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Abstract

Exceptional sets where fibers have dimensions higher than the generic
fiber dimension are of interest in mathematics and in application ar-
eas, such as the theory of overconstrained mechanisms. We show that
fiber products promote such sets to become irreducible components,
whereupon they can be found using techniques from numerical alge-
braic geometry for computing the irreducible decomposition. However,
such a decomposition may contain components other than the excep-
tional loci we seek. We show that each irreducible component of the
exceptional loci gives rise to a main component in a fiber product of
sufficiently high order, and we give procedures for identifying these
components. The methods are illustrated by finding the rulings of a
general quadric in C3.
2000 Mathematics Subject Classification. Primary 65H10; Sec-
ondary 14Q99, 68W30.
Key words and phrases. Components of solutions, exceptional loci
of algebraic maps, fiber products, homotopy continuation, irreducible
components, numerical algebraic geometry, polynomial system, over-
constrained mechanisms.

∗Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556-4618,
USA Email: sommese@nd.edu URL: http://www.nd.edu/∼sommese. This material is
based upon work supported by the National Science Foundation under Grant No. 0105653
and Grant No. 0410047; the Duncan Chair of the University of Notre Dame; and the
Institute for Mathematics and its Applications in Minneapolis (IMA)

†General Motors Research and Development, Mail Code 480-106-359, 30500 Mound
Road, Warren, MI 48090-9055, U.S.A. Email: Charles.W.Wampler@gm.com. This mate-
rial is based upon work supported by the National Science Foundation under Grant No.
0410047; General Motors Research and Development; and the Institute for Mathematics
and its Applications in Minneapolis (IMA).

1



Introduction

Systems of polynomials on CN+m of the form

f(v; p) =




f1(v; p)
...

fn(v; p)


 = 0, (1)

where v ∈ CN are regarded as variables and p ∈ Cm are regarded as para-
meters, arise naturally in engineering. For a particular p∗ ∈ Cm, the fiber
over p∗ is just the solution set of f(v; p∗) = 0. It is a fundamental problem
to compute the set of points (v; p) where the dimension of the fiber over p
is a given nonnegative integer.

Our motivation for studying this problem is the classification of overcon-
strained mechanisms, e.g., [4, 14]. In that case, the parameters are quantities
that will be constant once one builds the mechanism (such as the length of a
link), the variables are joint displacements (such as the rotation of a hinge),
and f(v; p) = 0 is the set of conditions that allow the links to be assembled,
i.e., the loop closure equations. The fiber over a particular p∗ is the set of
all joint configurations that the mechanism with parameters p∗ can attain.
This set may consist of several irreducible components, i.e., different assem-
bly modes, and the dimension of each irreducible component is the number
of degrees of freedom of the mechanism in that assembly mode. As the para-
meters vary continuously, the number of assembly modes and their degrees
of freedom stay constant on a Zariski open subset of the parameter space,
but when the parameters satisfy certain additional algebraic conditions, the
number of degrees of freedom of some assembly mode may increase. A
generic point in a set of the type we seek corresponds to a mechanism in an
assembly mode having a specified number of degrees of freedom.

We approach this problem by means of fiber products. For example,
letting X ⊂ CN+m be the solution set of f(v; p) = 0 and letting π : X →
Y := Cm denote the projection induced by (v; p) 7→ p, we wish to find the
decomposition of the set of points (v; p) ∈ CN+m where dim(v;p) π−1(p) = h
for a given h. A key step in our approach is to form the fiber product X×Y X
of X with itself over Y , which is the set of solutions of the “doubled” system

[
f(v; p)
f(v′; p)

]
= 0 (2)

in the variables (v; v′; p) ∈ C2N+m. As we shall show, the operation of form-
ing repeated fiber products has the effect of promoting certain interesting
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sets on X for the map π into irreducible components.
This property of repeated fiber products is key to our approach because

of the existence of practical numerical methods for finding all irreducible
components of the solution set of a polynomial system [7, 8, 13], one of the
central problems of the field of numerical algebraic geometry, inaugurated
in [12]. Consequently, a numerical algorithm for solving our problem can be
constructed by forming repeated fiber products using multiple copies of the
system in the pattern of Eq. 2 and then numerically finding the irreducible
components of the resulting system’s solution set. For background on the use
of homotopy continuation to solve polynomial systems, we suggest [3, 13].
Another very different symbolic approach in the case when the fibers are
zero dimensional may be found in [1].

