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Abstract

This article treats numerical methods for tracking an implicitly de-
fined path. The numerical precision required to successfully track such a
path is difficult to predict a priori, and indeed, it may change dramatically
through the course of the path. In current practice, one must either choose
a conservatively large numerical precision at the outset or re-run paths
multiple times in successively higher precision until success is achieved.
To avoid unnecessary computational cost, it would be preferable to adap-
tively adjust the precision as the tracking proceeds in response to the
local conditioning of the path. We present an algorithm that can be set
to either reactively adjust precision in response to step failure or proac-
tively set the precision using error estimates. We then test the relative
merits of reactive and proactive adaptation on several examples arising as
homotopies for solving systems of polynomial equations.
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1 Introduction

Path tracking is the task of tracing out a one-real-dimensional solution curve
described implicitly by a system of equations, typically n equations in n + 1
variables, given an initial point on, or close to, the path. This can arise in many
ways, but our motivation is the solution of systems of polynomials via homotopy
continuation (see [1, 10, 11, 14, 15, 22]). In this method, to find the isolated
solutions of the system f(z) = 0 for given polynomials f : Cn → Cn, one
constructs a homotopy, H(z, t), H : Cn × C → Cn such that H(z, 0) = f(z) is
the target system to be solved while H(z, 1) is a starting system whose isolated
solutions are known. There is a well-developed theory on how to construct such
homotopies to guarantee, with probability one, that every isolated solution of
f(z) = 0 is the endpoint in the limit as t → 0 of at least one smooth path zi(t),
where H(zi(t), t) = 0 on t ∈ (0, 1] and where zi(1), i = 1, 2, . . ., are the known
isolated solutions of H(z, 1) = 0. Similar constructions arise in other contexts,
where the existence of a path leading to the desired solutions may or may not
be guaranteed. Even when there is no guarantee, experience shows that in some
application domains continuation techniques yield solutions more reliably than
Newton’s method, especially when good initial guesses are not available. While
in our applications the path is just a means of arriving at the endpoint, in other
applications one may desire to accurately trace out the path itself, such as when
plotting the response of a mathematical model as one of its parameters is varied.

The most common path tracking algorithms are predictor-corrector meth-
ods: from an approximate solution point on the path, a predictor gives a new
approximate point a given step size along the path, then a corrector brings this
new point closer to the path. For example, one may use an Euler predictor,
which steps ahead along the tangent to the path, or a higher order predictor
that uses one or more recent points and possibly derivatives of the homotopy
function at them to extrapolate to the predicted point. Typically, the prediction
is then used as the initial point for correction by Newton’s method. Since the
solution set is one-dimensional, an extra constraint is introduced to isolate the
target of the correction. For general homotopies, a useful constraint is to find
where the solution path intersects the hyperplane normal to the last computed
tangent direction. In the more restrictive setting of polynomial systems, the
homotopy can be designed such that the paths advance monotonically with t,
that is, there are no turning points, in which case it is acceptable (and simpler)
to perform corrections by holding t fixed. The adaptive precision algorithm we
discuss here is compatible with any of these prediction and correction schemes.

For good results, the predictor step size must be chosen appropriately. Too
large a step size may result in a prediction outside the zone of convergence
of the corrector, while too small a step size means progress is slow and com-
putationally costly. Consequently, it has long been recognized that adaptive
control of the step size is crucial for obtaining good reliability without undue
computational cost.

While step size control is well established, less attention has been paid to
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efficient handling of precision. With wider availability of software packages for
higher precision arithmetic, along with faster computers to execute the software,
it becomes interesting to consider how adjustable precision might be deployed
to improve the performance of path tracking algorithms. The issue at stake is
analogous to step size control: without enough precision, path tracking might
fail, but the use of excessive precision is inefficient. To address this tradeoff,
this paper proposes an algorithm that dynamically adjusts the number of digits
used in computations according to the evolution of the numerical conditioning
of the homotopy function.

In our primary application of interest, the solution of polynomial systems,
there are several factors driving the need for higher precision. It is well known
that high degree polynomials often lead to ill-conditioned problems. When
treating polynomial systems in several variables, the total degree of the system,
being the product of the degrees of the individual equations, quickly becomes
large even for low degree polynomials, which can also lead to ill-conditioning.
Thus, one driving force is the desire to solve larger systems of higher total
degree.

A second motivation is that our systems often have some, or possibly many,
singular solutions, and thus, the solution paths leading to these solutions are
necessarily ill-conditioned near the end. While endgame methods exist for en-
hancing the accuracy with which such endpoints can be estimated, for singular-
ities of high enough multiplicity, more precision is required.

A third motivation is that many polynomial systems from applications come
with natural parameters. These systems with the parameters included typically
have exact coefficients, which are relatively small integers. For “general values”
of the parameters the structure of the solution set of the systems are the same
[16], i.e., the number of multiplicity k points for k = 1, 2, 3, . . . remains constant.
If the coefficients of the polynomials are computed to sufficient accuracy using
the given choice of parameter values, the solutions of the system will typically
have a clean structure for multiple points, i.e., will not have a cluster of solutions
near each other unless the points computed more precisely converge to the same
point. Here it is important that the coefficients are computed accurately as
functions of the parameters. For example, in §5.5, the polynomial system has
coefficients computed accurately to 308 digits. The coefficients are polynomial
functions of certain lengths, e.g., offsets and link lengths, and of cosines and sines
of what are called twist angles. If only eight digits are used for the coefficients,
as printed in the table in [15], then the algebraic relationships that should exist
between the coefficients fail to hold to more than 8 digits. For example, some
coefficients depend on cos α and sinα, where α is a twist angle, and when these
are rounded to 8 digits, the algebraic relation cos2(α) + sin2(α) = 1 no longer
holds at higher precision. The effect of this is that the multiple points, e.g., the
ones of multiplicity 24, form clusters that do not come together as precision is
increased.

Finally, although the homotopy constructions guarantee, with probability
one, that no path passes exactly through a singularity before reaching its end-
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point, there is always a chance that a near-singular condition can be encoun-
tered. To obtain the highest reliability possible, we need to detect this and
allocate sufficient digits to successfully track past such obstructions.

The paper is organized as follows. In section 2, we review the behavior of
Newton’s method in floating point, revealing how its accuracy and convergence
properties depend on precision. In section 3, we discuss path tracking with
adaptive step size control and identify how it fails when precision is insufficient.
This leads, in section 4, to a novel technique for path tracking using adaptive
precision. This new adaptive precision path tracking algorithm has been imple-
mented in a software package, Bertini [2], currently under development by the
authors. Several examples are presented in section 5 to illustrate the usefulness
of adaptive precision. Section 6 contains a brief discussion of the value of adap-
tive precision in the presence of endgames. Finally, in section 7, a few related
ideas that would make interesting studies are discussed.

We would like to thank the referees for their insightful comments, which
have resulted in this being a much better article.

2 Background: Newton’s method

The core numerical process in the path tracker is the corrector, which in our case
is Newton’s method. A good predictor speeds up the path tracker by allowing a
large step while still supplying an initial guess within the convergence region of
the corrector. However, it is the loss of convergence that causes path tracking
to fail. In exact arithmetic, as long as the path remains nonsingular, there
must be a region surrounding the path within which Newton’s method converges
quadratically. With a small enough step ∆t in t, we can be assured of advancing
along the path, although possibly very slowly. This holds even if we use only
a zero-th order predictor, i.e., if the point from the last value tk is used to
initialize the corrector for the new value tk+1 = tk + ∆t. In contrast, in inexact
floating point arithmetic, the convergence region can disappear, thus halting
the path tracker. Short of this, an unacceptably slow linear rate of convergence
might dominate, causing the step size to plummet. It can also happen that the
corrector appears to converge, judging by a diminishing corrector step, but since
the limit point is a zero of the inexactly evaluated function, it may be further
than the desired tolerance away from the exact root. Consequently, success
requires enough precision to produce a convergence region and to ensure that
the limit point is within the prescribed tolerance of the exact root.

Due to these considerations, an analysis of Newton’s method in floating point
is of interest and will help us derive rules for setting the precision used in our
path tracker. The following analysis resembles that of [23]. Let F (z) : Cn →
Cn be continuously differentiable, and denote its Jacobian matrix of partial
derivatives as J(z). To solve F (z) = 0 by Newton’s method given an initial
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guess z0, one iteratively updates zi, i = 1, 2, . . . , as

Solve J(zi)∆zi = −F (zi) for ∆zi,
zi+1 = zi + ∆zi.

