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Abstract Many problems from kinematics are questions about mappingsbetween
algebraic spaces. This chapter presents a mathematical framework for such prob-
lems and discusses how numerical algebraic geometry, a computational approach
based mainly on polynomial continuation, can be applied to solving them. Publicly
available software for numerical algebraic geometry, suchas the Bertini package,
facilitates the solution of such problems, allowing kinematicians to solve with ease
problems that were previously considered extremely difficult or intractable.

1 Introduction

Advances in algorithms and computer speed have brought about a new paradigm
in kinematics. The proportion of effort a kinematician mustexert in heavy manipu-
lations of algebraic expressions is greatly diminished through the use of computer
algorithms, and instead the kinematician may concentrate on formulating the prob-
lem and interpreting the answer so as to analyze a geometrically constrained motion
or to design a device to produce desired motions. This way of working requires,
however, an understanding of what kind of results the computer algorithms are ca-
pable of providing and how to use them effectively. This article condenses material
from [50] providing the schema of amechanism spacethat encapsulates most of the
sorts of questions arising in kinematics and then summarizes how numerical alge-
braic geometry, a computational approach based on polynomial continuation, can be
applied to solving such problems. In addition to [50], the application of polynomial
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continuation to kinematics has been addressed specificallyin the tutorials [47, 38]
and in substantial portions of the monograph [40].

Some notable milestones in the application of polynomial continuation to kine-
matics include early demonstrations that the inverse kinematics problem of gen-
eral six-revolute serial-chain manipulators has 16 solutions [43], that the forward
kinematics problem of general Stewart-Gough platforms has40 solutions [33], and
that the nine-point path synthesis problem for four-bar linkages has 1442 triples of
Roberts-cognate solutions [48, 49]. Some indication of thedifficulty of these prob-
lems is that the one with the lowest root count, the “6R problem,” was once declared,
in the equivalent form of the 7R spatial loop, the “Mount Everest of kinematics”
[13]. While the nine-point path synthesis problem was not fully solved until nearly
70 years after its first statement in 1923 [1], the eventual cracking of the problem
was presaged by partial solutions generated in 1963, in the early days of applying
computers to kinematics, with a heuristic version of continuation [35]. With sub-
sequent improvements in the technique of continuation and increases in computer
speed, even the nine-point problem is now a routine calculation used as a test case
for software packages in numerical continuation. (At present, it is still beyond the
range of symbolic methods in computer algebra.)

These early successes all share the property that the questions to be answered
have a finite number of solutions. In other words, the solution sets to be computed
arezero-dimensional. But it is common in kinematics to explore problems having
higher-dimensional solution sets. Examples include the motion curve traced out by a
1-degree-of-freedom (1DOF) mechanism, the boundary of thereachable workspace
of a robot, or sets of design alternatives that satisfy an under-specified precision-
point mechanism synthesis problem. (An example of the latter case is the classical
center-point/circle-point Burmester curves for four given locations of a body in the
plane [11].) Algebraic curves, surfaces, and beyond are allof interest in the field.

An approach for consistent treatment of higher-dimensional cases was begun
in [39], where the term “numerical algebraic geometry” was coined. The essential
construct in the approach is awitness set, in which general linear equations are ap-
pended to slice out a finite number of representative points,calledwitness points,
on a higher-dimensional algebraic set. Many properties of the set can be gleaned
from its witness set, and the set can be explored by tracking the witness points as
the linear slicing space is moved continuously. The solution set of a system of poly-
nomial equations can be factored into its irreducible components, each represented
by a witness set, and given witness sets for two or more irreducible components,
algorithms exist for finding their intersection.

The main techniques of numerical algebraic geometry are freely available in the
software package Bertini [5, 6]. PHCpack [44] also implements some algorithms of
the field, while Hom4PS2 [17], POLSYSPLP [52], and POLSYSGLP [42] offer
only algorithms for computing isolated solutions.

This chapter first describes a way of viewing problems from kinematics in terms
of mappings between algebraic spaces. Mechanisms, including robots, that consist
of rigid links connected by the most common kinds of joints have kinematic rela-
tions that are naturally polynomial. After establishing this basic framework, atten-
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tion shifts to the algorithms of numerical algebraic geometry and how to use them.
Beginning with the following section, the remainder of thischapter is excerpted
from [50], with permission, edited for continuity.

2 Notation

This chapter uses the following notations.

• i =
√
−1, the imaginary unit.

• For polynomial systemF = { f1, . . . , fn}, F : CN → Cn, andy∈ Cn,

V (F) = V ( f1, . . . , fn) := {x∈ C
N | F(x) = 0}.

• “DOF” means “degree(s)-of-freedom.”
• Tk is thek-dimensional torus, the cross product ofk circles.
• C∗, pronounced “Cee-star,” isC\0, the complex plane omitting the origin.
• P

n is n-dimensional projective space, the set of lines through theorigin ofCn+1.
• Points inPn may be written as homogeneous coordinates[x0, . . . ,xn], not all zero.

The coordinates are interpreted as ratios, so[x0, . . . ,xn] = [λx0, . . . ,λxn] for any
λ ∈ C∗.

• A quaternionu is written in terms of the elements1, i, j ,k as

u= u01+u1i +u2j +u3k, u0,u1,u2,u3 ∈ C.

A quaternionu with u0 = 0 can be interpreted as an ordinary spatial vector. We
useu∗ v to denote the quaternion product andu′ to denote quaternion conjuga-
tion.

3 Algebraic Kinematics

Kinematicians are quite accustomed to writing problems as systems of polynomial
equations. For example, we often begin with a standard Denavit-Hartenberg formu-
lation in which for each rotational joint angleθi , the trigonometric functions sinθi

and cosθi appear. But by the simple maneuver of defining variables

ci = cosθi , si = sinθi ,

and appending the trigonometric identity

c2
i + s2

i = 1,

such expressions become polynomial. In this section, we step back a moment to see
why so many problems in kinematics are algebraic at their core.
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3.1 Rigid-Body Motion Spaces

Consider first that the six-dimensional set of rigid-body transformations in three-
space,SE(3). The defining properties ofSE(3) are that each transformation must:

• preserve distances between points (the body is rigid), and
• preserve handedness (the body does not transmute into its mirror image).

The notationSE(3) stands for ‘special Euclidean transforms on 3-space’.
At root, rigid-body transforms are algebraic because squared distances are alge-

braic. Translation by a vectorp ∈ R3 and orthogonal transformation by a matrix
C∈ O(3) = {C∈R3×3 | CTC= I} preserve distance, but to preserve handedness,C
must be restricted toSO(3) by requiring detC= 1.

The most useful representations ofSE(3) are as follows.

• (p,C) ∈R3×SO(3), whereSO(3) = {C∈R3×3 | CTC= I ,detC= 1}. This acts
on a vectorv ∈ R3 to transform it tou =Cv+p.

• The 4×4 homogeneous transform version of this, where(p,C) are placed in a
matrix so that the transform operation becomes

[
u
1

]

=

[
C p
0 1

][
v
1

]

.

• Study coordinates[e,g] ∈ S2
6 ⊂ P7, wheree= (e0,e1,e2,e3), g= (g0,g1,g2,g3)

andS2
6 is the six-dimensional hypersurface given by the equation

e0g0+e1g1+e2g2+e3g3 = 0, (1)

known as the Study quadric. Interpretinge andg as quaternions, the transform
operation is

u = (e∗ v ∗e′+g∗e′)/(e∗e′).

In all three cases, the representations live on an algebraicset. The transform op-
eration is also algebraic in the first two cases and equationsinvolving the Study
transform operation become algebraic after clearinge∗e′ from denominators.

There are several subgroups ofSE(3) that are of interest. Most prominent is
SE(2), the set of planar rigid-body transformations, with representations as follows.

• (p,C)∈R2×SO(2), whereSO(2)= {C∈R2×2 | CTC= I ,detC= 1}. The trans-
form rule looks identical to the spatial case:u =Cv+p.

• The unit-circle form{(x,y,s,c)∈R4 | c2+s2 = 1}. This is the same as the former
with p = xi + yj and

C=

[
c −s
s c

]

.

• The tangent half-angle form(x,y, t) ∈R3, in which rotations become

C=
1

1+ t2

[
1− t2 −2t

2t 1− t2

]

.
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• Isotropic coordinates{(p, p̄,θ , θ̄ ) ∈ C4 | θ θ̄ = 1}. Real transforms must satisfy
p∗ = p̄ andθ ∗ = θ̄ . The action of transform(p, p̄,θ , θ̄ ) on a vector given by
isotropic coordinates(v, v̄) is the vector(u, ū) given by

(u, ū) = (p+θv, p̄+ θ̄ v̄).

Again, each of these representations lives on an algebraic set and has an algebraic
transform operation (after clearing denominators in the tangent half-angle form).
Clearly,SE(2) is a three-dimensional space.

Another subspace of interest is the set ofspherical transforms, that is, justSO(3),
another three-dimensional space. This isSE(3) with the translational portion set
identically to zero. The terminology “spherical” derives from the fact that this is
the set of motions allowed by a spherical ball set in a spherical socket of the same
diameter.

It is useful to note that since points transform algebraically, so do lines and
planes, as these may be formed as linear combinations of two or three points, respec-
tively. Labeling the points that define them, the order of thepoints defines an orien-
tation for the lines and planes. Unbound unit vectors also transform algebraically,
that is, by ignoring translation and applying only rotation.