The scheme of the article is as follows.
In §1, we define, for a map π : X → Y between algebraic sets, the

exceptional loci Dh(π) of points and fiber products
∏k

Y X. We give examples
showing how fiber products pick out exceptional sets. Dh(π) is the closure
of points x of X where the fiber of π through x is h dimensional at x.

In §2, we present the theory underlying the algorithm, beginning with
the definition of the main component of a fiber product. Given an algebraic
map π : X → Y , Theorem 2.7 gives a quick way of checking when an
irreducible algebraic subset W of a fiber product Πk

Y X is a main component
Zk

π of an irreducible algebraic subset Z of X. A main result Corollary 2.14
we prove is that, given an irreducible component Z ⊂ Dh(π) for an algebraic
map π : X → Y between irreducible algebraic sets satisfying π(X) = Z, the
main component Zk

π of Z in the k-th fiber product
∏k

Y X is an irreducible
component for k sufficiently large, e.g., k ≥ codZ + 1. In Theorem 2.17, we
prove an occasionally useful lower bound in the special case when X and Y
are the same dimension. We show how to recognize the main component
amongst the many possible components of the fiber product of the solution
set of a system and how to recover the exceptional locus from its own fiber
product.

In §3, we present numerical algorithms for finding exceptional loci based
on the results of §2.

In §4, we illustrate the methodology on a simple example, numerically
demonstrating the classical result that a quadric in C3 is a doubly ruled
surface.

Finally, in an Appendix, §A, we recall some background definitions and
prove some lemmas about algebraic sets and mappings that are used in the
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article.
We would like to thank the referees for their helpful comments.

1 Exceptional loci of mappings and fiber products

We are interested in the irreducible components of certain exceptional loci
associated to algebraic mappings between complex algebraic sets. The most
important cases are maps between affine algebraic sets and maps between
projective algebraic sets since these are what occur for applications. For this
reason algebraic sets for us will always mean quasiprojective algebraic sets,
i.e., algebraic sets of the form A\B where B is a projective algebraic subset
of a projective algebraic set A. We follow the convention that if π : X → Y
is a map, and if Z ⊂ X is a subset, then πZ denotes the restriction of π to
Z. We have collected some definitions and facts we need in Appendix A.

Given an algebraic map π : X → Y between algebraic sets, we define
Dh(π) to be the closure of the set of points x ∈ X such that dimx π−1(π(x)) =
h. The sets Dh(π) are closed algebraic subsets of X. Moreover, by upper
semicontinuity of dimension, e.g., [5, Corollary 3.16], [13, Theorem A.4.5],
dimx π−1(π(x)) ≥ h for all x ∈ Dh(π).

Problem 1.1 For a given h, compute Dh(π) and decompose it into irre-
ducible components.

The basic problem is that the irreducible components of Dh(π) are usu-
ally not irreducible components of X.

Example 1.2 Consider the system
[

p1 − v1

p2 − v1v2

]
= 0. (3)

The set of solutions X is isomorphic to C2 under the map sending (z1, z2) ∈
C2 to (v; p) = (z1, z2; z1, z1z2) ∈ C4. Letting π : X → C2 be the map
induced by sending (v; p) 7→ p ∈ C2, we see that π(X) is dense in C2 but
not equal to C2. The inverse image of any point p = (p1, p2) ∈ C2 with
p1 6= 0 is the single point (v; p) = (p1, p2/p1; p1, p2). The closure of the set
of such points is D0(π), which equals X. The exceptional point (0, 0) has
the one-dimensional inverse image π−1(0, 0) = {(0, z2; 0, 0), z2 ∈ C}, which
is D1(π). Since D1(π) ⊂ D0(π), D1(π) is not an irreducible component of X.
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The goal of this article is to establish an algorithm (based on the oper-
ation of taking fiber products) for solving Problem 1.1.

Given two algebraic maps π1 : X1 → Y , π2 : X2 → Y from algebraic sets
X1, X2 to an algebraic set Y , the fiber product

X1 ×Y X2

of X1 with X2 over Y is defined to be the algebraic set (π1×π2)−1(∆) where

1. ∆ is the diagonal of Y ×Y consisting of all points of the form (y, y) ∈
Y × Y ; and

2. π1 × π2 is the induced map X1 ×X2 → Y × Y .

