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ABSTRACT
This paper presents a general method for the analysis of pla-

nar mechanisms consisting of rigid links connected by rotational
and/or translational joints. After describing the links as vectors
in the complex plane, a simple recipe is outlined for formulating a
set of polynomial equations which determine the locations of the
links when the mechanism is assembled. It is then shown how to
reduce this system of equations to a standard eigenvalue problem,
or if preferred, a single resultant polynomial. Both input/output
problems and tracing-curve equations are treated.

NOMENCLATURE

n Number of links.
ℓ Number of kinematic loops.
M Mobility of a mechanism.
θj e

iΘj , where Θj is an angle, in radians.
θ̄j e

−iΘj .
z∗ Complex conjugate of z.

1 INTRODUCTION

A large class of planar mechanisms consists of rigid links
connected by rotational (pin) joints and translational (slid-
ing) joints. The goal of kinematic analysis is to determine
the motion of the links as one or more input links are dis-
placed. In traditional mechanism design, one is often inter-
ested in determining the motion of a single output joint as
a function of a single input motion. Such designs are called
“function generators.” For typical robotic applications, the
output is the position and orientation of an “end-effector”

link and there are multiple input links. In path-generating
mechanisms, there is some point of the mechanism whose
path in the plane is of particular interest. We will call such
a path a “tracing curve,” a generalization of the familiar
“coupler curve” studied in connection with four-bar link-
ages. This paper presents a general method which gives
the answer to input/output and tracing-curve problems in
terms of either a standard eigenvalue problem or a resultant
polynomial equation. These results can be used either to
analyze the motion of a given mechanism or as a step in the
design of a mechanism to produce a desired motion.

To date, analysis has been performed on specific mech-
anism types. The analysis of four-bars has an extensive
literature, dating back to the last century, some notable
examples being Roberts (1875), Cayley (1876) and Dar-
boux (1879). Geared five-bars were analyzed by Primrose
and Freudenstein (1963), and various six-bar motions were
studied by Primrose, et al. (1967). More recently, Inno-
centi (1994,1995a) has solved the seven-link Assur linkages,
which may be applied to provide input/output solutions for
any eight-bar linkage. With the exception of geared link-
ages, the method of this paper applies to all of these, as well
as any variant having one or more sliding joints and also for
mechanisms beyond eight links.

Our general method relies on a model of the links as
vectors in the complex plane. Of the previously mentioned
works, both Darboux (1879) and Primrose, et al. (1967)
used the complex-vector approach as a starting point, while
Roberts (1875) used it in passing. Formulations closer to
ours have been presented under the name of “isotropic
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coordinates” by Bricard (1927), Haarbleicher (1933), and
Groenman (1950), all addressing four-bar linkages. The
method used here for formulating the initial system of equa-
tions is based on Wampler (1996).

The author knows of only one other result close to the
generality of the method presented here, namely, Nielsen
(1997). He solves the input/output problem for linkages
with only rotational joints using the Dixon determinant of
sine-cosine polynomials. The method herein is simpler, be-
ing based on a Sylvester-type elimination procedure. Our
method applies for any combination of rotational and pris-
matic joints and also applies to tracing curve problems.
Nielsen’s method has the advantage of using only real arith-
metic.

We begin with a general review of the complex vector
formulation for planar linkages. Then, we show how the
formulation can be applied to solve input/output problems.
A slight variation of this procedure leads to a determination
of the algebraic equation for a path-generating mechanism.

2 MODELING IN THE COMPLEX PLANE

We begin by reviewing the formulation, via vectors in
the complex plane, of kinematic equations for planar mech-
anisms.

2.1 Rotational Joints

The modeling procedure is especially simple when all
joints are rotational, so we begin with this case. It will
subsequently shown that prismatic joints lead to the same
mathematical form, so that the same solution procedure
applies in any case. We present the formulation in the con-
text of a simple example, as the generalization to arbitrary
linkages is clear once this is understood.

The geometry of each link is described in a reference
position. Suppose, for example, that point A of the link is
located at (Ax, Ay) in the Cartesian plane. We may equiv-
alently say that the location of A is given by the complex
vector a = Ax + iAy . Now, if as shown in Fig. 1, the link
is displaced by a complex-vector translation t and rotation
angle Θ, the new position A′ of A is t+ θa, where θ = eiΘ.
Using this notation, the position of a point at the end of
a series of links pinned together is easily summed. The
location of any point in a tree structure of links can be ex-
pressed as a sum that is linear in the rotational variables
θ1, θ2, . . . , θn−1. The coefficients in these sums are the com-
plex vectors that describe the links in reference position.