3.2 Algebraic Joints

A mechanism is a collection of rigid bodies connected by joints. Without the joints,
each body could move with six degrees of freedom anywhere inSE(3). Typically,
we declare one body to be “ground” and measure the locations of all the other bod-
ies relative to it, so a collection ofn bodies lives inSE(3)n−1. Joints are surfaces
of contact between bodies that constrain the motion of the mechanism to a subset
of SE(3)n−1. Algebraic jointsare those which constrain a mechanism toalgebraic
subsetsof SE(3)n−1.

The most important joints for building mechanisms are thelower-order pairs.
These are pairs of identical surfaces that can stay in full contact while still allowing
relative motion. In other words, they are formed by a surfacethat is invariant under
certain continuous sets of displacements. The lower-orderpairs form six possible
joint types, having the following standard symbols: R, revolute; P, prismatic; H,
helical (screw); C, cylindrical; E, plane; and S, Spherical. The importance of the
lower-order pairs derives from the fact that surface-to-surface contact spreads forces
of contact over a larger area, reducing stresses that might wear out the machinery.

Fortunately – from the viewpoint of an algebraic geometer – five of these six
joint types are algebraic. The exception is the H joint, which produces a translation
proportional to rotation angleθ along with a rotation that depends on cosθ and
sinθ . The mixture ofθ with cosθ and sinθ makes the motion non-algebraic. An
alternative line of reasoning is to observe that a helix and aplane containing its sym-
metry axis intersect in an infinite number of isolated points. Any algebraic curve in
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R3 intersects a plane in at most a finite number of isolated points. However, helical
joints are rarely used as a direct motion constraint in a manner that impacts kine-
matic analysis. Instead, screws are usually used to transmit power along a prismatic
joint. Consequently, the geometric motion of a great many mechanisms is governed
by algebraic joints.

To demonstrate that a joint type is algebraic, one may write down the constraint
conditions it imposes between the transforms for the two bodies in contact, sayA
andB. The algebraic lower-order pairs can be reduced to equatingsome combination
of points, lines, or planes. As these are all transformed algebraically, equating them
gives an algebraic constraint. In brief, one may confirm algebraicity for each joint
by noting the following equivalences:

R: equate a point and an oriented line through it inA to similar inB,
P: equate a line and an oriented plane containing it inA to similar inB,
C: equate a line ofA to one ofB,
E: equate a plane ofA to one ofB, and
S: equate a point ofA to one ofB.

This suffices to show that the lower-order pairs R, P, C, E, andS are all algebraic.
Each joint can be described eitherextrinsically in terms of the constraint it im-

poses, as above, orintrinsically in terms of the freedom it allows between the trans-
form for, say, bodyB relative to bodyA. Using 4×4 transform notation, and letting
Ti j be the transform for framej relative to framei, one has

T0 B = T0 A TA B (2)

Suppose that the joint betweenA andB is thekth joint of a mechanism, an algebraic
lower-order pair. Then, the relative transformTA B can be written as

TA B = AkXBk, (3)

whereAk andBk are constant transforms describing the location of the joint in bodies
A andB, resp., andX is variable of the form

X =







cosθ −sinθ 0 a
sinθ cosθ 0 b

0 0 1 c
0 0 0 1






. (4)

For each joint type, the contents ofX vary as follows.

R: Use (4) witha= b= c= 0, leavingθ as the joint variable.
P: Use (4) withθ = a= b= 0, leavingc as the joint variable.
C: Use (4) witha= b= 0, leavingθ andc both as joint variables.
E: Use (4) withc= 0, leavingθ , a, andb all as joint variables.
S: Use

X =

[
C 0
0 1

]
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with C∈ SO(3) as the joint freedom.

The foregoing descriptions are meant mainly to show that thekinematic relations
of rigid-body mechanisms involving only algebraic joints are all algebraic. Other
formulations can sometimes be more succinct or convenient.When modeling the
joints with a low number of freedoms (R, P, C) it is usually more convenient to use
an intrinsic formulation, while S joints are usually best modeled extrinsically. In
some cases, one may avoid introducing transforms for some ofthe links altogether.
For example, see§3.5.5 for a formulation of the kinematics of the Stewart-Gough
platform that avoids introducing any transforms for the links that compose the legs.

3.3 Mechanism Types, Families, and Spaces

Having shown that mechanisms built with rigid links and algebraic joints have kine-
matic relations that are polynomial, we move on to show that awide variety of
kinematics problems can be placed into a common format involving mappings be-
tween algebraic sets. To do so, we need the definitions of a mechanism type and a
mechanism family.

Definition 1. A mechanism typeis defined by the number of links,nL, and a sym-
metricnL ×nL adjacency matrixT whose(i, j)th element denotes the type of joint
between linksi and j, one of R, P, H, C, E, S, or /0, where /0 indicates no connection.
By convention, all diagonal elements are /0.

(Each joint appears twice in the matrix:Ti, j = Tj ,i are the same joint.) We assume
here that the joints are limited to the lower-order pairs, but the list of possibilities
could be extended. The enumeration of all possible mechanism types for each value
of nL without double-counting mechanisms that are isomorphic under renumbering
of the links is a problem in discrete mathematics. Choosing aprospective mecha-
nism type is the first step in a mechanism design effort, and methods for guiding
the enumeration of promising alternatives fall into the category oftype synthesis. In
this paper, we assume that this crucial step is already done so that we begin with a
mechanism type.

Each mechanism type has an associated parameter space. We have seen in§ 3.2
one way to model each of the algebraic lower-order pairs, R, P, C, E, and S, extrin-
sically in terms of feature points, oriented lines, and oriented planes. Alternatively,
in the intrinsic formulation of (3), the transformsAk andBk parameterize the joints.
The cross-product space of all these geometric features forms a universal parameter
space for the mechanism type. One may choose to model the joints in a more parsi-
monious way, but we assume that in the alternative model there still exists a param-
eterization for each joint and an associated parameter space for all the joints taken
together. For example, for a succession of R and P joints, theDenavit-Hartenberg
(D-H) formalism gives a minimal parameterization. (See [23] or any modern kine-
matics textbook for a definition.) The D-H parameters are link lengths, link offsets,
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and link twist angles. Treating the twists as unit circles, the parameter space be-
comes algebraic.

Definition 2. A universal mechanism family(T,Q) is a mechanism typeT with an
associated parameter spaceQ describing the geometry of the joints. We assume that
Q is irreducible.

If one has a parameter spaceQ that is not irreducible, each irreducible component
should be considered to define a separate universal mechanism family.

Definition 3. A mechanism family(T,Q′) is a subset of a universal mechanism fam-
ily (T,Q) restricted to an irreducible algebraic subsetQ′ ⊂ Q.

Examples of the common sorts of algebraic restrictions thatdefine a mechanism
family include the condition that the axes of two R joints in acertain link must be
parallel, perpendicular, or intersecting, etc. As a particular example, consider that
the universal family of spatial 3R serial-link chains includes the family of 3R planar
robots, wherein the R joints are all parallel. One should appreciate that there can be
subfamilies within families, and so on.

For certain mechanisms, all points of the links move in parallel planes, hence
the links move inSE(2) and the mechanism is said to beplanar. In particular, a
mechanism family wherein all joints are either rotationalR with axis parallel to the
world z-direction or prismaticP with axis perpendicular to the worldz-direction is
planar.

Definition 4. The link space Zfor ann link mechanism isSE(3)n−1, where one of
the links is designated as ground(p,C) = (0, I). Any of the isomorphic representa-
tions ofSE(3) from § 3.1 can be used as models ofSE(3). If the mechanism family
is planar, thenZ = SE(2)n−1 in any of its isomorphic representations from§ 3.1.

Definition 5. Themechanism space Mof a mechanism family(T,Q) is the subset
of Z×Q that satisfies the joint constraints.

Proposition 1. If a mechanism family is built with only the algebraic jointsR, P, C,
E, and S, then its mechanism space is algebraic.

Proof. Section 3.1 shows thatZ is algebraic andQ is algebraic by assumption. That
is, Z andQ are sets defined by algebraic equations. Section 3.2 shows that the alge-
braic joints impose algebraic constraints on the coordinates ofZ andQ, and hence
all the defining equations forM are algebraic. ⊓⊔
Definition 6. A mechanismis a member of a mechanism family(T,Q) given by a
set of parametersq∈ Q.

3.4 Kinematic Problems in a Nutshell

In this section, we present an abstract formulation that summarizes all the main
types of geometric problems that arise in kinematics. In thenext section, we will
discuss more concretely how to map a mechanism into this formulation.
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The key to our formulation is the following diagram:

X� J M -K Y

Q
?

πM

������
X×Q

Ĵ HHHHHj
Y×Q

K̂6π1

π2

6π4

π3

- �
(5)

The main elements of the diagram are four setsX,M,Y,Q and three mapsJ,K,πM.
The four sets are as follows.

• X is theinput spaceof the mechanism. In robotics, it is usually called the “joint
space.” Its coordinates are typically quantities that we command by controlling
motors or other actuators.

• Y is theoutput space, often called the “operational space” in robotics. Its coordi-
nates are the final output(s) we wish to obtain from the mechanism, such as the
location of a robot’s hand.