(1)

In the following analysis, we will assume a submultiplicative matrix norm,
i.e., one that satisfies ‖AB‖ ≤ ‖A‖‖B‖. In particular, the 2-norm suffices.
When we apply the formulas, we may save computation by using other norms
with an adjustment factor. For example, for an n×n matrix A, ‖A‖2 ≤

√
n‖A‖p

for p = 1 or p = ∞.
Suppose that we work in floating point with unit roundoff u. In other words,

if we compute with a mantissa of b bits in binary or with P digits in decimal,
u = 2−b = 10−P . We may consider evaluating the residuals F (zi) in higher
precision, say ū ≤ u before rounding back to working precision u to compute
the Newton correction. Let F̂ (z) be the floating point output of the procedure
that evaluates F (z). We assume that there exists a function ψ depending on z,
u, and ū such that the error e(z) = F̂ (z)− F (z) obeys

‖e(z)‖ ≤ u‖F (z)‖+ ψ(z, u, ū). (2)

By definition, at a solution point z∗, we have F (z∗) = 0, so it is clear that
the function ψ drives the final error. To determine ψ, one must examine the
function F and the program that implements it. We will give approximations
to ψ later for the systems we treat.

In solving Eq. 1 for the correction ∆zi, there is error in evaluating J(zi) and
in solving the linear system. Both errors can be absorbed into an error matrix
Ei such that the computed correction is

∆zi = (J(zi) + Ei)−1(F (zi) + e(zi)). (3)

We assume this error is bounded by

‖Ei‖ ≤ E (u‖J(zi)‖+ φ(zi, u)) , (4)

for some constant E > 1 and positive function φ. We expect the first term
because of roundoff of the Jacobian, whereas φ accounts for errors in evaluating
J that do not vanish even when J does. The constant E accounts for the
subsequent growth in the error during the linear solve.

For simplicity of notation, let v = zi be the current guess, v̄ = zi+1 the new
guess after a single iteration, and let v∗ be the solution point near v. Also, let’s
use the shorthand notations F = F (v), J = J(v), J∗ = J(v∗), ∆ = ‖v − v∗‖
and ∆̄ = ‖v̄ − v∗‖. In the next paragraph, we will establish a bound on ∆̄ in
terms of ∆. Whenever ∆̄ < ∆, the Newton step successfully reduces the error
in the estimate of the root v∗.

Since F (v∗) = 0, the Taylor series of F (z) at v∗ gives

F (z) = J∗ · (z − v∗) + H.O.T.
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where the higher order terms, H.O.T., are quadratic or higher in z − v∗. Simi-
larly,

J(z) = J∗ + H.O.T.

where the higher order terms are linear in z − v∗. Consequently, in a ball
B = {z : ‖z − v∗‖ ≤ R} centered at v∗ with v ∈ B, there exist positive
constants α and β such that

‖F (z)‖ ≤ ‖J∗‖‖z − v∗‖+ α‖z − v∗‖2, (5)

‖F (z)− J∗(z − v∗)‖ ≤ α‖z − v∗‖2 (6)
‖J∗‖ ≤ ‖J‖+ β‖z − v∗‖, ‖J − J∗‖ ≤ β‖z − v∗‖. (7)

From these, we may conclude that

‖F (z)‖ ≤ ‖J‖∆ + (α + β)∆2. (8)

In Newton’s method, we solve

(J + E)d = −(F (v) + e) (9)

for d and take the step
v̄ = v + d + ε, (10)

where ε is the error in forming the sum. The standard model of round-off error
in floating point addition [27] gives

‖ε‖ ≤ u(‖v‖+ ‖d‖) ≤ u(∆ + ‖v∗‖+ ‖d‖), (11)

so subtracting v∗ from both sides of Eq. 10, we have

∆̄ ≤ ‖v − v∗ + d‖+ u(∆ + ‖v∗‖+ ‖d‖). (12)

If J is nonsingular and ‖J−1‖‖E‖ < 1, then (J +E) is nonsingular, the Newton
step is well defined, and

‖(J + E)−1‖ ≤ K‖J−1‖, K =
1

1− ‖J−1‖‖E‖ . (13)

Accordingly, from Eq. 9 we have

‖d‖ ≤ K‖J−1‖(‖F‖+ ‖e‖). (14)

Also, after adding (J + E)(v − v∗) to both sides of Eq. 9 and simplifying using
Eqs. 5–8,13, we have

‖v − v∗ + d‖ ≤ K‖J−1‖(‖E‖∆ + (α + β)∆2 + ‖e‖). (15)

Substituting from Eqs. 14,15 into Eq. 12 and using Eqs. 2,4,8, we obtain the
bound

∆̄ ≤K‖J−1‖(1 + u)2(α + β)∆2+(
K‖J−1‖ [(2 + E + u)u‖J‖+ Eφ] + u

)
∆ + K‖J−1‖(1 + u)ψ + u‖v∗‖.

(16)
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This relation holds as long as ‖J−1‖‖E‖ < 1, so that the linear solve in the
Newton step is well defined, and v is in the ball B, so that Eqs. (5–7) hold.

If ∆̄ < ∆, the Newton step reduces the error in the approximation of the
root. In exact arithmetic, we have u = φ = ψ = 0 and K = 1, so ∆̄ ≤
‖J−1‖(α + β)∆2. The error contracts if the initial guess is accurate enough so
that ∆ < 1/(‖J−1‖(α + β)). If we also have ∆ < 1/(‖J−1

∗ ‖(α + β)), it is clear
that all subsequent iterates are nonsingular and contractive, from which one
has the well-known result that Newton’s method converges quadratically to a
nonsingular solution for a sufficiently accurate initial guess. One sees that the
more singular the Jacobian is at the root, the slower the convergence and the
smaller the convergence zone.

In floating point arithmetic, we cannot expect the error to converge to zero.
From Eq. 16, one may expect the error to contract until

∆ ≈ (1 + u)K‖J−1‖ψ + u‖v∗‖ ≈ K‖J−1
∗ ‖ψ + u‖v∗‖. (17)

The second term is the error inherent in representing v∗ in floating point. The
first term depends on the accuracy, ψ, with which the function is evaluated.
This can be reduced by using higher precision, ū, in the function evaluation per
Eq. 2. The precision of the Jacobian and the linear solve do not affect the final
error.

On the other hand, the precision of the Jacobian and the linear solve do affect
convergence. Without enough precision, ‖J−1‖‖E‖ may approach or surpass 1,
which means that the linear solve may fail due to singularity or may yield such an
inaccurate step that the error diverges. Notice that ‖J−1‖‖E‖ = u‖J−1‖‖J‖+
‖J−1‖φ = uκ + ‖J−1‖φ, where κ = cond(J). The first term, uκ, reflects the
well-known result that in solving a linear system, floating point roundoff is
magnified by the condition number of the matrix.

3 Step length control and failure

To produce an improved path tracking algorithm, it is useful to first examine
a standard predictor/corrector algorithm to see why adaptive step size control
generally succeeds when conditioning is mild and why it may fail when condi-
tioning is adverse.

A simple and effective approach for step-size control is to adjust the step size
up or down according to the success or failure of a complete prediction/correction
cycle. Suppose the homotopy function H(z, t) = 0 defines a one-dimensional
nonsingular path z(t). We are given a start point approximately on the path,
z0 ≈ z(t0), an ending value of t, and a tolerance to which points on the path are
to be found. Then, in brief, a predictor/corrector path tracker with adaptive
step size control may be constructed as follows.

Initialize Select: an initial step size, s; the number of corrector iterations
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allowed per step, N ≥ 1; the step adjustment factor, a ∈ (0, 1); the step
expansion integer, M ≥ 1; and a minimum step size smin.

Predict Estimate a new point near the path whose distance from the current
point is the step size s.

Correct Iteratively improve the new path point, constraining its distance from
the prior path point. Allow at most N iterations to reach the specified
tolerance.

On success If the tolerance is achieved:

• Update the current path point to be the newly found path point.

• If we have reached the final value of t, exit with success.

• If there have been M successes in a row, expand the step size to
s = s/a.

On failure If the tolerance is not achieved:

• Cut the step size to s = as.

• If s < smin, exit with failure.

Loop Go back to Predict.