To model a general linkage, all that remains is to ex-
press the loop closure conditions. Figure 2 shows a Stephen-
son six-bar mechanism, whose dimensions are given as
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Figure 1. Link in (a) reference position and (b) after translation t and rota-

tion θ = eiΘ.
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Figure 2. Stephenson six-bar linkage.

lengths a0, . . . , a5, b0, b1 and angles Γ0,Γ1. Equating the vec-
tor sums along two paths from O to A, and similarly, from
O to B, gives two loop equations. With the conventions
γj = e

iΓj and θj = e
iΘj , these may be written as

−a0 + a5θ5 + a3θ3 = a2θ2 + b1γ1θ1,
b0γ0 + a4θ4 + a1θ1 = a2θ2.

(1)

These two complex equations completely capture the kine-
matics of the six-bar linkage. Considering real and imagi-
nary parts, we have the equivalent of 4 real equations in 5
angles, leaving one degree of freedom of motion.

A similar procedure can be applied to any linkage,
thus producing one complex equation for each loop closure.
Accordingly, the kinematic equations for a general planar
mechanism, having ℓ loops and only rotational joints, con-

2 Copyright c© 1998 by ASME



sist of ℓ equations, each of the form

a0 +

n−1
∑

j=1

ajθj = 0, (2)

where the aj are complex vectors describing the links in
their reference positions. Considering real and imaginary
parts of these equations, the mobility of the linkage is thus
seen to be M = (n− 1)− 2ℓ, as is well-known.

3 INPUT/OUTPUT SOLUTION

Suppose that M joints are taken as known inputs, thus
removing any freedom of motion of the remaining links.
Their locations are not unique, however, owing to the non-
linear relation between θj and the angles Θj . We wish to
find all solutions of the closure equations. We will do this by
selecting some joint as the primary output joint and elimi-
nating all other joint variables from the closure equations,
leaving only a single polynomial equation, frequently called
the input/output equation. Our method also provides a pro-
cedure for back-solving to obtain the values of all the joints
in the linkage. We number the joints so that the inputs are
Θj , j = n−M, . . . , n− 1, leaving as outputs the joints Θj ,
j = 1, . . . , 2ℓ.

3.1 Isotropic Coordinates

The usual approach to equations of the form we are
considering is to take their real and imaginary parts, in
which case θj becomes cosΘj+i sin Θj . This system in turn
may be converted from trigonometric to algebraic either by
a tangent half-angle substitution or by using the unit circle
identity relation between sine and cosine.
We take an alternative approach based on the exponen-

tial variables θj and their conjugates θ̄j . These are known as
isotropic coordinates. A more complete discussion of these
can be found in Wampler (1996).
We generate equations in the conjugate variables θ̄j by

simply taking the complex conjugates of the closure equa-
tions Eq.(2). This gives ℓ equations of the form

a∗0 +

n−1
∑

j=1

a∗j θ̄j = 0, (3)

where ∗ indicates conjugation.
We now may treat θj and θ̄j as independent variables

with the constraint that for all rotational joints

θj θ̄j = 1, j = 1, . . . , 2ℓ. (4)

Altogether, Eqs.(2,3,4) form 4ℓ polynomial equations in the
4ℓ variables (θj , θ̄j), j = 1, . . . , 2ℓ. The remaining (θj , θ̄j),
j > 2ℓ are all known inputs.

3.2 Reduction to bilinear quadratics

The first step of reduction is to use the linear clo-
sure equations to eliminate half of the variables. Unless
the mechanism is degenerate, the closure equations (2) can
be solved to express ℓ of the variables θj as linear combi-
nations of the others. Let us renumber them so that θj ,
j = ℓ + 1, . . . , 2ℓ are solved in terms of θj , j = 1, . . . , ℓ. Do
the same for the conjugate variables θ̄j using Eq.(3). Their
solution will be the element-by-element conjugation of the
relations for the θj . Substitution into the unit vector equa-
tions (4) for j = ℓ+1, . . . , 2ℓ leaves the following system of
2ℓ equations. For j = 1, . . . , ℓ,

θj θ̄j = 1, (5)

(b0j +

ℓ
∑

k=1

bkjθk)(b
∗
0j +

ℓ
∑

k=1

b∗kj θ̄k) = 1. (6)