• Q is theparameter spaceof a family of mechanisms. It is the set of parameters
necessary to describe the geometry of the joints in each link. Each point inQ
is therefore a specific mechanism with designated link lengths, etc. The whole
setQ constitutes a family of mechanisms, such as the set of all 6R robot arms,
with the coordinates ofQ representing all possible link lengths, etc. We assume
thatQ is an irreducible algebraic subset of someCm, that is, it is an irreducible
component ofV (G) for some system of algebraic functionsG : Cm → Cm′

. If
V (G) has more than one irreducible component, then each such component is
considered a different family of mechanisms.

• M is the mechanism space, which describes all possible configurations of the
mechanism for all possible parameters. LetZ be the space of all possible lo-
cations of the links when they are disconnected. That is, foran N-link spatial
mechanism with one link designated as ground,Z = SE(3)N−1. Then,M is the
subset ofZ×Q where the link locations satisfy the constraints imposed bythe
joints between them. LetF : Z×Q → Cc be a set of polynomials defining the
joint constraints. Then,M = V (F)∩V (G) is an extrinsic representation ofM.
Each point(z,q) ∈ M is a specific mechanismq∈ Q in one of its assembly con-
figurationsz∈ Z. In some cases, it is more natural to describeM intrinsically
via an irreducible set, sayΘ , that parameterizes the freedoms of the joints of
the mechanism, so thatZ becomesΘ ×SE(3)N−1. We will use this, for exam-
ple, to describeM for 6R serial-link robots. In such a representation,F includes
the equations that defineΘ along with the equations relating link poses to joint
freedoms and equations for the constraints imposed by closing kinematic loops.
Formulating such equations is part of the art of kinematics,and we will not delve
into it in this paper beyond what is necessary to present specific examples.

After choosing a representation forSE(3), and if present, for the joint freedom space
Θ , the spaceZ is a subspace of some Euclidean space,Z ⊂ Cν , and z∈ Z has
coordinatesz= (z1, . . . ,zν ).

Three maps are defined onM, as follows.
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• J : M → X is theinput map, which extracts fromM the input values. The symbol
J acknowledges that the inputs are usually a set of joint displacements.

• K : M →Y is theoutput map, which extracts fromM the output values.
• πM : M → Q is a projection that extracts the parameters fromM. It is the natural

projection operator onZ×Q restricted toM given byπM : (z,q) 7→ q.

If the mapsF,G,J,K are merely analytic (instead of algebraic) and the spaces
X,M,Y,Q are analytic, the above framework still applies, and we may pose ques-
tions in the analytic setting. In particular, H joints are analytic but not algebraic.
The advantage of restricting to the algebraic setting is theexistence of a much more
powerful algebraic theory that enables the use of algebraictechniques, including
numerical algebraic geometry, to be employed in answering the questions.

The commutative diagram is completed by definingĴ := (J,πM) and K̂ :=
(K,πM) and the associated natural projectionsπ1,π2,π3,π4.

It should be understood thatM characterizes a family of mechanisms, such as
the family of spatial 6R serial-link robots, the family of planar four-bar linkages, or
the family of Stewart-Gough platforms. MapsJ andK are tailored to an application
of the mechanism. For a four-bar function generator,J gives the input angle and
K gives the output angle, while for a four-bar path generator,K gives instead the
position of the coupler point.

Using the diagram of (5) succinctly summarizes the algebraic setting of almost
all kinematic problems. The problems can be broadly classified into three types of
problems:

• Analysis (mobility analysis, forward and inverse kinematics, workspace analy-
sis),

• Synthesis (precision point problems), and
• Exceptional mechanisms.

We describe each of these in more detail next.

3.4.1 Analysis

In analysis problems, one has a specific mechanism, sayq∗ ∈ Q, and one wishes to
analyze some aspect of its motion.

Definition 7. Themotion of a mechanismgiven by parametersq∗ ∈ Q in a family
with mechanism spaceM is π−1

M (q∗) = M ∩V (q− q∗) ⊂ Z×Q. This can also be
called themotion fiber over q∗.

In the following, it is also convenient to define the inversesof J andK:

J−1(x) = {(z,q) ∈ M | J(z,q) = x}, K−1(y) = {(z,q) ∈ M | K(z,q) = y}.

These are defined forx∈ X andy∈Y, respectively. In the setJ−1(x) for a particular
x ∈ X, q is not fixed, so this inverse applies across a whole mechanismfamily.
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When we wish to address just one particular mechanism,q∗, we want to consider
the inverse ofĴ instead:

Ĵ−1(x,q∗) = {(z,q) ∈ M | Ĵ(z,q) = (x,q∗)}.

Similarly, we have:

K̂−1(y,q∗) = {(z,q) ∈ M | K̂(z,q) = (y,q∗)}.

The basic problems in analysis are as follows.

• Motion decompositionof amechanismbreaksπ−1
M (q∗) into its irreducible com-

ponents, often called assembly modes by kinematicians. (See§ 7 for a description
of irreducible components.) The numerical irreducible decomposition ofπ−1

M (q∗)
finds the dimension and degree of each assembly mode and provides a set of wit-
ness points on each.

• Motion decompositionof amechanism familybreaksM into its irreducible com-
ponents. IfA⊂ M is one of these components, thenπM(A)⊂ Q is the subfamily
of mechanisms that can be assembled in that mode, dimπM(A) is the dimension
of the subfamily, and dimA−dimπM(A) is the mobility of that mode.

• Mobility analysis seeks to find the degrees of freedom (DOFs) of the mecha-
nism, that is, mobility is dimπ−1

M (q∗). As the dimension of an algebraic set is
always taken to be the largest dimension of any of its components, this definition
of mobility picks out the assembly mode (or modes) having thelargest number
of DOFs. There are simple formulas, known as the Gruebler-Kutzbach formulas,
that correctly estimate the mobility for a wide range of mechanisms, and even
more mechanisms submit to refined analysis based on displacement group the-
ory, but there exist so-called “paradoxical” mechanisms that have higher mobility
than these methods predict. To handle all cases, one needs toanalyze the equa-
tions definingM in more detail taking into account thatq∗ may be on a subset of
Q having exceptional mobility.

• Local mobility analysis finds the mobility of a mechanism in a given assembly
configuration. That is, given(z∗,q∗) ∈ Z×Q, one wishes to find

Local mobility := dim(z∗,q∗) π−1
M (q∗). (6)

A mechanism can have more than one assembly mode, corresponding to the ir-
reducible components ofπ−1

M (q∗). The local mobility is the dimension of the
assembly mode that contains the given configuration,z∗, or if there is more than
one such mode, the largest dimension among these.

• Forward kinematics seeks to find the output that corresponds to a given input
x∗ for a mechanismq∗. That is, forx∗ ∈ X andq∗ ∈ Q, one wishes to find

FK(x∗,q∗) := K(Ĵ−1(x∗,q∗)). (7)

Example: given the joint angles of a particular 6R serial-link robot, find its hand
pose.
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• Inverse kinematics is similar to forward kinematics but goes from output to
input. Fory∗ ∈Y andq∗ ∈ Q find

IK(y∗,q∗) := J(K̂−1(y∗,q∗)). (8)

Example: given the hand pose of a particular 6R serial-link robot, find all sets of
joint angles that reach that pose.

• Singularity analysis finds configurations where the maps lose rank. If we have
found a motion decomposition of the mechanism, then for eachassembly mode
A⊂ π−1

M (q∗) there is an associated input spaceJ(A) and an output spaceK(A).
The input and output maps have Jacobian matrices∂J/∂z and∂K/∂z. Assume
for the moment thatA is a reduced algebraic set. (For example,V (x− y) is a re-
duced line in the(x,y)-plane, while the double lineV ((x−y)2) is non-reduced.)
For generic points(z,q∗) ∈ A, the Jacobian matrices have a constant rank, say
rank[∂J/∂z(z,q∗)] = rJ and rank[∂K/∂z(z,q∗)] = rK . Then, there may be input
and output singularities, as follows.

Input Singularities: {(z,q∗)∈A | rank∂J
∂z(z,q

∗)< rJ}. In the common case that
∂J/∂z is square and generically full rank, these are the special configurations
where, to first order, the mechanism can move without any change in its input.

Output Singularities: {(z,q∗) ∈ A | rank∂K
∂z (z,q

∗) < rK}. In the common case
that∂K/∂z is square and generically full rank, these are the special configu-
rations where, to first order, the mechanism can move withoutany change in
its output.

If A is a non-reduced assembly mode, one might wish to consider the input and
output singularities of the reduction ofA, which can be analyzed via a deflation
of A. (See§ 7.3.

• Workspace analysisseeks to find all possible outputs of a robot or mechanism.
Ignoring limits on the inputs, this is just the setK(π−1

M (q∗)). The main concern
in practice is the set of outputs for real assembly configurations, so lettingAR

denote the real points in an assembly modeA, the corresponding workspace is
K(AR). Output singularities and joint limits induce boundaries in the workspace.
Example 1: for a 6R serial-link robot, find all possible posesthat the hand can
reach.
Example 2: for a given four-bar linkage with output defined asthe position of its
coupler point, find the coupler curve.
Example 3: for a 6-SPS (Stewart-Gough) platform robot with limits on the leg
lengths, find all possible poses of the moving platform.

The motion of a mechanism over the complexes contains its real motion, but the
extraction of the real motion from the complex one can be difficult, all the more so
as the dimensionality of the motion grows. See§ 7.5 for a discussion.