The key is to allow only a small number of iterations in the corrector, typ-
ically only N = 2 or N = 3. This forces the prediction to stay within a good
convergence region surrounding the path. If a large number of iterations is al-
lowed, a bad prediction might ultimately converge, but it may wander first and
become attracted to a completely different path in the homotopy. Keeping N
small, the step-size adaptation slows down to negotiate sharp turns in the path
and accelerates whenever the path is relatively straight. Properly implemented,
this results in a robust and efficient path tracking algorithm.

We can be a bit more precise. Let us do so by specifically considering
an Euler predictor with a Newton corrector. Both of these derive from the
linearized local model of the path. The Taylor series at (z1, t1) is

H(z1 +∆z, t1 +∆t) = H(z1, t1)+
∂H

∂z
(z1, t1)∆z+

∂H

∂t
(z1, t1)∆t+H.O.T. (18)

where the higher order terms, H.O.T., are quadratic or higher in (∆z, ∆t).
Ignoring the higher order terms and setting H(z1 + ∆z, t1 + ∆t) = 0, one has
the basic Euler predictor and Newton corrector relations. These are a system of
n equations in n+1 unknowns; as long as the combined matrix [∂H/∂z ∂H/∂t]
is rank n, there is a well-defined tangent direction and tracking may proceed.
The predictor adds a constraint on the length of the step along the tangent,
whereas corrector steps are constrained to move transverse to the tangent. The
extra constraints are particularly simple in the case where ∂H/∂z is rank n, for
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then the path progresses monotonically in t, and the step can be controlled via
the advance of t. Accordingly, one has a linear system to be solved for ∆z:

[
∂H

∂z
(z1, t1)

]
∆z = −

(
H(z1, t1) +

∂H

∂t
(z1, t1)∆t

)
. (19)

For prediction, we set ∆t = s, the current step size, and for correction, we set
∆t = 0.

Since the neglected terms are quadratic, the prediction error is order O(s2).
Thus, in the case of a failed step, cutting the step size from s to as reduces the
prediction error by a factor of a2. In this way, cuts in the step size quickly reduce
the prediction error until it is within the convergence region of the corrector.
With a kth order predictor, the prediction error scales as ak+1, potentially
allowing larger step sizes. In any case, the adaptive approach quickly settles
to a step size s just small enough so that the corrector converges, while the
next larger step of s/a fails. With a = 1/2 and M = 5, the step size adapts to
within a factor of 2 of its optimum, with an approximate overhead of 20% spent
checking if a larger step size is feasible.

Failure of path tracking with an adaptive step size can be understood from
the discussion of Newton’s method in § 2. For small enough initial error and
exact arithmetic, the Newton corrector gives quadratic convergence to a non-
singular root. Near a singularity, ‖J−1

∗ ‖ is large, which can lead to a small
quadratic convergence zone and a slower rate of quadratic convergence. Inexact
arithmetic can further shrink the convergence zone, degrade the convergence
rate from quadratic to linear, and introduce error into the final answer. From
these considerations, we see that there are two ways for the adaptive step size
path tracker to halt prematurely near a singularity.

1. The predictor is limited to a tiny step size to keep the initial guess within
the convergence zone of the corrector. If this is too small, we may exceed
the total computational cost allotted for the path.

2. The path may approach a point where the final error of the corrector is
larger than the requested path tracking tolerance.

The first mode of failure can occur even with infinite precision, but degra-
dation of the convergence properties with too low a precision increases the oc-
currence of this failure. The second mode of failure is entirely a consequence of
lack of precision. By allocating enough precision, we can eliminate the second
mode of failure and reduce the occurrence of the first mode. It is important
to note that in some applications there is flexibility in the definition of the
homotopy, which can be used to enlarge convergence zones and thereby speed
up path tracking. For example, re-scaling of the equations and variables can
sometimes help. However, such maneuvers are beyond the scope of this paper,
which concentrates only on tracking the path of a given homotopy.
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4 Adaptive precision

The use of high precision can largely eliminate both types of path tracking
failure identified above. However, high precision arithmetic is expensive, so
it must be employed judiciously. One might be tempted to ratchet precision
up or down in response to step failures as in the adaptive step size algorithm.
This presents the difficulty that there is just one stimulus, step failure, and
two possible responses, cut the step size or increase precision. In the following
paragraphs, we outline two possible approaches for adapting both step size and
precision.

Both our “reactive” adaptation algorithm and our “proactive” one are en-
compassed in the same flowchart, Figure 4.1. One may see that the heart of the
method is still the adaptive step size tracker described in § 3. In the diagram,
P is the number of digits of precision and Pmax is the largest precision we allow.
The step size of the tracker is ∆t, and ε(P ) is a lower limit for it, depending
on P , as discussed further below. The magnitude of the most recent Newton
step in the corrector is ‖d‖ and 10−τ is the accuracy to which we wish to track
the path. The final value of t to which we wish to track is tf . Limits on P and
on the total number of steps guarantee that the algorithm always terminates,
declaring failure if too much computation has occurred before reaching tf .

The algorithm as presented in Figure 4.1 assumes that the final value tf can
be reached without encountering an exact singularity. The homotopies used for
solving polynomial systems are constructed such that, with probability one, no
singularities will occur until possibly at the end, say t = t∗, where the homotopy
function H(z, t∗) = F (z) is the target system. In this situation, one should not
use the corrector at t = t∗. Instead, one may predict the endpoint from values of
t near t∗ and accept the predictions as accurate when two successive ones agree
to the desired precision. Both the prediction to t∗ and the prediction to the next
point on the path near t∗ benefit from the use of a more sophisticated predictor
than Euler’s method, accounting for the possible existence of a singularity at the
endpoint. For example, endgames that estimate the winding number of the root
and use it to compute a fractional power series can be very effective [17, 19]. Such
endgames still use a path tracker to approach t∗. In this paper, the endgame
itself is out of scope: we discuss only the tracking algorithm and we consider
the final value tf 6= t∗ to be the last point on the path required by the endgame.

4.1 Reactive Adaptation

Reactive adaptation changes precision in response to the observed behavior of
the tracking process. In particular, if path tracking fails at a given precision,
one may try again at a higher precision. The simplest approach is to run the
entire path in a fixed precision with adaptive re-runs. That is, if the path track-
ing fails, one re-runs it in successively higher precision until the whole path is
tracked successfully or until limits in computing resources force termination.
The advantage of this approach is that adaptation is completely external to
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the core path tracking routine. Thus, this strategy can be applied to any path
tracker that enables requests for higher precision. For example, in the poly-
nomial domain, the package PHC [24] offers multiple precision, although the
precision must be set when calling the program.

The path re-run strategy has two main disadvantages. First, when too low
a precision is specified, the tracker wastes computation near the point of failure
before giving up and initiating a re-run in higher precision. Second, and more
important, the whole path is computed in high precision when it may be needed
only in a small section of the path, often near the end in the approach to a
singular solution.

A slightly more sophisticated treatment avoids re-computing the segment of
the path leading up to the failure point. Upon failure at one precision, higher
precision is initiated from the last successfully computed point on the path.
In this approach, the adaptive step size module may still waste time cutting
the step size before finally triggering a needed increase in precision. Moreover,
the minimum step size needs to be set appropriately so that the precision is
increased correctly. Once the precision has been increased, it may take many
steps before the step size is increased again to a reasonable size. There is also a
theoretical possibility that even though more precision is needed to accurately
track the path, the tracking module may wander instead of failing, jumping to
another solution path in the homotopy.

Figure 4.1 presents a flowchart that encompasses both the reactive adapta-
tion method just described and the proactive one of the following section. For
the reactive method, the checks labeled A, B, and C are skipped. There are
three branches where the reactive method increases the precision, P : the pre-
diction or correction steps may fail or the step size, ∆t, may become too small.
Failure in the predictor or corrector steps means that the linear solve of Eq. 19
has aborted early due to singularity. Using the magnitude of the largest entry
in J as ‖J‖, Gaussian elimination with row pivoting may declare such a failure
when the magnitude of the largest available pivot is smaller than uE‖J‖, for
then the answer is meaningless.

The check for a step size that is too small is to compare ∆t to ε(P ), a
predetermined minimum step size for each level of precision. It is important
to note that making ε(P ) too large may cause a runaway condition where pre-
cision is rapidly increased to its maximum, thus causing the path to declare
failure. Setting it too small will result in temporary stalling of the path, wast-
ing computation until the precision increase is finally triggered and wasting more
computation afterwards as the algorithm has by then adopted an unnecessarily
small step size. Our settings for ε(P ) are given in § 5.1. We determined by
experimentation that values of ε(P ) = 10a−P for 2 ≤ a ≤ 4 seem to work well.