3.3 Solution of Bilinear Equations

It is significant that the equations to be solved are all
bilinear. That is, if we divide the variables into two groups
along the natural line as {θ1, . . . , θℓ} and {θ̄1, . . . , θ̄ℓ}, then
Eqs.(5,6) are linear in each of the groups when considered
separately. Multilinear systems, including bilinear systems,
are one of several types for which the resultant can be ex-
pressed as a Sylvester-type determinant formula (Sturmfels
and Zelevinsky 1994). Separately, in the kinematics liter-
ature, Innocenti (1995b) has given an explicit construction
for 6 bilinear equations in 3+3 variables enroute to solving
a spatial Burmester problem. In the following paragraphs,
we give a procedure which applies to general systems of the
form of Eqs.(5,6). Rather than following the prescriptions
of the aforementioned references, which apply to general bi-
linear equations, we take advantage of the especially simple
form of Eqs.(5). This reduces the size of the matrices gener-
ated to approximately half that required for general bilinear
systems.
We will develop a determinant formula for the variable

θ̄ℓ. (A procedure symmetric to the one described here would
produce a formula for θℓ.) By Eq.(5), we may replace θ̄j with
θ−1j for j = 1, . . . , ℓ−1 to get equations of the following form:
for j = 1, . . . , ℓ,

θℓθ̄ℓ − 1 = 0, (7)

(b0j +
ℓ
∑

k=1

bkjθk)(b
∗
0j +

ℓ−1
∑

k=1

b∗kjθ
−1
k + b

∗
ℓj θ̄ℓ) = 1. (8)
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Consider this system as ℓ + 1 equations in the ℓ unknowns
θ1, . . . , θℓ with coefficients that depend on θ̄ℓ. We seek the
values of θ̄ℓ which make this overdetermined system consis-
tent.
A Sylvester-type eliminant is obtained by multiplying

each of these equations by each of the monomials of degree
≤ ℓ−1 in θ1, . . . , θℓ. There are

(

2ℓ−1
ℓ

)

such monomials, yield-

ing (ℓ+ 1)
(

2ℓ−1
ℓ

)

equations in the expanded set. Keeping θ̄ℓ
suppressed into the coefficients, the monomials which ap-
pear in the expanded set of equations are all monomials of
degree ≤ ℓ in θj (j = 1, . . . , ℓ), along with monomials of
degree −1 in θk and degree ≤ ℓ in θj for k = 1, . . . , ℓ− 1,

j = 1, . . . , ℓ, j 6= k. The number of monomials is
(

2ℓ
ℓ

)

and

(ℓ−1)
(

2ℓ−1
ℓ

)

, respectively, the total of which is exactly equal
to the number of equations in the expanded set. Accord-
ingly, we may assemble all the monomials into a column
vector m of length (ℓ+1)

(

2ℓ−1
ℓ

)

and write the expanded set
of equations in matrix form as

Qm = (Q1 +Q2θ̄ℓ)m = 0. (9)

where Q1 and Q2 are square with sparse complex entries.
Only the monomials in m that have no negative exponents
have coefficients in which θ̄ℓ appears, hence all but

(

2ℓ
ℓ

)

of
the columns of Q2 are zero. The condition for Eq.(9) to
have a nontrivial solution is

det(Q1 +Q2θ̄ℓ) = 0, (10)

which is a polynomial in θ̄ℓ of degree
(

2ℓ
ℓ

)

. If this determi-
nant is not identically zero, then it is the resultant of the
system.
For general four-bar and six-bar input/output problems

(ℓ = 1, 2), Eq.(10) is nontrivial. However, for eight-bar in-
put/output problems (ℓ = 3), numerical tests show that
the determinant is zero. Nevertheless, when the general-
ized eigenvalue problem of Eq.(9) is solved (using the EIG
command in Matlab), the correct solutions are found. The
number of solutions having non-zero values in all elements
of the eigenvector is equal to the known number of solutions
to the input/output problem (14, 16, or 18, depending on
the linkage type).

It is possible to reduce the size of the eigenvalue prob-
lem to no greater than

(

2ℓ
ℓ

)

by standard methods from lin-
ear algebra. Begin by writing the equations in block matrix
form as

(A1 A2 + Bθ̄ℓ )

(

m1

m2

)

= 0,

which makes explicit the fact that the leading columns do
not depend on θ̄ℓ. Apply Gaussian elimination, with row
pivoting, to reduce A1 to row-echelon form. This produces
a system of the form

(

A11 A12 + B1θ̄ℓ
0 A22 + B2θ̄ℓ

)(

m1

m2

)

= 0.