The problems presented above mainly concern the geometry ofa mechanism’s
motion, where principally angles, positions, and poses enter the picture. As indi-
cated by the questions of singularity analysis, one may alsobe concerned with dif-
ferential relations between these, so that joint rates, linear velocity, and angular ve-
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locity may become objects of study. Since these are all related to the mechanism
spaceM through its derivatives, these too fit into the algebraic setting, as do static
forces and torques, through the principles of virtual work.

3.4.2 Synthesis

While analysis determines how a mechanism moves, synthesisfinds mechanisms
that move in a specified way. Synthesis problems begin with a set of desired out-
puts or a set of input/output pairs and seek to find the mechanisms that will pro-
duce these. Synthesis tends to be harder than analysis because one must consider
the ability of the mechanism to reach each desired state. In essence, we must
consider multiple copies ofM simultaneously. The relevant construction in alge-
braic geometry is called thefiber product. Instead of studyingM, one works with
M×Q M = V (F(z1;q),F(z2;q)), which comprises two copies of the motion for the
same mechanism. Clearly, the fiber product operation can be extended to triple fiber
products and higher. Forming thek-fold fiber product

Mk
Q := M×Q · · ·×Q M

︸ ︷︷ ︸

k times

,

if πM,k is the projection fromMk
Q that picks out its parameters,q, thenπ−1

M,k(q
∗) for

q∗ ∈ Q gives backk copies of the motion fiber overq∗. We may also define a map
Kk acting onMk

Q to producek outputs and a mapJKk acting onMk
Q to producek

input/output pairs.
With these maps, we may define several kinds of synthesis problems. The follow-

ing problems are known asprecision pointproblems, since there is a set of specified
points which the mechanism must interpolate exactly.

• Output synthesisseeks mechanisms that can reach a set of specified outputs.
For (y1, . . . ,yk) ∈Yk, we wish to find the set

{q∈ Q | Kk(π−1
M,k(q)) = (y1, . . . ,yk)}.

Kinematicians distinguish between different types of output synthesis.

Path synthesis finds mechanisms where the path of a point of the mechanism
interpolates a set of given points. In this case,K is defined onM such that
Y ⊂ C

3.
Body guidance In this case, the output is the pose of one body of the mecha-

nism, that is,Y ⊂ SE(3). The purpose of the mechanism is to guide that body
through a set of specified poses.

• Input/output synthesisseeks mechanisms that produce a coordinated input/output
relationship specified by a set of input/output pairs. For((x1,y1), . . . ,(xk,yk)) ∈
(X×Y)k, we wish to find the set
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{q∈ Q | JKk(π−1
M,k(q)) = ((x1,y1), . . . ,(xk,yk))}.

A common case is a 1DOF mechanism, such as a four-bar, with theinput being
the angle of one link with respect to ground. Then, withK defined as in a path
synthesis problem, the input/output problem becomespath synthesis with timing.
Similarly, one can havebody guidance with timing. (The nomenclature derives
from an assumption that the input moves at a constant rate.) If the input and
output are both angles of the mechanism, then input/output synthesis becomes
function generation, as the precision points approximate some desired functional
relationship between input and output.

What makes these problems difficult is that the whole system of equations defining
M is repeatedk times, increasing the total degree of the system exponentially in k.

For any precision point problem, there is a maximum number ofprecision points
that can be specified. Roughly speaking, this is the total number of independent
parameters in the mechanism family under consideration divided by the number
of constraints placed on the parameters by each precision point. If more than the
maximum number of precision points is specified, then there will in general be no
mechanism that interpolates them exactly. One may then reformulate the problem by
defining an error metric and seek mechanisms whose motion best fits the specified
approximation points. This is analogous to finding a best-fitline that approximates
three or more points.

We should note that all these synthesis problems have been formulated only at
the geometric level. It is also possible to specify motions at the level of velocity or
acceleration or to mix specifications at several levels. Fora 1DOF motion, differen-
tial relations can be approximated by limits as precision points approach each other.
For this reason, classical synthesis theory sometimes distinguishes betweenfinitely-
separated precision pointsand infinitesimally-separated precision points. We will
not discuss synthesis problems involving differential relations further here.

3.4.3 Exceptional Mechanisms

While M describes the motion of an entire family of mechanisms,π−1
M (q∗) is the

motion of a particular mechanism in the family. For any generic q ∈ Q, attributes
such as the mobility of the mechanism or the local mobilitiesof its assembly modes
all stay constant. However, there may be algebraic subsets of Q where mobilities
increase. These exceptional mechanisms are often called “overconstrained mecha-
nisms,” as a slight perturbation of the parameters off of theexceptional set into a
generic position suddenly brings in extra constraints thatreduce mobility. One may
define subsets ofM where the local mobility is constant, that is,

D
∗
k = {(z,q) ∈ M | dim(z,q) π−1

M (q) = k}. (9)

The closures of these,Dk =D∗
k , are algebraic sets. WhenD j ⊂Dk, j > k, we say that

D j is an exceptional set of mechanisms, a family of overconstrained mechanisms.
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The discovery of exceptional mechanisms is perhaps the mostdifficult kind of
kinematics problem. One may think of these as a kind of synthesis problem where
the only thing that is specified about the motion is its mobility. As in the precision-
point synthesis problems, it turns out that fiber products play a central role. We leave
further discussion of this to§ 7.6.

3.5 Fitting into the Nutshell

Sections 3.1 and 3.2 show that any mechanism composed ofn rigid links connected
by any combination of R, P, C, E, or S joints leads to a set of constraint equations
that is algebraic in the link locations(p j ,Cj ) ∈ SE(3), j = 1, . . . ,n and is also al-
gebraic in the parameters defining the joints. In§ 3.3,3.4, we put forward a schema
that formulates a wide variety of kinematics problems in terms of spacesX,M,Y,Q
and mapsJ,K,π between them. In this section, we will detail how some example
mechanism types fit into this schema.

3.5.1 Planar 3R Robots

Consider first the universal family of 3R planar serial-linkrobots. These havenL = 4
links, one of which is ground. The adjacency matrix has R in each element of the
super- and sub-diagonals and /0 everywhere else. Since the mechanism is planar, the
link space isZ = SE(2)3. Using the reference frames as indicated in Figure 3.5.1,
we have coordinates forZ as

z1 = (Px,Py,x1,y1), z2 = (Qx,Qy,x2,y2), z3 = (Rx,Ry,x3,y3), (10)

where(Px,Py) are the coordinates of pointP, etc., andx j = cosφ j , y j = sinφ j , j =
1,2,3. Here,φ1,φ2,φ3 are the absolute rotation angles of the links. Accordingly,the
algebraic equations defining the link spaceZ are

x2
j + y2

j −1= 0, j = 1,2,3. (11)

The parameters of the mechanism are just the link lengths(a,b,c), so the parameter
spaceQ isC3. In the plane, the constraint imposed on two links by a rotational joint
is the coincidence of the point of connection. PointO = (0,0) in the ground must
coincide with point(−a,0) in the reference frame of link 1:

(0,0) = (Px−ax1,Py−ay1). (12)

Similarly, the other two joints impose the constraints

(Px,Py) = (Qx−bx2,Qy−by2) and(Qx,Qy) = (Rx− cx3,Ry− cy3) (13)
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Accordingly, Eqs. 11–13 define the mechanism spaceM.

Fig. 1 Planar 3R robot with
reference frames.
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To complete the picture, we need the mapsπM,J,K. The projectionπM : M → Q
simply picks out the parameters:

π : (z1,z2,z3,a,b,c) 7→ (a,b,c). (14)

Assuming the input spaceX = T3 is the relative rotation angles(θ1,θ2,θ3) repre-
sented by cosine/sine pairs, the difference formulas for cosine and sine give

J : (z1,z2,z3,a,b,c) 7→ ((x1,y1),(x2x1+y2y1,y2x1−x2y1),(x3x2+y3y2,y3x2−x3y2)).
(15)

Finally, assuming the output spaceY = SE(2) is the location of reference frame 3,
the output map is

K : (z1,z2,z3,a,b,c) 7→ (z3). (16)

If instead the robot is applied to just positioning pointR in the plane, we haveY=C2

with the output map
K′ : (z1,z2,z3,a,b,c) 7→ (Rx,Ry). (17)

With these definitions, the problems of forward kinematics,inverse kinematics,
reachable workspace, and exceptional sets all fit neatly into the nutshell schema.