A path may have a difficult spot somewhere other than near the end of the
path. Approaching this spot, the step size will decrease and the precision may
increase. After passing the difficulty, the algorithm needs a means of readjusting
back to a larger step size and smaller precision. For the box “Consider increase
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∆t,” we use the criterion of the classic step-size control method of § 3, that is,
we increase ∆t if several successive steps have succeeded. It is not clear at this
time how to implement decreases in precision in a purely reactive manner. In
contrast, the proactive approach of the following section gives a clear signal for
when precision can be decreased.

4.2 Proactive adaptation

Instead of waiting for the adaptive step size method to fail before initiating
higher precision, we propose to proactively monitor the conditioning of the ho-
motopy to judge the level of precision needed at each step. In this way, the
computational burden of higher precision is incurred only as needed, adjusting
up and down as the tracker proceeds. If done properly, this avoids the com-
putational cost incurred in the reactive approach of unnecessarily cutting the
step size when lack of precision is the root cause. Of course, monitoring the
numerical properties of the homotopy introduces a new computational burden
of its own. We will explore whether the trade-off is advantageous with respect to
total computation, but even if the trade-off is in favor of the reactive approach,
the proactive approach could still be preferable to avoid wandering due to lack
of precision.

To decide how much precision is needed, we turn to the analysis of Newton’s
method from § 2. We wish to ensure that the achievable accuracy is within the
specified tolerance and that convergence is fast enough.

In what follows, we need to evaluate ‖J‖ and ‖J−1‖. These do not need
to be very accurate, as we will always include safety margins in the formulas
that use them. ‖J‖ is readily available in the max norm, i.e., the matrix norm
induced by the infinity norm for vectors. ‖J−1‖ is more difficult, as we do
not wish to compute the full inverse of the matrix. This issue has been widely
studied in terms of estimating the condition number κ = ‖J‖‖J−1‖. A relatively
inexpensive method, suggested in [26] and elsewhere, is to choose a unit vector
b at random and solve Jy = b for y. Then, we use the estimate ‖J−1‖ ≈ ‖y‖.
Although this underestimates ‖J−1‖, tests of matrices up to size 10× 10 show
the approximation to be reliably within a factor of 10 of the true value, which
is easily absorbed into our safety margins.

One requirement is that ‖J−1‖‖E‖ should be small enough to ensure that the
error-perturbed Jacobian is nonsingular. Minimally, we require ‖J−1‖‖E‖ < 1,
but by requiring it to be a bit smaller, say ‖J−1‖‖E‖ < 10−σ1 for some σ1 ≥ 1,
we force K ≈ 1, as defined in Eq. 13. This removes the growth of K as one
possible source of failure. Suppose that the error function φ in Eq. 4 is of the
form φ = Φu. Then, our first rule is to require

‖J−1‖E (‖J‖+ Φ) u < 10−σ1 . (20)

Using P decimal digits of arithmetic results in precision u = 10−P , so we may
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Figure 1: Adaptive precision path tracker with proactive precision checks. The
purely reactive algorithm skips all checks of conditions A, B, and C. The purely
proactive approach sets ε(P ) ≡ 0.
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restate this rule as

P > σ1 + log10[‖J−1‖E (‖J‖+ Φ)]. (A)

A second requirement is that the corrector must converge within N itera-
tions, where we keep N small as in the usual adaptive step size algorithm, typi-
cally 2 or 3. Let us say that the tolerance for convergence is ∆ = ‖v−v∗‖ < 10−τ .
Recall that in each step of Newton’s method, we compute d and take the step
v̄ = v+d. The best estimate available of the accuracy is ∆ ≈ ‖d‖, so we declare
success when ‖d‖ < 10−τ . Suppose that after i < N iterations this is not yet
satisfied. We still have N − i iterations to meet the tolerance, and we would like
to be sure that a lack of precision does not prevent success. Pessimistically, we
assume that the linear factor in ∆ in Eq. 16 dominates the quadratic one and
that the rate of convergence does not improve with subsequent iterations. We
force K ≈ 1, and we have u ¿ 1. Including the same safety margin as before,
10σ1 , the requirement becomes

[
10σ1‖J−1‖ ((2 + E)u‖J‖+ Eφ) + u

]N−i ‖d‖ < 10−τ . (22)

As before, let’s assume φ = Φu. Taking logarithms, the number of decimal
digits of precision must satisfy

P > σ1 + log10

[‖J−1‖ ((2 + E)‖J‖+ EΦ) + 1
]
+ (τ + log10 ‖d‖)/(N − i). (B)

Since we only apply this formula when the tolerance is not yet satisfied, we have
‖d‖ > 10−τ , or equivalently, τ + log10 ‖d‖ > 0. This implies that between cor-
rector iterations, requirement B is always more stringent than Eq. A. However,
we still use Eq. A outside the corrector, because ‖d‖ is not then available.

Our third requirement is that the precision must be high enough to ensure
that the final accuracy of the corrector is within the tolerance at full convergence.
For this, Eq. 17 is binding, so including a safety margin of 10−σ2 and using the
norm of the current approximate solution, ‖v‖, as the best available estimate of
‖v∗‖, we require

‖J−1‖ψ + u‖v‖ < 10−τ−σ2 . (24)

Suppose the error in evaluating the homotopy function is given by ψ = Ψū. If
the function is evaluated in the same precision as the rest of the calculations,
i.e., ū = u, we have the requirement

P > σ2 + τ + log10(‖J−1‖Ψ + ‖v‖). (C)

If instead we evaluate the function to higher precision, say ū = 10−P ′ < u =
10−P , we have the dual criteria

P > σ2 + τ + log10 ‖v‖, P ′ > σ2 + τ + log10 ‖J−1‖+ log10 Ψ. (C′)

The effect of adding the two errors is absorbed into the safety factor σ2.
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Conditions A, B, and C (or C′) allow one to adjust the precision as necessary
without waiting for the adaptive step size to fail. If necessary, the precision can
even be increased between corrector iterations. An algorithm using these criteria
is described by the flowchart in Figure 4.1. With the proactive checks in place,
it is no longer useful to trigger reactive increases in precision due a to small
step size. Accordingly, we may remove the step-size check, which is equivalent
to setting ε(P ) ≡ 0.

Unlike in the reactive method, the proactive method has a clear signal for
when it is safe to decrease precision after passing a locally ill-conditioned point
on the path. In the “consider decreasing P” box of Figure 4.1, one may safely
do so if the checks of criteria A, B, and C in the last tracking step indicate that
a lower precision would have sufficed.

4.3 Error estimates

To use the foregoing procedures, we need the function evaluation error, ψ, and
the errors contributing to E, namely, E and φ. There is a trade-off between
using rigorously safe bounds for highest reliability or using less stringent figures
reflecting typical behavior to avoid the overuse of high precision. Rough figures
are acceptable as this is just a means of setting the precision.

While ψ and φ concern the errors in evaluating the function and its Jacobian,
the factor E concerns the stability of the linear solve. Round-off errors can
accumulate through each stage of elimination. When Gaussian elimination with
partial pivoting is used, the worst-case error bound grows as E = 2n for solving
an n × n system [3]. However, as indicated in [3], E rarely exceeds n with the
average case around n

2
3 or n

1
2 . Setting E = n2 should therefore be sufficient for

almost all cases.
It is important to note that the error in the function depends on the error

in its parameters. For example, consider the simple function f(x) = x2 − 1/3.
If this is rounded off to g(x) = x2 − 0.333 before we use high precision to solve
g(x) = 0, we will obtain an accurate value of

√
0.333 but we will never get an

accurate value of 1/
√

3. Although this is an obvious observation, it can easily be
forgotten in passing a homotopy function from some application to the adaptive
precision path tracking algorithm. If coefficients in the function are frozen at
fixed precision, the algorithm tracks the solutions of the frozen function, not the
exact problem that was intended. Whether the difference is significant depends
on the nature of the application and the sensitivity of the function.

In the remainder of this section, we discuss how to obtain error estimates
for several classes of functions.

4.3.1 General functions

A user of the path tracker will not usually wish to expend a lot of effort in devel-
oping error bounds, so an automated error analysis is desirable. A rigorous and
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automated way of establishing error bounds for almost any continuous function
is to use interval arithmetic. Software packages such as IntBis [7], IntLab [21],
Alias [13], and MPFI [20] provide interval evaluation for any real-valued function
composed from a wide range of continuous elementary functions and arithmetic
operations. Among these packages IntLab and MPFI currently support multi-
ple precision, although IntLab’s multiple precision is slow while MPFI does not
support complex arithmetic. While a relatively efficient complex multiprecision
interval arithmetic could be built on top of MPFI, it is beyond our scope to
pursue this.

