©SIAM. On a quadric On the quartic

In § 7, we illustrated the Griffis-Duffy Type | platform robot, pecial case of
the Stewart-Gough (6-SPS) platform, and mentioned thanibtéon for the Griffis-
Duffy Type Il subcase factors into five pieces: four sextied ane quartic. In [22],
an even more special example of a Griffis-Duffy Type Il roltonsidered, one
whose leg lengths are all equal to the altitude of the basenamdng triangles
(which are congruent equilateral triangles). This robatrisisual in that it can fold
up into the plane with both triangles coinciding. Its motisra curve that factors
even more finely than general Type Il cases into three doulds,|three quadrics,
and four quartics. (The sum of the degree23 3-2+4-4 = 28 is the same as the
degree of the irreducible curve in the Type | case.) Numeniceducible decom-
position finds this factorization, and the technique skedchbove extracts the real
curves inside these complex factors. Poses on two of theBemuuirves are shown
in Figure 5.

7.6 Exceptional Sets

Many problems may be rephrased as a problem of finding thefgerameters
where some exceptional behavior occurs. An interesting itekinematics is find-
ing overconstrained mechanisms, i.e., mechanisms of a faweily that have more
degrees of freedom than most of the other mechanisms in hig/fa

A smattering of planar and spatial overconstrained meshasare known, in-
cluding, for example, the Bennett [9] spatial four-bar ahd Griffis-Duffy Type
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I and Il 6-SPS mechanisms mentioned above. However, to oetestigations of
overconstrained mechanisms have employed specializedargs for the specific
mechanism family under consideration. The fiber product@ggh to finding ex-
ceptional sets described in [41] has the potential to peaigeneral approach ap-
plicable to many mechanism families. Implementation of tg@proach in a form
that can handle mechanisms of an interesting level of cortplis still a research
topic.

8 Software

There are several software packages that compute isolatetioss of polyno-
mial systems, Bertini [5], HOM4PS-2.0 [17], Hompack90 [&Hd its extensions
[52, 42], and PHCpack [44]. Hompack90 has general parakeking facilities.
HOM4PS-2.0 has the best implementation of polyhedral nuthiout is not a par-
allel code. Only Bertini and PHCpack implement algorithrheumerical algebraic
geometry for positive-dimensional solution sets.

PHCpack and Bertini both allow the user to define their own bimpy and pre-
scribed start points, but HOM4PS-2.0 currently does not.

HOM4PS-2.0 uses only double precision arithmetic to penfaomputations.
To varying degrees, both PHCpack and Bertini have the chyatii using higher
precision arithmetic. PHCpack does not currently have dpmability of adapting
the precision based on the local conditioning of the hompp®th. This means that
more human interaction is needed to verify that the precis®et appropriately to
accurately and reliably perform the requested computation

The more advanced algorithms of numerical algebraic gegn(ieicluding the
powerful equation-by-equation methods for finding isalegelutions) place strong
requirements on the underlying numerical software [6].és@mple, without secure
path-tracking and adaptive precision, computing the nigakirreducible decom-
position for systems that involve more than a few varialdesot possible.

Only Bertini gives the numerical irreducible decomposittbrectly. Exceptional
features of Bertini include:

secure path-tracking;

adaptive multiprecision [7, 8J;

utilities for working with polynomial systems given as $gfat-line programs;
the numerical irreducible decomposition [37, 40];

equation-by-equation methods such as regeneration [14, 15

local dimension testing [4] (s€&.4); and

various endgames (s€6.7) including the Cauchy endgame [29], and a parallel
endgame based onit [3].
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9 Conclusions

This chapter shows how problems in kinematics can be foredias algebraic sys-
tems, thereby introducing the concept of a mechanism spatissassociated input
and output maps. This provides a framework for understayittia definitions of a
variety of kinematics problems, including analysis proie such as the forward
and inverse kinematics problems for robots, and synthasislgms that seek to
design mechanisms that produce a desired motion.

Since algebraic kinematics is a subset of algebraic gegnik& computational
tools for systems of polynomials can be applied. In paréicuiumerical algebraic
geometry, based on polynomial continuation, has matutediset of tools for find-
ing and manipulating solution sets of any dimension. Sihedstilk of computation
is spent tracking a large number of independent homotogyspéie methods nat-
urally scale to large parallel computing environments | \weited for the needs of
21st-century kinematicians.
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