3.5.2 Spatial 6R robots

The case of spatial 6R robots is quite similar to the 3R planarcase, but we shall
choose to handle the joint constraints by introducing variables implicitly modeling
the freedom of the joints rather than explicitly writing constraint equations. A 6R
serial-link chain hasnL = 7 links, one of which is ground. The adjacency matrix
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has entries of R on the super- and sub-diagonals and /0 elsewhere. Let the link space
be Z = T6 ×SE(3)6, with unit circle representations of the joint angles and 4×
4 homogeneous transforms for the link locations, so thatZ is represented asz=
{(c j ,sj , T0 j), j = 1, . . . ,6} with

c2
j + s2

j −1= 0, j = 1, . . . ,6. (18)

The first factor ofZ is precisely the joint spaceX = T6 and the output is the lo-
cation of the “hand,” the last frame in the chain,T0 6. The link parameters are
4×4 transformsA j ∈SE(3), j = 0,1, . . . ,6. One can use general transforms, but the
Denavit-Hartenberg formalism shows that by choosing reference directions aligned
with joint axes and their common normals, it suffices to parameterize theA j as

A j =







1 0 0 a j

0 α j −β j −β jd j

0 β j α j α jd j

0 0 0 1






, j = 0, . . . ,6. (19)

In this expression,(α j ,β j) are a cosine/sine pair for the twist of linkj, a j is the
length of the link (along itsx-direction), andd j is the link offset distance (along its
z-direction). To keepA j in SE(3), these must satisfy

α2
j +β 2

j −1= 0, j = 0, . . . ,6. (20)

With this parameterization, the parameter space isQ = T7×C14 with coordinates
q= {(α j ,β j ,a j ,d j), j = 0, . . . ,7}. Joint rotationsRz(c j ,sj) of the form

Rz(c,s) =







c −s 0 0
s c 0 0
0 0 1 0
0 0 0 1






. (21)

alternate with relative link displacementsA j to give the transforms of the link loca-
tions as

T0 1 = A0Rz(c1,s1)A1, T0 j = T0 j−1R(c j ,sj)A j , j = 2, . . . ,6. (22)

Combining these gives

T0 6 = K6R(z,q) := A0

6

∏
j=1

Rz(c j ,sj)A j (23)

Equations 18–21 define the mechanism spaceM in terms of coordinates(z,q). The
associated maps fromM to Q, X = T6, andY = SE(3) are
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πM : (z,q) 7→ q, J : (z,q) 7→ ((c j ,sj), j = 1, . . . ,6), K = K6R : (z,q) 7→ T0 6.
(24)

3.5.3 Four-Bar Linkages

The four-bar has four links with four R joints. If we call the ground link 0, the two
links connected to ground as links 1 and 2, and the coupler as link 3, then the adja-
cency matrix has entriesT1,3 = T2,3 = T0,1 = T0,2 = R. Using isotropic coordinates
(see§3.1), let(φ , φ̄ ) represent the orientation of the coupler link and let(θ1, θ̄1) and
(θ2, θ̄2) be the rotations of links 1 and 2, and let(p, p̄) be the coupler point position.
[Recall that in isotropic coordinates, we represent a vector, saya = α i + β j , by a
complex numbera= α +β i and its conjugate ¯a= α −β i.] Hence, the link spaceZ
is given by coordinatesz= (p, p̄,φ , φ̄ ,θ1, θ̄1,θ2, θ̄2) subject to the unit length con-
ditions of

φφ̄ = θ1θ̄1 = θ2, θ̄2 = 1 (25)

Referring to Figure 2, a four-bar can be parameterized byQ=C10 with coordinates
q = (a1, ā1,a2, ā2,b1, b̄1,b2, b̄2, ℓ1, ℓ2). With these notations, the mechanism space
for four-bar linkages is the solution set of the equations

ℓ1θ1 = p+φb1−a1, ℓ1θ̄1 = p̄+ φ̄ b̄1− ā1,

ℓ2θ2 = p+φb2−a2, ℓ2θ̄2 = p̄+ φ̄ b̄2− ā2, (26)

θ1θ̄1 = 1, θ2θ̄2 = 1, φφ̄ = 1.

Fig. 2 Vector diagram of a
four-bar linkage. O
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The input and output spaces and their associated maps dependon the application
of the mechanism. For path generation, we have outputY =C2 with mapK =Kpath:
(z,q) 7→ (p, p̄). For body guidance,Y =SE(2)with K =Kguide: (z,q) 7→ (p, p̄,φ , φ̄ ).
If timing along the coupler curve or timing of the body motionare of concern, we
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Fig. 3 3-RPR planar platform
robot.
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may name the angle of one of the links connected to ground as input, sayX = T1

given byJ : (z,q) 7→ (θ1, θ̄1). For function generation, the input is the angle of link 1
and the output is the angle of link 2, soJ : (z,q) 7→ (θ1, θ̄1) andK = Kfcn : (z,q) 7→
(θ2, θ̄2).

The raw equation sets that come out of the above formulation often benefit from
further algebraic manipulation before submitting the system to a numerical solution
procedure. In particular, for the path synthesis problem, it can be beneficial to elim-
inate some variables. In the nine-point path synthesis problem—in general, nine is
the maximal number of precision points that can be exactly interpolated—we wish
to find parametersq such that the coupler curveKpath(π−1

M (q))⊂ C2 passes through
points(pi , p̄i), i = 0, . . . ,8. With a little algebra, this can be reduced to solving a
system of eight polynomials

fcc(p j , p̄ j ;q) = 0, j = 1, . . . ,8, (27)

each of degree seven. See [48, 50] for derivations, based on asimilar formulation
from Roth and Freudenstein [35].

3.5.4 Planar 3-RPR Platforms

A 3-RPR planar platform robot has a moving triangle supported from a stationary
triangle by three RPR legs, as in Figure 3. Coordinates for the mechanism space
M of the 3-RPR planar platform are an extension of those for thefour-bar with
a3, ā3,θ3, θ̄3, ℓ3 appended with the additional equations:

ℓ3θ3 = p−a3, ℓ3θ̄3 = p̄− ā3, and θ3θ̄3 = 1. (28)

However, there is a shuffle in which coordinates are parameters and which are vari-
ables of the motion. The new maps are
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π : (z,q) 7→ (a1, ā1,a2, ā2,a3, ā3,b1, b̄1,b2, b̄2)
J : (z,q) 7→ (ℓ1, ℓ2, ℓ3)
K : (z,q) 7→ (p, p̄,φ , φ̄ )

(29)

3.5.5 Stewart-Gough Platforms

For the forward and inverse kinematics problems of the 6-SPSplatform, we do not
need to explicitly represent transforms for the upper and lower leg segments. It is
enough to use the leg lengths and the transform for the movingplatform. Hence,
the link space isZ = C6×SE(3), and if we use Study coordinates forSE(3), the
space isZ = C6 ×S2

6, whereS2
6 ⊂ P7 is the Study quadric given by (1). With leg

lengthsL1, . . . ,L6, the coordinates ofZ are(L1, . . . ,L6), [e,g]. The parameter space
Q consists of the vectorsa j ,b j ∈ C3, j = 1, . . . ,6, that specify the centers of the S
joints in the base and moving platforms. The mechanism spaceM is given by the
Study quadric along with the leg-length equations

L2
i = ||(g∗e′+e∗b j ∗e′)/(e∗e′)−a j ||22, j = 1, . . . ,6, (30)

which after expanding and clearing denominators becomes for j = 1, . . . ,6

0= g∗g′+(b j ∗b′
j +a j ∗a′j −L2

j )e∗e′+(g∗b′
j ∗e′+e∗b j ∗g′)

− (g∗e′∗a′j +a j ∗e∗g′)− (e∗b j ∗e′ ∗a′j +a j ∗e∗b′
j ∗e′)

(31)

The input spaceX = C6 is the set of leg lengthsL1, . . . ,L6, and the output space
is Y = S2

6 is the Study quadric for the transform of the moving platform. The maps
J,K are the associated natural projections.

4 Overview: Numerical algebraic geometry

The fundamental problem in numerical algebraic geometry isto numerically com-
pute and manipulate the solution set of a system of polynomials

f (x) := [ f1(x), . . . , fn(x)] , (32)

wherex= (x1, . . . ,xN) ∈ C
N. As we have seen in the preceding sections, problems

in kinematics often concern parameterized systems, that is, polynomial systems of
the form

f (x,q) := [ f1(x,q), . . . , fn(x,q)] (33)

with x∈CN andq∈Q, whereQ is an irreducible algebraic set. We may have simply
Q= CM, a Euclidean space ofM independent parameters, but we may also have a
Q formed with elements fromSE(3) or the unit circle. It is important to note that
in practice, an engineer might not know the exact twist angleof a link, but when it
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comes to solving the associated polynomial system, it is known that the sine/cosine
pair of the angle must lie on the unit circle.

Historically, within numerical algebraic geometry, the problem of finding iso-
lated solutions forsquare systems, i.e., systems such as Eq. 32 in the casen = N,
came first. The most basic tool is homotopy continuation (or continuation for short),
which consists of studying a square system of polynomialsf (x) by starting with a
simpler systemg(x) that we know how to solve and deformingg(x) and the solutions
of g(x) = 0 to f (x) and the solutions off (x) = 0. A good source for explication of
this basic approach is the book [25], with more modern treatments given in [20, 40].

The solution of non-square systems (n 6= N in Eq. 32) came considerably later
than methods for square systems. The techniques we employ always reformulate
such problems to reduce them once again to finding isolated solutions.

At first sight, the case ofn > N (more equations than unknowns) would seem
to be numerically unstable, as a small perturbation of the system can obliterate a
solution. The is true for any solution sets of dimension greater thanN−n. The fact
that saves the day is that the existence of such solutions depends on the parameters
lying exactly on a parameter space, and we assume we know the exact equations that
define that space. Consider a pair of parameters that should lie on a unit circle. When
we work numerically, the pair will rarely lie exactly on the circle, but the exact unit
circle condition is known, and by using extra digits, the pair of parameters can be
placed as close as needed to the true parameter space. Thus, to make the computation
of sets of dimension greater thanN− n robust, the Bertini software package [5]
implementsadaptive multiprecision arithmetic(see§6.3) that adjusts the number of
digits as needed. This same technology stabilizes the numerics of isolated singular
and near-singular roots of square systems.