One could go further and employ interval techniques to obtain a path tracker
with fully rigorous step-size control, as in [8], guaranteeing that path crossing
never occurs. However, this can be expensive, due partially to the cost of inter-
val arithmetic but more significantly due to the cost of over-conservative error
bounds, which slow the algorithm’s progress by driving the step size smaller
than necessary. Still, when rigorous results are desired, it may be worth the
computational cost. The method of [8] does not explicitly include adaptive pre-
cision, so something along the lines discussed here could be useful in modifying
that approach.

Since our main area of interest is in systems of polynomial equations, we
devote the rest of this article to that important subclass.

4.3.2 Straight-line polynomials

Suppose f : Cn → C is a polynomial whose terms are indexed by the set I, that
is,

f(z) = f(z1, . . . , zn) =
∑

i∈I
ciz

d1i
1 · · · zdni

n . (27)

We wish to estimate the error in evaluating f(z) using floating-point arithmetic
with unit roundoff ū. Evaluating the fully expanded form of a polynomial,
that is, evaluating each term of Eq. 27 and then summing, is not the most
efficient approach in terms of operation counts. For example, to evaluate a
dense polynomial in one variable, e.g., f(x) = c0x

3 + c1x
2 + c2x + c3, Horner’s

rule, f(x) = (((c0x) + c1)x + c2)x + c3, uses the fewest multiplications. See [6,
§4.6] for more discussion. Different evaluation procedures can result in different
floating point round-off errors as well, for example, in floating-point arithmetic
distributivity, a(b + c) = ab + ac, and associativity, (a + b) + c = a + (b + c), do
not hold exactly [6, §4.2].

Suppose the program to evaluate f(z) has been parsed into a straight-line
program, that is, a sequence of unary and binary operations free of branches or
loops. Then, we may approximate errors by accumulating their effects across
successive operations. Interval analysis by circular arithmetic [4] is a convenient
method for this. Let 〈a, r〉, a ∈ C, r ∈ R+, denote the closed disk in the complex
plane with center a and radius r. For two disks A1, A2 and an operation “◦,”
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let
A1 ◦A2 = {x1 ◦ x2|x1 ∈ A1, x2 ∈ A2}.

We are interested in the cases when “◦” is addition or multiplication. Then,
one may confirm the inclusions [4]

〈a1, r1〉+ 〈a2, r2〉 = 〈a1 + a2, r1 + r2〉,
〈a1, r1〉 × 〈a2, r2〉 ⊂ 〈a1a2, |a1|r2 + |a2|r1 + r1r2〉. (28)

This shows that if a1 and a2 are the computed values of the operands whose exact
values lie in the respective disks, then the true sum or product must lie within
the disks on the right-hand side of these relations. However, when we evaluate
a1 ◦ a2 in floating point, round-off error must be taken into consideration. By
appropriately increasing the radius of the output disk, we can guarantee that it
still contains the exact answer. Since the roundoff for any point in the disk is
bounded by |x|u where |x| is the largest magnitude of any point in the disk, we
have

〈a1, r1〉+ 〈a2, r2〉 ⊂ 〈a1 + a2, r1 + r2 + (|a1 + a2|+ r1 + r2)u〉,
〈a1, r1〉 × 〈a2, r2〉 ⊂ 〈a1a2, ρ + (ρ + |a1a2|)u〉,

where ρ = |a1|r2 + |a2|r1 + r1r2.
(29)

These relations can be used to bound the accumulated floating-point error in
the straight-line evaluation of a polynomial. In computing the radius in either
of these formulae in floating point, one should consistently use upward rounding
to be sure of obtaining inclusion.

To apply proactive adaptation based on criteria A, B, and C (or C′), we
would like to develop a linearized model of how the error depends on precision.
That is, we would like to express the evaluation error ψ(z, u) as ψ(z, u) ≤
Ψ(z)u + H.O.T., where the higher order terms depend on quadratic and higher
powers of u. To this end, suppose that the error radii of all the initial data
are expressed in terms of the unit roundoff. For example, the exact number
2 + 3i is 〈2 + 3i, 0u〉 whereas the floating-point representation (1/3)fp of 1/3 is
inexact: (1/3) ∈ 〈(1/3)fp, (1/3)fpu〉. Applying Eq. 29 to each operation of the
straight-line program and keeping u as an indeterminant, the result after each
operation is a disk of the form 〈a, r(u)〉, where a ∈ C and r(u) is a polynomial
in u with nonnegative real coefficients. At the end of the computation, one
obtains a disk f(z) ∈ 〈f̂(z), r1(z)u + r2(z)u2 + H.O.T.〉, where f̂(z) is the
floating point evaluation of f(z), and r1 and r2 are numeric coefficients. For
a given unit roundoff u0, if r2u0 << r1, then the linear term dominates the
quadratic one and presumably all higher powers of u as well. Then, we may
safely use ψ(z, u) ≈ r1(z)u, i.e., Ψ = r1(z), in the adaptive precision routines.

The foregoing methodology computes the function value and the error bound
simultaneously. Unfortunately, the error bound is at least as expensive to com-
pute as the function value, which may be an unacceptable computational bur-
den. A less burdensome approach is to compute an error bound over a region
and update this only when the path tracking algorithm leaves that region. To
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do so, we again just apply Eq. 29, but we begin with a disk for each coor-
dinate zi of z, say zi ∈ 〈ai, ρi〉, ρi ∈ R+, i = 1, . . . , n. The method pro-
ceeds as above, with the only difference being that the radii of the results
of each operation have a constant coefficient. At the end, we have a disk
〈f̂(z), r0(z, ρ)+ r1(z, ρ)u+ r2(z, ρ)u2 +H.O.T.〉 that contains all possible values
that the polynomial may take on the region defined by the initial disks.

Throughout this section, we have spoken only of how to bound the roundoff
error in function evaluation. It should be clear that the same approach applies
to bound the errors in the entries of the Jacobian matrix, since each of these is
also a polynomial. After estimating the error in each entry, one may estimate
the error φ(z, u) in Eq. 4 using the relations ‖A‖2 ≤

√
n ‖A‖p for p = 1 or

p = ∞.

4.3.3 Approximations for expanded polynomials

To avoid program complexity and save computation time, it is preferable not to
perform a complete interval analysis of errors. In many cases a rough analysis
is sufficient and easily derived. This is indeed possible for the case of expanded
polynomials.

Referring to Eq. 27, we denote the degree of the i-th term as di =
∑n

j=1 dji. If
the coefficient ci is represented in floating point with unit roundoff ū, then the er-
ror in the floating-point evaluation of the i-th term is ū(di+1)|ci||z1|d1i · · · |zn|dni ,
ignoring quadratic and higher terms in ū. (If ci has an exact floating point rep-
resentation, such as if it is an integer of magnitude smaller than 1/ū, then a
slightly smaller bound applies: ūdi|ci||z1|d1i · · · |zn|dni .) Summing the terms and
rounding off to working precision u gives the error between the computed value
f̂(z) and the true f(z) of

e(z) = |f̂(z)− f(z)| ≤ u|f(z)|+ ū
∑

i∈I
(di + 1)|ci||z1|d1i · · · |zn|dni . (30)

Thus, comparing to Eq. 2, we have

ψ(z, ū) = ū
∑

i∈I
(di + 1)|ci||z1|d1i · · · |zn|dni . (31)

Equation 31 is as computationally expensive to evaluate as f(z). However,
this cost is usually small compared to evaluating the Jacobian matrix and solving
for the Newton correction. Even so, one might prefer to replace ψ(z, ū) with
an upper bound that is cheaper to compute. Suppose D = maxi∈I di and
|z|∞ = maxj∈[1,n] |zj |. Then, clearly

ψ(z, ū) ≤ ū|z|D∞
∑

i∈I
(di + 1)|ci| = ū|z|D∞S, (32)

where S is the sum indicated in the intermediate expression. Since S does not
depend on z, it can be computed once at the beginning of the path tracking
algorithm.
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For a system of polynomials, F : Cn → Cm, we obtain an error estimate for
each polynomial in the system, i.e., ψj(z, ū), j = 1, . . . , m. Then, the 2-norm
error of the system is simply ψ(z, ū) = ‖[ψj(z, ū)]‖2, which if we use Eq. 32
becomes

ψ(z, ū) = ū|z|D∞(S2
1 + · · ·+ S2

m)1/2,

where Sj is the sum appearing in Eq. 32 applied to the j-th polynomial.
At first glance, it may seem that errors could be reduced by simply scaling

the functions, and thereby scaling their coefficients, by some small factor. But
‖J−1
∗ ‖ will scale oppositely, so the error predicted by Eq. 17 is unchanged.