If A1 is full-rank, then the lower row of the block-matrix
equation is a square system. Otherwise, one may square it
up by taking the first

(

2ℓ
ℓ

)

rows of A22 + B2θ̄ℓ and adding
random, linear combinations of the remaining rows. Ei-
ther way, one ends up with a square system to solve as a
generalized eigenvalue problem. Although effective on test
problems, this is not put forward as the optimal numerical
approach to solving Eq. (9). For greatest efficiency and nu-
merical stability, one should use sparse QR-decomposition
techniques. However, we leave a full exploration of this
matter to future work.
Finally, the solutions must be tested for physical valid-

ity. This is analogous to the more familiar situation of equa-
tions with real coefficients in which the physically meaning-
ful solutions must be pure real (zero imaginary part). In
our case, we require θjθ

∗
j = 1, that is, the rotation vectors

must have unit magnitude.

3.4 Prismatic joints

For simplicity, the foregoing discussion was limited to
the case of rotational joints. The generalization to prismatic
joints requires only a few minor adjustments in formulation.
Referring to Figure 3, suppose that link 2 slides a dis-

tance λ along unit vector v, fixed in link 1. Additionally,
link 1 is subject to rotation θ1. Then, then the vector from
O to P , expressed in fixed coordinates, is

~OP = θ1a+ λθ1v + θ1b.

It is convenient to make the substitution s2 = λθ1, so that
we have a linear expression

~OP = θ1a+ s2v + θ1b.

In this fashion, the loop closure equations for linkages
containing prismatic joints remains of the same form as
Eq.(2), except that sj = λθj−1 appears instead of θj when
joint j is of prismatic type. In addition, we define s̄j = λθ̄j−1
which then appears instead of θ̄j in the conjugate closure
equations (3). If more than one prismatic joint appears in
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Figure 3. Formulation for prismatic joints.

series, the angle involved in the definitions of sj and s̄j will
be that of the last previous rotational joint.

We also must develop an equation for prismatic joints
to correspond to the unit vector equation (4) that applies in
the rotational case. From their definitions in the previous
paragraph, it is seen that

θ̄j−1sj − θj−1s̄j = 0. (11)

In the case that the prismatic joint j connects to the ground
link, this simplifies to

sj = s̄j .

The bilinearity of these new relations ensures that a
Sylvester-type resultant still exists. If the loop equations
are used to eliminate all the prismatic joint variables, the
result is a system of the same form as Eqs.(7,8), and one
proceeds exactly as before. If instead, some of the prismatic
joint variables are retained, then the corresponding iden-
tites Eq.(11) must also be retained. Then, as before, one
expands the set of equations by multiplying the loop closure
equations by monomials of degree ≤ ℓ− 1 in x, where xj is
either θj or sj , depending on joint type. This will lead to
a square system of the same form as derived for the rota-
tional case, although of larger dimension. In this fashion,
the methodology extends to any number of prismatic joints.

4 TRACING CURVES

In some applications, one seeks the equation of the
curve swept out by a specified point of one of the links.
We assume that the mobility of the mechanism is 1, hence
n− 1 = 2ℓ+ 1 is the number of moving links. For four-bar
mechanisms, the point of interest is invariably on the cou-
pler link, as points on the other two moving links merely
follow circles. Hence, the point of interest is called the cou-
pler point, and its locus is the coupler curve. When this
is generalized to more complex linkages, the term “coupler
link” no longer applies so readily, so we use the terms trac-
ing point and tracing curve.
Let p be the complex vector giving the absolute loca-

tion of the tracing point. Then, in addition to the ℓ loop
closure equations and their conjugates, one has the complex
conjugate equations for p and p̄ of the form

p = a0 +

n−1
∑

j=1

ajθj , p̄ = a∗0 +

n−1
∑

j=1

a∗j θ̄j

where, as before, the ai are complex vectors describing the
links in reference position. Additionally, we have the unit
vector conditions

θj θ̄j = 1, j = 1, . . . , 2ℓ+ 1.

As in the input/output case, we first reduce the system
to bilinear quadratics. We have enough linear relations to
eliminate θj , θ̄j for j > ℓ, thereby obtaining ℓ + 1 bilinear
equations. These may be written as, for j = 1, . . . , ℓ+ 1,

(b0j +

ℓ
∑

k=1

bkjθk + b(ℓ+1)jp)(b
∗
0j +

ℓ
∑

k=1

b∗kjθ
−1
k + b

∗
(ℓ+1)j p̄) = 1.