To provide a complete ability to solve systems of polynomials, one must be able
to deal not just with isolated roots but also with higher-dimensional solution sets
(curves, surfaces, etc.). Obviously, this arises whenn< N, as there are not enough
equations to determine an isolated root.1 The approach of dealing with this in nu-
merical algebraic geometry is a data structure called awitness setin which extra
linear equations are introduced in order to cut out general isolated points on the
higher dimensional sets. These points can then be computed using the techniques
for finding isolated solution points. To cut out isolated points on a set of dimension
m, one must augment the original system withN−mgeneral linear equations. Thus,
if the solution set is has dimensionm> N−n, the augmented system hasn+m> N
equations, which has the potential for being numerically unstable. The procedure
for stabilizing this situation depends onrandomization, as described in§6.9.

1 At least not in complex space. In real space, singular isolated roots are possible withn< N. See
§7.5.
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5 Finding Isolated Roots

In this section we briefly discuss the continuation method offinding isolated so-
lutions of a polynomial system (32). Various aspects of how this process is made
robust and efficient are highlighted. From the viewpoint of auser of software pack-
ages for continuation, a few things, particularly the division of variables into groups
for multihomogenization, requires some level of expertisefrom the user, but most
of these measures can be automated without user input. The motivation for a user to
understand the basic solution processes is for making an informed choices of which
software to use, as discussed further in§8, and which algorithms to use within a
chosen software package. Although it will not be addressed here, advanced users
may also change configuration settings that can affect the speed and robustness to
adapt performance to the specific needs of their applications.

5.1 Homotopy

For the square case ofN polynomials inN unknowns, one of the most classical
homotopies is the total-degree homotopy that uses the “γ trick” of [27]:

H(x, t) := (1− t)






f1(x)
...

fN(x)




+ γt






g1(x)
...

gN(x)




 , (34)

where each polynomialg j has degree the same asf j and the solution set of the
system(g1(x), . . . ,gN(x)) = 0 consists ofd1 · · ·dN nonsingular isolated solutions.
When γ is chosen as a random complex number, then with probability one, the
homotopy satisfies the properties:

1.
{
(x, t)

∣
∣t ∈ (0,1];x∈ C

N;H(x, t) = 0
}

is a union ofd1 . . .dN full-rank paths, say
x1(t), . . . ,xd1···dN(t), starting at the solutions ofH(x,1) = 0; and

2. the set of limits limt→0 x j(t) that are finite include all the isolated solutions of
H(x,0) = 0.

This theory justifies the use of the very simple start system defined byg j(x) =

x
d j
j −1, j = 1, . . . ,N.

6 Multihomogeneous homotopies

Constructing good homotopies with the number of paths not too different from the
number of isolated solutions off was an important research topic at the end of the
20th century. There is detailed discussion of this topic in [40, Chap.̃8]. For systems
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that are not too large, which includes many mechanism systems, multihomogeneous
can be quite useful. Multihomogeneous homotopies were firstproposed in [26] and
discussed in [40,§ 8.4].

For a hint of what difference the selection of homotopy can make, consider the
3-RPR forward kinematics problem of§sec:3RPR, which is to solve the 10 equa-
tions (26,28) for the 10 unknowns(θ1,θ2,θ2,φ , p, θ̄1, θ̄2, θ̄2, φ̄ , p̄). Six of the equa-
tions are linear but the four unit-length equations are degree 2, for a total degree
of 16. Yet, as a 2-homogeneous system, with variables divided into two groups
as(θ1,θ2,θ2,φ , p),(θ̄1, θ̄2, θ̄2, φ̄ , p̄), the system has at most

(4
2

)
= 6 isolated roots,

which is in fact the exact root count for general cases. In theBertini software pack-
age, the move from a total degree homotopy to a 2-homogeneousone is done by
simply using two separatevariable_group statements to declare the variables.

A more impressive example is the nine-point path synthesis problem mentioned
in §3.5.3. In the Roth-Freudenstein formulation of (27), the total degree of the sys-
tem is 78 = 5,764,801. An alternative in [48] uses a 2-homogeneous formulation
of the problem that has a root count of just 286,720. A specialhomotopy that takes
advantage of a 2-way symmetry reduces the number of paths to 143,360, which is
about one-fortieth (1/40) that of the total degree homotopy. This formulation lead to
the first complete solution of this classical problem in kinematics.

6.1 Sparse homotopies

A polynomial of degreed in N variables can have
(N+d

N

)
different monomials but

problems arising in applications typically have many fewerthan this. Multihom-
geneous homotopies take advantage of sparseness associated to limited mixing of
products between variables within groups. This is a common occurrence in kinemat-
ics, but it does not capture all the kinds of sparseness that may arise. In particular,
in a multihomogeneous formulation, variable groupings stay fixed across the whole
system of polynomials.

Linear product homotopies capture sparseness at a finer scale, including, for ex-
ample, groupings of variables that change from one polynomial to the next. The
main alternatives are laid out in [40, chap. 8], based on theory developed in [45]
and generalized in [30]. Versions of this are available in POLSYS PLP [52] and
POLSYSGLP [42].

Polyhedral homotopies take full advantage of any sparse structure in a polyno-
mial system. While the multihomogeneous and linear producthomotopies require
the user to identify good groupings of the variables—no efficient method is known
for finding the best groupings—the polyhedral method completely automates the
creation of a homotopy with the minimal number of paths for systems with the
sparse structure of the target system. The leading approachfor polyhedral homo-
topies is described in [21] and is implemented in HOM4PS2 [17].

Unfortunately, the formation of a polyhedral homotopy depends on an intri-
cate combinatorial calculation, called the mixed volume, whose complexity grows
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rapidly with the number of variables and which is not easily parallelizable. So while
it is an excellent approach for small to medium size problems, it becomes untenable
for large ones.

6.2 Regeneration homotopy

For larger systems, the regeneration approach discussed scales up more readily than
the polyhedral approach [15, 14]. Moreover, it can take advantage of structure in the
system beyond just sparsity. In particular, the coefficients that appear in a polyno-
mial system may satisfy interrelationships that reduce theroot count. In the kine-
matics context, this might arise as parameters that satisfya unit circle condition or
that lie inSE(3). Regeneration does not build this structure into the homotopy from
the beginning, as is done in the sparse homotopies, but rather it discovers structure
by treating the system equation-by-equation. Regeneration methods are available in
the Bertini software package.

6.3 Adaptive multiprecision

Higher-precision arithmetic (i.e., greater than double precision) makes the basic pro-
cess of path tracking more bulletproof, while adaptive multiprecision, in which pre-
cision is adjusted up or down as needed, accomplishes this goal with greater effi-
ciency. Consider the nine-point path-synthesis problem for four-bars just mentioned
above. Of the 143,360 paths in the homotopy used in [48], all but 4326 end on
various degenerate sets. The 4326 roots of interest appear in a three-way symme-
try, as expected from the classical result known as Roberts cognates [11, 34]. The
original computations in 1992 on this problem were conducted in double precision
followed by a check for any points missing from the expected symmetry groups.
Reruns in extended precision cleaned up any paths having questionable numerical
stability, filling in the missing points and thereby establishing with high confidence
that the solution list was complete. More recent experiments with a path-tracker
having adaptive multiprecision found that in order to be tracked accurately, 0.83%
of the paths required precision higher than double precision somewhere in the mid-
dle of the paths before returning to double precision (see [8, §5.3]). This approach
consistently finds the entire solution set without requiring any reruns or other cor-
rective actions. Although in the early 1990s, this was an extraordinarily difficult
computation, we now use this problem as a moderately difficult test system.
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6.4 Parallelism

One of the highly advantageous features of polynomial continuation is that all the
paths of a homotopy can be tracked independently. For many algorithms in the field,
this makes the bulk of the computation “embarrassingly parallel.” The Bertini soft-
ware package offers a parallel version for the Linux operating system [5]. Unfortu-
nately, it is much harder to efficiently parallelize the steps that set up a polyhedral
homotopy, so that, as of this writing, the leading polyhedral package, Hom4PS2
[17], is only available for single-processor systems.

6.5 Solutions at infinity

One difficulty in path tracking is paths that go to infinity ast → 0. Tracking such a
path may be computationally expensive as it is infinitely long and numerical con-
ditioning may be poor as the magnitudes of the solution variables grow. Morgan’s
projective transformation trick [24] is to work on a random coordinate patch in the
projective space containingCN. This maneuver keeps the magnitude of the variables
and the path lengths finite. It is common for polynomial continuation packages, such
as Bertini, to perform homogenization automatically.

6.6 Multiplicities and Deflation

It is widely appreciated that for a polynomial in one variable, the multiplicity of
a solution is governed by the number of derivatives that vanish there. In several
variables, multiplicity still makes sense, but directional derivatives and algebraic
relations between them come into play, so the situation is more complicated.

For the moment, consider only isolated solutions of a polynomial system. (We
take up multiplicity as it applies to higher-dimensional sets in §7.3.) When the mul-
tiplicity µ of solutionz∗ is greater than one,z∗ is said to be a singular solution.
Such solutions are difficult to work with numerically. A primary problem is that the
vanishing derivatives ruin the convergence properties of Newton’s method near the
singular point. For this reason, tracking paths toz∗ from a good homotopy forz∗ is
computationally expensive and often impossible in double precision. To deal with
these points effectively, we use endgames (see§6.7) and adaptive precision (see
§6.3).