4.3.4 Homogeneous polynomials

Homogeneous polynomials, in which every term has the same degree D = di,
i ∈ I, are a special case. Some problems are naturally homogeneous, but
for those that are not, it is often convenient and numerically advantageous
to homogenize the equations before solving the system. Any inhomogeneous
polynomial f(z1, . . . , zn) can be easily homogenized to obtain a related function
F (x0, x1, . . . , xn), with

F (1, x1, . . . , xn) = f(x1, . . . , xn).

If f is as in Eq. 27, then

F (x) =
∑

i∈I
cix

D−di
0 xd1i

1 · · ·xdni
n , (33)

where D and di are as above. Hence, for any solution z∗ of f(z) = 0 there is a
corresponding solution x∗ = (1, z∗) of F (x) = 0.

One advantage of homogenization is that we can re-scale any solution x∗ of
F (x) = 0 to make ‖x∗‖ = 1, which often helps numerical conditioning. More
precisely, since F (λx) = λDF (x), we have that if F (x) = 0, then also F (λx) = 0.
Consequently, the solution set of a system of homogeneous polynomials can be
said to lie in projective space Pn, the set of lines through the origin in Cn+1.
(Similarly, the solutions of multihomogeneous polynomials lie in a product of
projective spaces, see [22].) To numerically solve for a point x∗ ∈ Pn, we
intersect the corresponding line in Cn+1 with an inhomogeneous hyperplane
aT x − 1 = 0, where a ∈ Cn+1 can be chosen arbitrarily excepting a such that
aT x∗ = 0. In other words, aT x− 1 = 0 defines a Cn patch on Pn, and aT x = 0
is the hyperplane at infinity for that patch. In practice, we may choose a at
random, with a zero probability of picking it such that the one-real-dimensional
homotopy path intersects the hyperplane at infinity. However, during path
tracking, if ‖x‖ should grow, one may reassign a = x′/‖x‖2, where x′ denotes
the complex conjugate of x, so that the new representative of the same projective
point is x/‖x‖2. In this way, the magnitudes of both a and x can be kept near one
throughout the homotopy without changing the underlying path in projective
space.
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Suppose we use homogenization to force each homogenized coordinate xi,
i = 0, 1, . . . , n to lie in a unit disk at the origin: xi ∈ 〈0, 1〉. Then, we may
obtain in one initial computation an error bound that will hold throughout the
entire path tracking procedure by applying the method of § 4.3.2. Similarly,
since ‖x‖∞ ≤ 1, Eq. 32 becomes

ψ(x, u) ≤ u(D + 1)
∑

i∈I
|ci|, (34)

or just uD
∑

i∈I |ci| if the coefficients are exact. Similarly, the derivatives have
an approximate error bound of

φ(x, u) ≈ uD(D + 1)
∑

i∈I
|ci|. (35)

The downside is that this bound may be overly conservative.
The effect of homogenization on the interpretation of the desired tolerance

should be noted. The homogeneous coordinates x = [x0, x1, . . . , xn] ∈ Pn cor-
respond to dehomogenized coordinates z = (z1, . . . , zn) = (x1/x0, . . . , xn/x0).
Suppose each coordinate of x is computed to accuracy ε << 1 and consider what
this implies about the accuracy of z. Dehomogenization of the result approxi-
mates zi as ẑi = (xi+δi)/(x0+δ0), where |δi| ≤ ε, i = 0, . . . , n. If ‖z‖∞ < 1, our
homogenization will compute it with |x0| ≈ 1 and so |ẑi−zi| ≈ δi + δ0 ≤ 2ε. On
the other hand, if ‖z‖∞ > 1, the largest coordinate of x, say xk will be computed
with magnitude 1, and dehomogenization gives |ẑk − zk| ≈ |zk|δi + |zk|2δ0 ≤
(|zk| + |zk|2)ε. So small solutions are found to absolute error 2ε whereas large
ones are found to absolute error ε‖z‖2∞. This implies a total loss of precision
for ‖z‖∞ ≥ 1/ε, as one must expect since [ε, 1] ∈ P and [0, 1] ∈ P become indis-
tinguishable to accuracy ε, yet they dehomogenize to 1/ε and ∞, respectively.

5 Computational results

This section contains a brief discussion of the implementation details for multi-
precision arithmetic and for evaluating the rules for adapting precision. We then
discuss the application of the adaptive precision methods to several polynomial
systems.

5.1 Implementation details

Bertini [2] is a software package for computation in numerical algebraic geom-
etry currently under development by the authors. Bertini is written in the C
programming language and makes use of straight-line programs for the rep-
resentation, evaluation, and differentiation of polynomials. All the examples
discussed here were run on an Opteron 250 processor running Linux, using a
version of Bertini similar to the beta release.
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IEEE
double MPFR

bits 52 64 96 128 192 256 512 1024
decimal digits 16 19 28 38 57 77 154 308

Table 1: Number of digits for mantissas at selected levels of precision

P 52 64 96 128 160 192 224
ε(P ) 10−14 10−16 10−25 10−34 10−43 10−52 10−61

Table 2: Values of ε(P ) for reactive adaptive precision

The adaptation rules, A, B, and C (or C′), leave some implementation choices
open. For the runs reported here, we chose to evaluate function residuals to the
same precision as the computation of Newton corrections, so rule C applied,
not rule C′. Also, in rules A and B, we chose to use E = n2, where n is
the number of variables, which is somewhat conservative for typical cases but
underestimates the worst pathological cases. (See section 4.3 for more on this
issue.) The rules require formulas for evaluating the error bounds ψ(x, u) = Ψu
and φ(x, u) = Φu. These are problem dependent, so we report our choices for
each of the example problems below. Also, since the size of the first step is
problem and path dependent, Bertini automatically adjusts this based on the
results of the Euler prediction of the first step rather than relying on the user
to provide an appropriate size.

To adaptively change precision, Bertini relies on the open source MPFR
library for multiprecision support. Bertini has data types and functions for
double precision (based on the IEEE double standard) and higher precision
(using MPFR). Although the program would be simpler if MPFR data types
and functions were used exclusively, the standard double precision types and
functions in C are more efficient, so Bertini uses these whenever the adaptation
rules indicate that double precision is sufficient. Additional details regarding
the use of multiple precision may be found on the Bertini website. Since the
use of adaptive precision variables is highly implementation-specific, no other
details are described here.

MPFR requires the addition of precision to the mantissa in packets of 32 bits.
Since the discussion of the examples below involves both binary and decimal
digits, Table 1 provides the conversion between the two for selected levels of
precision.

The reactive adaptation method requires a minimum step size, ε(P ), for
each level of precision, P . The values we used in our experiments are shown in
Table 2.
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5.2 Numerical error for a Wilkinson polynomial

Before testing adaptive precision in a path tracking application, let’s consider
Newton’s method applied to a Wilkinson polynomial and compare its results
to the predictions of our error analysis. The kth Wilkinson polynomial, wk(z),
is defined as wk(z) =

∏k
i=1(z − k), and we report here on the specific case

of k = 11. To solve w11(z) = 0 numerically, we use straight-line programs to
evaluate w11(z) and J(z) = w′11(z) and apply Newton’s method. Let us consider
two different straight-line programs for w11(z):

• the product form f1(z) = (z − 1)(z − 2) · · · (z − 11) evaluated left to right
as written,

• the expanded form f2(z) = z11 − 66z10 + 1925z9 − · · · − 150917976z2 +
120543840z − 39916800, where powers of z are formed by multiplication,
then the terms are summed from left to right.

In the expanded form, the coefficient of largest magnitude is that of the quadratic
term, which is large, but still small enough to be represented exactly in double
precision. (For large enough k, an error analysis in double precision would have
to include roundoff error in the coefficients.)

Consider Newton’s method in the vicinity of the root z = 7. For z ∈ 〈7, .1〉
with exact coefficients, error analysis of the product form gives

f1(〈7, .1〉) ∈ 〈0, 2682 + 52492u + 488015u2〉

while the expanded form gives

f2(〈7, .1〉) ∈ 〈0, 1.2× 1011 + 9.4× 1012u + 2.6× 1013u2〉.