(12)
We have ℓ + 1 equations in ℓ angles and p, p̄, indicating 1
degree of freedom of motion. We wish to eliminate the angle
variables to obtain a single tracing curve equation involving
only p, p̄.
Elimination may be accomplished by multiplying each

of Eqs.(12) by the monomials of degree ≤ ℓ in θ1 , . . . , θℓ of
which there are

(

2ℓ
ℓ

)

. One finds that this yields a square

system of size (ℓ+1)
(

2ℓ
ℓ

)

. This may be treated by the same
techniques outlined above for the input/output problem.
The final system of equations has the form

(B0 + B1p+ B2p̄+B3pp̄)m = 0, (13)

or
det(B0 + B1p+B2p̄+ B3pp̄) = 0, (14)
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where the Bi matrices are sparse with complex entries. In
particular, between B2 and B3, only

(

2ℓ+1
ℓ

)

monomials inm
have coefficients involving p̄. This means that the maximum
possible bidegree1 of the tracing curve with respect to p̄ is
(

2ℓ+1
ℓ

)

. The variable p appears in more than this number of
columns, but the symmetry of the original relations implies
that the same bound applies to the bidegree with respect to
p. This is manifested by a linear dependence between the
columns of B1, a fact that has been verified by numerical
experiment. Note that the total degree of the tracing curve
is 2
(

2ℓ+1
ℓ

)

=
(

2(ℓ+1)
ℓ+1

)

, which is equal to the degree of a (ℓ+1)-
loop input/output equation. These are upper bounds on the
degrees, but the relationship holds as well for the actual
degrees, as discussed in Wampler (1996).
The procedure just outlined must be modified slightly

to handle linkages having prismatic joints. The necessary
adjustments follow closely those previously described for in-
put/output equations, so no further elaboration is necessary
here.

5 EXAMPLE

We derive an explicit formulation of the solution for the
input/output of the Stephenson 6-bar, illustrated in Fig. 2.
Please note that this kind of explicit derivation is not neces-
sary since a general-purpose computer code can now handle
all possible mechanisms (with RP joints), but the deriva-
tion by hand illustrates the mechanics of the algorithm. We
have tested a general-purpose code on this and various 8-bar
problems, all to good effect.
Suppose that Θ5 is the input and Θ2 is the output angle.

The loop closure equations, already given in Eq.(1), can be
rearranged to solve for θ3 and θ4 as linear functions of θ1,
θ2 and the quantity

c = ~OC = −a0 + a5θ5,

which is known when the input angle Θ5 is given. The result
is

a3θ3 = −c + a2θ2 + b1γ1θ1,

a4θ4 = −b0γ0 + a2θ2 − a1θ1.

We use these and their conjugates to eliminate θ3 and θ4
from the unit vector relations θ3θ̄3 = 1 and θ4θ̄4 = 1 to
obtain

(−c+ b1γ1θ1 + a2θ2)(−c̄ + b1γ̄1θ
−1
1 + a2θ̄2) = a

2
3

(−b0γ0 − a1θ1 + a2θ2)(−b0γ̄0 − a1θ
−1
1 + a2θ̄2) = a

2
4.

1Bidegree with respect to p̄ is the degree of the polynomial when p is

considered a constant.

When expanded, these equations may be written in the
form, for j = 1, 2,

fj = α0j + α1jθ1 + α2jθ2 + β1jθ
−1
1 + β2jθ

−1
1 θ2 = 0. (15)

The αkj coefficients are linear in θ̄2 and the βkj coefficients
are constants. These are given by:

α01 = cc̄ + b
2
1 − a

2
3 − ca2θ̄2 α02 = b

2
0 + a

2
1 − a

2
4 − b0γ0a2θ̄2

α11 = b1γ1(−c̄ + a2θ̄2) α12 = −a1(−b0γ̄0 + a2θ̄2)
α21 = a2(−c̄ + a2θ̄2) α22 = a2(−b0γ̄0 + a2θ̄2)
β11 = −cb1γ̄1 β12 = b0γ0a1
β21 = a2b1γ1 β22 = −a2a1

In addition, we have the unit vector equation

f3 = θ2θ̄2 − 1 = 0. (16)