Deflation is another approach for dealing with singular points [32, 31, 18, 12,
19, 14]. Since singularities are caused by the vanishing of derivatives, deflation is a
process for re-establishing regularity by including equations that are only satisfied
by solutions with derivatives that vanish to the correct order at the singular point.
The main difficulty with this procedure lies in determining the rank of certain ma-
trices formed from derivatives of the equations. This leadsto a vicious circle, since



26 Charles W. Wampler and Andrew J. Sommese

computing the singular solution accurately is the initial objective, and one needs an
accurate value for the solution to determine the ranks. The upshot is that for iso-
lated solution points the cost of computing a deflation system often dwarfs the cost
of computing the point accurately using the endgame methodsin the next subsec-
tion. Yet, deflation can be of great service when working withhigher dimensional
solution sets of multiplicity greater than one. (See§7.3.)

6.7 Endgames

Let H(x, t) = 0 be a homotopy, and letz(t) with t ∈ (0, t] be one of its solution paths.
Endgames refer to the process of computingx∗ := limt→0 z(t). We may assume by
using Morgan’s projective transformation trick,§6.5, thatx∗ is finite, i.e.,x∗ ∈ CN.
However, whenx∗ is singular, more than one path may be converging to the same
spot, and all those paths become more and more difficult to track ast approaches
zero.

There are several ways to circumvent this problem, but all depend on the fact
that instead of just trackingt along the real line, we can consider what happens
ast moves into the complex plane near the origin. One of the most effective ways
of computingx∗ is to trackt in a small circle around the origin and to compute a
Cauchy integral [29], parallelized in [3].

6.8 Parameter homotopy

The schema for kinematics problems in§3.4 shows that they naturally arise as sys-
tems of parameterized polynomials. This fact can be used to reduce the computa-
tional cost of solving more than one problem from the same parameterized family.
The power of this concept when applied to finding isolated roots derives from the
fact that once one has solved a single general example from a parameterized family,
one has a bound on the number of isolated roots of any other member of the family.
Moreover, one can find all isolated roots of any subsequent examples in a parameter
homotopy that tracks solutions from the first example as the parameters are moved
along a general, continuous, path in parameter space, starting at the parameters of
the first example and ending at those of the new target system.

As a first example, consider the forward kinematics problem for general Stewart-
Gough (6-SPS) platforms, given by (1,31). These are 7 equations in[e,g] ∈ P7, all
quadratic. One can solve a general member of this family using a total-degree homo-
topy having 27 = 128 paths and find the problem has just 40 solutions. One can solve
any other example in the family with a coefficient-parameterhomotopy that has just
40 paths. Moreover, there are several different subfamilies of interest wherein some
of the S joints coincide. One of these is the octahedral family where the base and
moving links are both triangles, with two legs terminating at each vertex. For this
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family, the problem has only 16 roots, appearing in a two-waysymmetry. (Reflection
of the mechanism through the plane of the base does not alter the geometry.) Since
a coefficient-parameter homotopy respects this symmetry, only eight paths need to
be tracked. As discussed in [40,§ 7.7], after solving one general member of any
Stewart-Gough subfamily, the remaining ones can be solved with an optimal num-
ber of paths by coefficient-parameter homotopy. Although these problems are all
simple enough that a elimination approach can be devised—and this has been done
for most cases—each special case requires a new derivation.In contrast, homotopy
methods cover all the cases seamlessly.

A more extreme illustration of the power of the coefficient-parameter homotopy
technique is provided by the nine-point path-synthesis problem for four-bars. As we
mentioned earlier, the best multihomogeneous formulationfound for the problem
has 143,360 paths of which only 4326 have finite endpoints. Soafter a one-time
execution of that homotopy for a general example, all subsequent examples can be
solved with a coefficient-parameter homotopy having only 4326 paths. But the story
gets even better, because the 4326 solutions appear in a three-way symmetry called
Robert’s cognates [34]. The coefficient-parameter homotopy respects this symme-
try, so only one path in each symmetry group needs to be tracked, resulting in a
homotopy with only 1442 paths. This is nearly a 100-fold decrease in the number of
paths compared to the original multihomogeneous homotopy (which was already a
40-fold decrease from the total degree homotopy).

6.9 Randomization

Situations may arise where the number of equations,n, is greater than the number
of variables,N. A case in point is the 6R inverse kinematics problem, which is
to (23) for (ci ,si), i = 1, . . . ,6 subject to the unit circle conditions,c2

i + s2
i = 1,

i = 1, . . . ,6. Since the transform equation (23) is equivalent to 12 polynomials (the
bottom row of the 4× 4 matrices is trivial), we have altogether 18 equations in
only 12 variables. Even so, we expect solutions, because each transform lives on
SE(3), so the equations are compatible. We have seen that polynomial continuation
is capable of finding all isolated solutions in the square case (n = N), but n > N
requires extra measures.

Sometimes, one can pick out a subset of equations and be sure of getting all iso-
lated roots, the remaining equations being redundant. But this takes extra knowledge
about the structure of the system, because there exist systems where solving a subset
does not work. An example is the system

xy= 0, x(x− y−1) = 0, y(x− y−1) = 0, (35)

which has 3 isolated roots, (0,0), (1,0), and (0,1), whereaseach subsystem formed
by any two of the three equations has only one isolated root.
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A method which does work in general is to takeN random linear combinations
of the equations. With probability one, this preserves all isolated roots of the orig-
inal system, although it may introduce additional extraneous roots. In the case of
(35), the randomized system has four isolated roots: the original three and an ex-
traneous one that depends on the random coefficients chosen in forming the linear
combinations. We call this processrandomization.

An important property of randomization is that it numerically stabilizes solu-
tions. Numerical evaluation of a polynomial inevitable introduces small perturba-
tions: the evaluation is not exact. In a strict sense, the numerically evaluated system,
consisting ofn > N randomly perturbed equations, will have no solutions. But a
perturbed randomized system, being square, still has exactsolutions, and these will
be close to the solutions to the original exact system.

A similar trick works for higher dimensional sets. The case of isolated solutions
for n> N is them= 0 special case of a solution set of dimensionmwith m> N−n.
With probability one, a system ofN−m random linear combinations of the original
n equations preserves all solution sets of dimensionm, but may introduce extraneous
sets at that dimension as well. This leads us into the next topic: positive-dimensional
solution sets.

7 Computing Positive-Dimensional Sets

We already mentioned in§4 that in numerical algebraic geometry, positive-dimensional
sets (curves, surfaces, etc.) are represented by witness sets. An irreducible algebraic
set is an algebraic set that cannot be expressed as a union of afinite number of proper
algebraic subsets. One of the main goals in numerical algebraic geometry is to com-
pute, for a given polynomial systemF , all the irreducible components ofV (F). This
is called thenumerical irreducible decomposition, and it consists of one witness set
for each irreducible component ofV (F). In kinematics, whenF(z,q) = 0 is the
polynomial system for a mechanism family, as in the schema presented in§3.4, then
for a particular mechanism, sayq∗ ∈ Q, the irreducible components ofV (F(z,q∗))
are theassembly modesof the mechanism. Although it may seem nonintuitive, the
assembly modes might not all have the same dimension: the same mechanism can
sometimes have a different number of DOFs depending on whichmode it is as-
sembled in. It is even possible for such assembly modes to meet, meaning that a
mechanism could change its number of DOFs at certain specialconfigurations. Such
mechanisms have been called “kinematotropic” mechanisms [53].

A witness set,A , for an m-dimensional irreducible algebraic setA ⊂ CN is a
data structure having three members:

• a polynomial systemF such thatA is an irreducible component ofV (F),
• a generic linear spaceL⊂CN of dimensionN−m(equivalently,mrandom linear

equations), and
• the set of isolated pointsW = L∩A.
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Fig. 4 Griffis-Duffy platform
of Type I.

We usually write this as the tripleA = {F,L,W}, and by context,L may mean
either the set of linear equations or the linear space they define. In the numerical
irreducible decomposition ofV (F), F itself plays the role of the first member, the
random linear equations are constructed by use of a random number generator, and
the witness pointsW are found by polynomial continuation. Whenm= N−n, the
system formed by appendingm linear equations to the originaln equations ofF
produces a square system, soW can be found using a conventional homotopy. When
m> N− n, randomization is used, as described in§6.9, to produce a system of
only N−mequations so that once again we obtain a square system when the linear
equations are appended.

A complete description of the procedures for computing a numerical irreducible
decomposition are beyond the scope of this chapter. In short, one proceeds by test-
ing every possible dimensionm and factoring the witness points at each dimension
according to the irreducible components. In numerical work, the use of intersections
with a linear spaces to find higher dimensional sets was first proposed in[39], where
the termnumerical algebraic geometrywas coined. See [40] for a full exposition or
[50] for a briefer summary of the various techniques used to make computation of
the numerical irreducible decomposition practical. The current preferred approach
for descending through the dimensions is the regenerative cascade [15], which is the
default method in the Bertini software package.