In both cases, the quadratic term in u is negligible for all u under consideration.
Now, the Jacobian at z = 7 is J(7) = 17280, so Eq. 17 predicts that Newton’s
method will converge to ∆ ≈ (7+Ψ/17000)u, where Ψ = 53000 for the product
form and Ψ = 9.4 × 1012 for the expanded form. For double precision, u ≈
2.2×10−16, so we have ∆ ≈ 2.2×10−15 for the product form and ∆ ≈ 1.2×10−7

for the expanded form. As Newton’s method converges towards the root, the
bound Ψ may improve. For example, consider the tighter disk z ∈ 〈7, 1× 10−7〉
for which the error analysis gives

f1(〈7, 1× 10−7〉) ∈ 〈0, 0.00173 + 0.035u + 0.33u2〉

while the expanded form gives

f2(〈7, 1× 10−7〉) ∈ 〈0, 1.2× 105 + 8.7× 1012u + 2.3× 1013u2〉.

Due to the fact that z = 7 has an exact representation in floating point (this will
not be the case for the roots of most polynomials one would solve numerically!),
a better estimate of the final error for Newton’s method is in this case just
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∆ ≈ uΨ/17000. One finds that as the disk tightens around z = 7, Ψ → 0 for
the product form and so we expect Newton’s method to converge to the exact
root. In contrast, for the expanded form of w11(z), Ψ remains at 8.7 × 1012,
implying that one cannot expect a final answer better than ∆ ≈ 1.1 × 10−7

using double precision.
This is a good estimate of the behavior one observes by running Newton’s

method with initial guesses in the vicinity of z = 7. Using the product form to
evaluate the polynomial and starting with an initial guess of z = 7.03 + 0.07i,
one obtains errors |zi − 7| in the first five iterates of 1.96 × 10−3, 1.42 × 10−6,
7.36 × 10−13, 1.54 × 10−25, 0, at which point the exact root has been found.
For the expanded form and the same initial guess, the errors are 1.96 × 10−3,
1.41× 10−6, 4.22× 10−10, 2.40× 10−9, 2.43× 10−10. The iterates dither around
the exact root, staying within |zi − 7| < 3.6 × 10−9 for 3 ≤ i ≤ 50. This is
somewhat better than the predicted residual of 1×10−7, which is not surprising
because the estimate of Ψ is conservative.

5.3 High-degree Chebyshev polynomials

To illustrate our method’s applicability to high-degree polynomials, let’s con-
sider the Chebyshev polynomials, which have been studied extensively and are
known to have many interesting properties [3]. There is one Chebyshev polyno-
mial in each degree, and scaled so that the leading coefficient is 1, they may be
defined recursively by

T0(x) := 2,
T1(x) := x, and
Ti(x) := xTi−1(x)− Ti−2(x)/4, for i ≥ 2.

The roots of Tn+1(x) are all nonsingular and given by

cos
(

(2n + 1− 2k)π

2n + 2

)
,

for k = 0, 1, ..., n.
Several of these polynomials, with degrees ranging from 10 to 150, were

solved using Bertini. The systems were run with a linear homotopy with a
total-degree start system and without homogenizing. Bounds on Φ and Ψ were
set using the method of Section 4.3.2 and are displayed in Table 3. Since the
solutions of the Chebyshev polynomials are known to be non-singular, the paths
were tracked to tf = 0 using basic homotopy continuation with a tolerance of
10−8, i.e., τ = 8, and both safety digits set to 1.

With this setup, double precision is sufficient for path tracking with n =
10. This allows for the demonstration of the current cost of higher precision
relative to double precision as shown in Table 4. Notably, increasing from double
precision (52 bits) to 64-bit multiple precision increases the computational time
by a factor of 13.3, while increasing from 64 bits to 1024 bits causes only a

23



n Ψ Φ
10 54 230
50 520,000 1.4·107

100 1.3·1010 7.2·1011

150 2.3·1014 2.0·1016

Table 3: Estimates of Ψ and Φ for the Chebyshev problems of varying degrees.

double (52 bits) 64 bits 96 bits 128 bits 256 bits 512 bits 1024 bits
2.447 32.616 35.456 35.829 50.330 73.009 124.401

Table 4: Average time, in seconds, of 10 runs of the Chebyshev polynomial of
degree 10 with τ = 8, for different levels of fixed precision.

factor of 3.8 increase. This clearly shows the high computational cost to make
the first move from double precision to higher precision.

Table 5 compares the computational times of fixed precision with those of
proactive and reactive adaptive precision. For fixed precision, we report the
time for the minimum precision that successfully tracked all paths. For n = 10,
which runs successfully in double precision, one can see in the proactive run
time the overhead cost of checking conditions A, B, and C to see if an increase
in precision is needed. Since higher precision is not needed for n = 10, the
proactive method is the worst performer. For larger n, however, increases in
precision are needed, so both adaptive methods outperform fixed precision. As
n increases, so does the fraction of the path which must be tracked in higher
precision, so relative differences in the times decrease. However, since one does
not know a priori how much fixed precision is needed, the real cost of a fixed
precision re-run strategy would be much higher.

In these runs, the reactive method uses less time than the proactive approach.
This is because the proactive error bounds are conservative, causing an increase
in precision somewhat earlier than the reactive method. The high cost of leaving
double precision outweighs any savings in avoiding failed steps, thus giving the
reactive method the advantage.

n minimum fixed precision proactive reactive
10 52 bits 2.447 2.937 2.447
50 96 bits 1698.350 797.064 319.251
100 128 bits 9763.147 9739.978 3730.438
150 192 bits 32709.488 28944.029 21121.190

Table 5: Average time of 10 runs of Chebyshev polynomials of degree n with
τ = 8, in seconds.
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τ minimum fixed precision proactive reactive
8 96 bits 6.018 1.565 0.368
14 128 bits 203.67 198.67 86.68

Table 6: Average time of 10 runs of the chemical system, in seconds.

5.4 A problem from chemistry

To illustrate the effect of tightening the tracking tolerance (i.e., increasing τ) on
adaptive precision path tracking, we will consider a polynomial system coming
from chemistry. To determine chemical equilibria, one may pass from a set of
reaction and conservation equations to polynomials, as described in [14, 22].
One such polynomial system, discussed in [18], is the following:

f =




14z2
1 + 6z1z2 + 5z1 − 72z2

2 − 18z2 − 850z3 + 0.000000002
0.5z1z

2
2 + 0.01z1z2 + 0.13z2

2 + 0.04z2 − 40000
0.03z1z3 + 0.04z3 − 850


 .

Bertini homogenized this system using one variable group and found the solu-
tions by using a linear homotopy with a compatible total-degree start system,
that is, one whose polynomials have degrees 2, 3, and 2, respectively. The
solution set of this system consists of eight nonsingular finite solutions and a
multiplicity four solution at infinity.

Using the method of Section 4.3.2, the error bounds were set to Ψ = 120, 030
and Φ = 240, 008. Both safety digits were set to 1. To exhibit the effect of
adaptive precision tracking for tighter tolerances, the paths were tracked from
t = 1 to tf = 10−30 using τ = 8 and τ = 14. Each setting was run with 10
different choices of random numbers, and the average run time for the entire
system is provided in Table 6.

With τ = 8, the paths leading to the infinite solution started to fail around
t = 10−7 when using double precision due to the inadequacy of double precision
to complete the linear algebra calculations. With τ = 14, in each of the ten tests
performed, one of the paths leading to the infinite solution failed before t = 0.9
when using double precision due to Newton iterations not converging to the
required tolerance. By rerunning the system with increased (fixed) precision,
the path tracking completed successfully.

Both the proactive and reactive methods tracked all of the paths successfully
in both tolerances. With τ = 8, both methods started tracking all of the paths
in double precision. For the paths in which precision needed to be increased,
this first occurred around t = 10−2 and t = 10−7 for the proactive and reactive
method, respectively. With τ = 14, the proactive method increased precision
immediately and started tracking all paths in 96 bit precision, while the reactive
method was able to start tracking in double precision. These differences of when
the precision was increased directly caused the difference in average tracking
time between the proactive and reactive method.