To obtain the resultant for θ̄2, we multiply each of the
three equations Eqs.(15,16) by the monomials 1, θ1, and θ2.
This produces 9 equations in 9 monomials of the form of
Eq.(9). The 9 × 9 matrix Q is as follows, where the rows
appear in the order f1, θ1f1, θ2f1, f2, θ1f2, θ2f2, f3, θ1f3, θ2f3,
and the columns are labeled by the monomials that appear
after the multiplication





























1 θ1 θ2 θ21 θ1θ2 θ22 θ−11 θ−11 θ2 θ
−1
1 θ

2
2

α01 α11 α21 0 0 0 β11 β21 0
β11 α01 β21 α11 α21 0 0 0 0
0 0 α01 0 α11 α21 0 β11 β21
α02 α12 α22 0 0 0 β12 β22 0
β12 α02 β22 α12 α22 0 0 0 0
0 0 α02 0 α12 α22 0 β12 β22
−1 0 θ̄2 0 0 0 0 0 0
0 −1 0 0 θ̄2 0 0 0 0
0 0 −1 0 0 θ̄2 0 0 0





























.

Only the first 6 columns depend on θ̄2, so the determinant
gives a resultant equation of degree 6, which is known to
be the correct degree for this linkage. As outlined in Sec-
tion 3.3, sparse Gaussian elimination can be used to reduce
the problem to that of finding the eigenvalues of a 6 × 6
matrix.

6 CONCLUSIONS

We have given an elimination procedure for both in-
put/output equations and tracing-curve equations. It ap-
plies to any planar linkage having rotational or prismatic
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joints. After forming the eliminant, the problem is most
effectively solved as a generalized eigenvalue problem. For
input/output problems, the initial size of the resultant ma-
trix is 12(ℓ+1)

(

2ℓ
ℓ

)

, but the problem can be readily reduced

to size
(

2ℓ
ℓ

)

using sparse Gaussian elimination. The joint
solutions are found using an off-the-shelf routine for gener-
alized eigenvalue problems.

Formulation of kinematic equations in the complex
plane via isotropic coordinates has been found to produce
equations in an advantageously simple form; in particular,
the loop equations are bilinear quadratics instead the gen-
eral quadratics that arise in a more typical formulation in
the Cartesian plane. This new form of the equations allows
the resultant to be expressed as a Sylvester-type determi-
nant.
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Thesis, Technische Hogeschool te Delft.
Haarbleicher, A., 1933, “Application des coordonnées

isotropes a l’étude de la courbe des trois barres,” J. de
l’Ecole Polytechnique, II serie, Vol. 31, pp. 13–40.
Innocenti, C., 1994, ”Analytical-Form Position Analy-

sis of the 7-Link Assur Kinematic Chain with Four Serially-
Connected Ternary Links”, Vol. 116, No. 2, pp. 622–628.
Innocenti, C., 1995a, “Polynomial solution to the posi-

tion analysis of the 7-link Assur kinematic chain with one
quaternary link,” Mech. Mach. Theory, Vol. 30, No. 8, pp.
1295–1303.
Innocenti, C., 1995b, “Polynomial solution of the spa-

tial Burmester problem,” ASME J. Mechanical Design, Vol
117, pp. 64–68.
Nielsen, J., 1997, Solving sets of nonlinear equations

for the design and analysis of mechanical systems, Ph.D.
Thesis, Dept. of Mech. Eng., Stanford University.
Primrose, E.J.F., and Freudenstein, F., 1963, “Geared

five-bar motion: Part 2—Arbitrary commensurate gear ra-
tio,” Trans. ASME Series E (J. Applied Mechanics), Vol.
30E, pp. 170–175.
Primrose, E.J.F., Freudenstein, F., and Roth, B., 1967,

“Six-bar motion (Parts I–III),” Archive for Rational Me-
chanics and Analysis, Vol. 24, pp. 22–77.

Roberts, S., 1875, “On three-bar motion in plane
space,” Proc. London Math. Soc., Vol. VII, pp. 14–23.
Sturmfels, B. and Zelevinsky, A., 1994, “Multigraded

resultants of Sylvester type,” J. of Algebra, Vol. 163, No. 1,
pp. 115–127.
Wampler, C., 1996, “Isotropic coordinates, circularity,

and Bezout numbers: planar kinematics from a new per-
spective,” Proc. ASME Des. Eng. Tech. Conf., Aug. 18–22,
Irvine, CA, Paper 96-DETC/Mech-1210.

7 Copyright c© 1998 by ASME