One interesting example of the application of the numericalirreducible decom-
position is a special case of the Stewart-Gough platform called the Griffis-Duffy
Type I architecturally-singular platform. These have baseand moving platforms that
are equilateral triangles, with legs connecting vertices of the base to midpoints of
the moving platform and vice versa in a cyclic pattern [16, 38]. No matter what the
leg lengths are, a general case of this type of platform has a motion curve in Study
coordinates of degree 28. This is illustrated in Figure 4, where the path of a small
sphere attached to the moving plate is shown. This path has degree 40 inR3. For a
special case of this in which the two triangles are congruentand the leg lengths are
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equal, this curve factors into five pieces: four sextics and one quartic. The numerical
irreducible decomposition is able to find all of these [38].

7.1 Membership Tests

If one has a witness setA = {F,L,W}, as above, form-dimensional irreducible
componentA ⊂ V (F) and a pointz∗ ∈ V (F), it can sometimes be of interest to
know if z∗ is in A. The main membership tests used in practice are variants of the
monodromy membership test (see [40, Chap. 15.4] for details). In short, we form a
linear systemL′(z) = B(z− z∗) = 0 (soz∗ is a solution) withB a random matrix in
Cm×N and set up a homotopy

H(z, t) = {F(z), tL(z)+ (1− t)L′(z)} = 0 (36)

whereL is the system of linear equations fromA . Then,z∗ ∈ A if and only if one
of the homotopy paths starting from the points inW for t = 1 lands onz∗ ast → 0.
The Bertini package provides this test.

7.2 Component sampling

It can also be of interest to generate additional points on anirreducible component,
that is, to sample the component. To do so randomly, one merely follows the same
homotopy as in (36), except thatL′ is chosen completely at random. This function-
ality is also provided by Bertini.

7.3 Deflation Revisited

Just as isolated solution points may appear with multiplicity greater than one (dou-
ble points, triple points, etc.), positive-dimensional irreducible solution components
also may appear with higher multiplicity. Such solution components are said to be
nonreduced. The generic multiplicity of an irreducible component is the same as
the multiplicity of the witness pointsW considered as isolated solutions of the aug-
mented system{F,L} = 0. The methods for deflating isolated solutions mentioned
in §6.6 can be applied to the augmented system at the witness points, and the con-
ditions placed on derivatives can be carried forward asL is deformed. Deflation is
necessary to efficiently carry out monodromy membership or component sampling
on a nonreduced irreducible component, as otherwise the homotopy paths of (36)
would be singular at every step alongt.
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7.4 Local Dimension

Given a solutionx∗ of a polynomial systemf (x) = 0, it can be of interest to deter-
mine the local dimension atx∗ of the solution setV ( f ). This means the dimension
of the irreducible component ofV ( f ) that containsx∗, or if there is more than one
such component, the largest dimension among them. This has atechnical use in
computing the numerical irreducible decomposition, wherepoints must be sorted
by dimension. The method in [4] handles this task.

The determination of local dimension also has direct applicability to kinematics
in finding the local mobility of a mechanism in some given pose, as defined in
(6). The rank of the Jacobian matrix tells a kinematician howmany infinitesimal
DOFs exist, but does not indicate how many of these extend to finite motion DOFs.
To settle the issue often requires the computation of higherorder derivatives. In
general, without computing an irreducible decomposition for the whole solution set,
one does not have enough information to limit the number of derivatives that must
be checked, but pre-specifying the order of the derivativeskeeps computation finite
and yields the depth-bounded local dimension [46]. For large enough depth, this is
the correct local dimension, but even if one stops short of the theoretically sufficient
depth, one may obtain a practically sufficient result, as thedifference between an
infinitesimal DOF associated to a very high multiplicity anda true finite DOF can
become academic. A high multiplicity isolated root in the rigid-body model may in
fact exhibit substantial motion when small elastic deformations of the links, which
are always present in a physical device, enter the picture. See [46] for the method
and some kinematic examples.

7.5 Real Sets

Throughout this article we have dealt almost exclusively with complexsolutions,
even though isolated and positive dimensionalreal solutions are the main interest
for most applications.

For isolated solutions, we may simply pick the isolated realsolutions out of the
isolated complex solutions. For positive dimensional sets, extra work is required,
and the complexity of extracting a complete description of the real set, every start
and stop and every self-crossing, can be high. One illustration of the difficulty is
that in singular situations, the real and complex dimensions can differ. For example,
consider the equationx2+y2 = 0, which when considered in complex space defines
a pair of lines (namely,x=±iy), but which only has an isolated real solution at the
origin, where the lines cross in a singularity.

One-dimensional sets (curves) are relatively straightforward [22]. The key notion
is to consider a family of parallel hyperplanes sweeping acrossRN. Each hyperplane
that kisses the curve in a tangency marks a turning point in the real curve, and in
between, the planes cut the curve transversely. Thus, everyarc of the real curve
is found by first solving for the tangency condition and then slicing the curve in
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between the turning points. Isolated real points, if they exist, are found as real tan-
gencies that have no incoming real arcs. Recently, an algorithm has been developed
along similar lines for solving the more difficult problem offinding the real points
in a complex surface [10].

Fig. 5 Selected poses of
the foldable Stewart-Gough
platform. From [22] by per-
mission, c©SIAM. On a quadric On the quartic

In § 7, we illustrated the Griffis-Duffy Type I platform robot, a special case of
the Stewart-Gough (6-SPS) platform, and mentioned that themotion for the Griffis-
Duffy Type II subcase factors into five pieces: four sextics and one quartic. In [22],
an even more special example of a Griffis-Duffy Type II robot is considered, one
whose leg lengths are all equal to the altitude of the base andmoving triangles
(which are congruent equilateral triangles). This robot isunusual in that it can fold
up into the plane with both triangles coinciding. Its motionis a curve that factors
even more finely than general Type II cases into three double lines, three quadrics,
and four quartics. (The sum of the degrees 3·2+3·2+4·4= 28 is the same as the
degree of the irreducible curve in the Type I case.) Numerical irreducible decom-
position finds this factorization, and the technique sketched above extracts the real
curves inside these complex factors. Poses on two of these motion curves are shown
in Figure 5.

7.6 Exceptional Sets

Many problems may be rephrased as a problem of finding the set of parameters
where some exceptional behavior occurs. An interesting case in kinematics is find-
ing overconstrained mechanisms, i.e., mechanisms of a given family that have more
degrees of freedom than most of the other mechanisms in the family.

A smattering of planar and spatial overconstrained mechanisms are known, in-
cluding, for example, the Bennett [9] spatial four-bar and the Griffis-Duffy Type
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I and II 6-SPS mechanisms mentioned above. However, to date,investigations of
overconstrained mechanisms have employed specialized arguments for the specific
mechanism family under consideration. The fiber product approach to finding ex-
ceptional sets described in [41] has the potential to provide a general approach ap-
plicable to many mechanism families. Implementation of that approach in a form
that can handle mechanisms of an interesting level of complexity is still a research
topic.

8 Software

There are several software packages that compute isolated solutions of polyno-
mial systems, Bertini [5], HOM4PS-2.0 [17], Hompack90 [51]and its extensions
[52, 42], and PHCpack [44]. Hompack90 has general parallel tracking facilities.
HOM4PS-2.0 has the best implementation of polyhedral methods, but is not a par-
allel code. Only Bertini and PHCpack implement algorithms of numerical algebraic
geometry for positive-dimensional solution sets.

PHCpack and Bertini both allow the user to define their own homotopy and pre-
scribed start points, but HOM4PS-2.0 currently does not.

HOM4PS-2.0 uses only double precision arithmetic to perform computations.
To varying degrees, both PHCpack and Bertini have the capability of using higher
precision arithmetic. PHCpack does not currently have the capability of adapting
the precision based on the local conditioning of the homotopy path. This means that
more human interaction is needed to verify that the precision is set appropriately to
accurately and reliably perform the requested computations.

The more advanced algorithms of numerical algebraic geometry (including the
powerful equation-by-equation methods for finding isolated solutions) place strong
requirements on the underlying numerical software [6]. Forexample, without secure
path-tracking and adaptive precision, computing the numerical irreducible decom-
position for systems that involve more than a few variables is not possible.

Only Bertini gives the numerical irreducible decomposition directly. Exceptional
features of Bertini include:

• secure path-tracking;
• adaptive multiprecision [7, 8];
• utilities for working with polynomial systems given as straight-line programs;
• the numerical irreducible decomposition [37, 40];
• equation-by-equation methods such as regeneration [14, 15];
• local dimension testing [4] (see§7.4); and
• various endgames (see§6.7) including the Cauchy endgame [29], and a parallel

endgame based on it [3].
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9 Conclusions

This chapter shows how problems in kinematics can be formulated as algebraic sys-
tems, thereby introducing the concept of a mechanism space and its associated input
and output maps. This provides a framework for understanding the definitions of a
variety of kinematics problems, including analysis problems, such as the forward
and inverse kinematics problems for robots, and synthesis problems that seek to
design mechanisms that produce a desired motion.

Since algebraic kinematics is a subset of algebraic geometry, the computational
tools for systems of polynomials can be applied. In particular, numerical algebraic
geometry, based on polynomial continuation, has matured into a set of tools for find-
ing and manipulating solution sets of any dimension. Since the bulk of computation
is spent tracking a large number of independent homotopy paths, the methods nat-
urally scale to large parallel computing environments, well suited for the needs of
21st-century kinematicians.
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