25



5.5 A multivariate system from robotics

When using homotopy continuation methods to solve polynomial systems, one
should always make use of an endgame. The purpose of the following example is
to compare how the adaptive precision tracking methods of this paper perform
when solving a typical, nonpathological example by simple tracking and with the
added power of an endgame. In particular, the fractional power series endgame
of [19] was employed in solving the following polynomial system [15], an inverse
kinematics problem for a general six-revolute serial-link robot.

f =




x2
1 + x2

2 − 1

x2
3 + x2

4 − 1

x2
5 + x2

6 − 1

x2
7 + x2

8 − 1

−0.24915068x1x3 + 1.6091354x1x4 + 0.27942343x2x3 + 1.4348016x2x4 + 0.40026384x5x8−
0.80052768x6x7 + 0.074052388x1 − 0.083050031x2 − 0.38615961x3 − 0.75526603x4 + 0.50420168x5−
1.0916287x6 + 0.40026384x8 + 0.04920729

0.12501635x1x3 − 0.68660736x1x4 − 0.11922812x2x3 − 0.71994047x2x4 − 0.43241927x5x7−
0.86483855x6x8 − 0.03715727x1 + 0.035436896x2 + 0.085383482x3 − 0.039251967x5−
0.43241927x7 + 0.013873010

−0.63555007x1x3 − 0.11571992x1x4 − 0.66640448x2x3 + 0.11036211x2x4 + 0.29070203x5x7+
1.2587767x5x8 − 0.62938836x6x7 + 0.58140406x6x8 + 0.19594662x1 − 1.2280342x2−
0.079034221x4 + 0.026387877x5 − 0.057131430x6 − 1.1628081x7 + 1.2587767x8 + 2.162575

1.4894773x1x3 + 0.23062341x1x4 + 1.3281073x2x3 − 0.25864503x2x4 + 1.1651720x5x7−
0.26908494x5x8 + 0.53816987x6x7 + 0.58258598x6x8 − 0.20816985x1 + 2.6868320x2 − 0.69910317x3+
0.35744413x4 + 1.2499117x5 + 1.4677360x6 + 1.1651720x7 + 1.1076340x8 − 0.69686809




.

The exact formulation of this problem includes nonalgebraic functions as
coefficients, which Bertini does not currently accept. As a result, the coefficients
were calculated in 1024-bit precision, available at [2], with the first 8 digits
matching the coefficients given above. Using a homotopy similar to that of
Section 5.4, there are 256 paths, 32 leading to finite regular solutions, 64 leading
to thirty-two multiplicity two infinite solutions, 64 leading to four multiplicity
sixteen infinite solutions, and 96 leading to four multiplicity twenty-four infinite
solutions. Even though this problem is 2-homogeneous with the variable groups
{x1, x2, x5, x6} and {x3, x4, x7, x8} , this was not used. Not taking advantage of
the special structure of the system makes it a bit more representative of systems
that come up in practice, where, even taking account of all special structure, the
number of singular solutions greatly outnumber the actual physical solutions,
as in [25].

We ran this system using two different endgames: the first tracking until
the path stabilizes and the second using a power series endgame. In both cases,
a geometric series of sample values for t was set: t = 10−k, for k = 1, 2, . . .
The paths were tracked between the sample points with a tolerance of 10−6,
and sample points for the endgame were refined to full precision. The endgame
stops when successive predictions of the endpoint at t = 0 agree to within
10−12. In the first test, the prediction to t = 0 is taken as just the current path
point, whereas in the second test, a fractional power series was used following
the method in [19]. In both tests, using the method of section 4.3.2, we set
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minimum fixed precision proactive reactive
Test 1 192 bits 300.169 85.404 176.591
Test 2 96 bits 196.143 47.393 37.630

Table 7: Average time of 10 runs of the IPP system for the two tests, in seconds.

Φ to 14.5 and Ψ to 42.2, and both safety digits to 1. The average times are
provided in Table 7. One observes a marked reduction in run time using the
more advanced endgame.

In both tests, the proactive adaptive precision tracking used higher precision
and larger step size than the reactive method to track between the sample points.
In the first test, the proactive method was faster since taking fewer steps in
higher precision was advantageous over taking more steps in lower precision
utilized by the reactive method. In the second test, fewer sample points were
needed to generate an accurate prediction which kept the tracking sufficiently far
away from the endpoints that have high multiplicity. In this case, the reactive
method was faster since taking more steps in lower precision was advantageous
over using higher precision with less steps utilized by the proactive method.

6 Discussion regarding singular endgames

Multiple precision becomes necessary when numerical stability is poor, such as
at a point having a near-singular Jacobian matrix. In the case of an exact
singularity at the end of a continuation path, an endgame based on fractional
power (Puiseux) series or Cauchy integration [19, 22] can increase the accuracy
that can be obtained at a given precision, thereby reducing the computational
burden of higher precision, especially in cases where a double precision endgame
suffices. For the endgame to succeed, the homotopy path must be sampled in
an “endgame operating zone” inside the branchpoint closest to the endpoint
but before the path becomes too ill-conditioned at the end [19, 22]. Without
enough precision, this operating zone is empty. Adaptive precision tracking
will ensure that enough precision is allocated to succeed. Likewise, endgames
based on deflating the system to derive a related nonsingular one [9] may need
higher than double precision to make a correct decision regarding the rank of the
Jacobian at each stage of deflation. The method of [12] may lower the precision
needed to make a correct rank decision, but there is no guarantee that double
precision, or any prespecified precision, will suffice. So while either type of
endgame can help reduce computation and sometimes can avoid higher precision,
ultimately an adaptive precision method is needed to ensure success in difficult
cases. Among the causes leading to difficult cases, the most common are high
degree polynomials, badly scaled functions, endpoints having high multiplicity,
and a tight tolerance on the final accuracy.
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7 Conclusion

We have presented an adaptive precision predictor-corrector path tracking al-
gorithm that automatically allocates enough precision to allow convergence of
Newton’s method in the corrector phase. The adaptation can be driven reac-
tively in response to failures in convergence or proactively using rules based on
a numerical analysis of Newton’s coupled to bounds established on the floating-
point error incurred in evaluating the homotopy function. The reactive approach
is simpler in that no error bound is required and no computation time is spent
evaluating the adaptation rules. It does, however, require the careful setting
of the minimum step size, ε(P ), to ensure that the need for higher precision is
triggered appropriately. We determined good settings for ε(P ) by experimenta-
tion.

The proactive approach requires an error bound. Floating point errors de-
pend not only on the mathematical function being evaluated but also on the
sequence of operations used, for example, a(b + c) and ab + ac may have differ-
ent errors. We provide rough formulas for polynomials evaluated in expanded
form, based on just the degree and the size of the coefficients, and we give a
more precise method using circular arithmetic, a form of interval analysis, to
bound the error in any straight-line polynomial function. To apply the proac-
tive approach to non-polynomial systems, one must extend the interval analysis
to handle whatever new elementary functions arise, such as trigonometric func-
tions and the like. Although we have not carried this out in our experiments,
there appears to be no fundamental barrier to such extensions of the approach.

In focusing on Newton’s method in the corrector phase, we have neglected the
prediction phase. While the corrector dominates the convergence to the path,
we recognize that a careful study of predictor methods is certainly warranted.
The use of different predictor schemes, e.g., Adams-Bashforth rather than Euler,
is well worth considering. Moreover, step size control in the current algorithm is
entirely reactive, i.e., based on the history of success and failure of the predictor-
corrector steps. A careful analysis of the predictor might be combined with the
convergence criteria of the corrector to proactively determine a safe step size,
possibly making decisions balancing the computational cost of a small step size
against that of higher precision. Along this line, the method presented in [8]
presents a rigorous step size control algorithm based on interval arithmetic, but
it does not consider adaptive precision. Instead, if not enough precision is used,
the safe step size goes to zero. An approach like ours may remove this mode
of failure. The main intent of [8] is to prevent path crossing when two or more
paths in the homotopy pass close to each other. We have not addressed this
important issue here.

In conclusion, the adaptive precision approach presented here appears to
be highly effective for tracking numerically difficult homotopy paths. Open
questions remain about prediction methods and step-size control, and additional
work is needed to extend the error analysis to non-polynomial functions. While
our error analysis goes far in explaining the conditions that drive an increase in
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precision, at present the conservative nature of the bounds causes the proactive
method to increase precision earlier than necessary. Due to the high cost of
leaving double precision, the reactive method, which uses double precision as
long as possible, takes less computational time than the proactive method in
all our standard tracking experiments. When endgames are utilized and the
tracking between the sample points needs to be completed in precision higher
than double, the reactive method may become slower than the proactive method
due to the increased number of steps needed to track between the sample points.
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