Under the map (y, y) 7→ y, ∆ is identified with Y and the composition of
this map with π1 × π2 induces an algebraic map Π : X1 ×Y X2 → Y . The
fiber of Π over y ∈ Y is isomorphic to π−1

1 (y)×π−1
2 (y). Note that if there is

an algebraic set W ⊂ Y such that πi(Xi) ⊂ W for i = 1, 2, then X1 ×Y X2

is isomorphic to X1 ×W X2.
Given k algebraic maps πi : Xi → Y from algebraic sets X1, . . . , Xk to

an algebraic set Y , we can similarly define the fiber product (
∏k

i=1 Xi)Y .
We denote the induced projection of (

∏k
i=1 Xi)Y onto the i-th factor by qi.

When the Xi are all the same space X and the maps πi are all the same
map π : X → Y , we denote the k-th fiber product of X with itself over Y
by

∏k
Y X. As above, the map from

∏k
Y X → X to the i-th factor is denoted

qi. The induced map from
∏k

Y X → Y is denoted by Πk, or simply by Π
when k is clear from the context.

It is easy to describe the fiber product in terms of explicit systems of
equations when the maps and algebraic sets coming into the definition are
each described by a polynomial system of the form of Eq. 1. That is, we have,
for i = 1, 2, polynomial systems f1(v1; p) = 0 and f2(v2; p) = 0 defined for
(vi; p) ∈ CNi × Cm giving rise to the maps πi : Xi → Cm. Letting Y = Cm,
the fiber product X1×Y X2 is the affine algebraic subset of CN1×CN2×Cm

defined by [
f1(v1; p)
f2(v2; p)

]
= 0 (4)

Higher fiber products, such as X1 ×Y X2 ×Y X3, can be formulated in an
analogous way.

Let us see what happens when we take the fiber product of the system
given by Eq. (3) in Example 1.2 with itself.
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Example 1.3 The fiber product of the system (3) with itself is



p1 − v11

p2 − v11v12

p1 − v21

p2 − v21v22


 = 0. (5)

The solution set of this system has two components:

1. (v11, v12; v21, v22; p1, p2) = {(λ, µ; λ, µ; λ, λµ), (λ, µ) ∈ C2}; and

2. (v11, v12; v21, v22; p1, p2) = {(0, λ; 0, µ; 0, 0), (λ, µ) ∈ C2}.
We see that these components correspond to the sets D0(π) and D1(π),
respectively, in Example 1.2, but unlike D0(π) and D1(π), the second com-
ponent here is not contained in the first.

Building on this example, we will see that we can solve Problem 1.1 by using
fiber products.

Other exceptional loci also get picked out by using fiber products. Al-
though we will not pursue it further in this article, let us give an example
of this phenomena.

Example 1.4 Consider the classical example of a cubic curve with a simple
node. [

y1 − x2 + 1
y2 − x3 + x

]
= 0. (6)

This corresponds to the map π : C→ K, given by (x) 7→ (x2−1, x3−x),
where K ⊂ C2 is the irreducible cubic y2

2 = y3
1 + y2

1. Note the map gives a
biholomorphism of C \ {−1, 1} with K \ {(0, 0)}, and π(−1) = π(1) = (0, 0).
Thus all fibers are 0-dimensional and D0(π) is the whole solution set. But
notice that the fiber product of the system (6) with itself

y1 − x2
1 + 1

y2 − x3
1 + x1

y1 − x2
2 + 1

y2 − x3
2 + x2

has a solution set (x1;x2; y1, y2) = {(λ;λ;λ2−1, λ3−λ), λ ∈ C} that projects
to the whole curve K and additionally has two isolated points (1;−1; 0, 0)
and (−1; 1; 0, 0) that project to the origin. Thus, the fiber product of the
system with itself picks out the point (y1, y2) = (0, 0) where the number of
points in the fiber π−1(y) is greater than the number of points in the general
fiber.
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2 Using fiber products to pick out exceptional loci

In this section we assume that π : X → Y is an algebraic map between alge-
braic sets. We must keep track of certain irreducible sets in fiber products
of X with itself. We start with some results on the behavior of irreducible
sets under the operation of taking fiber products.

2.1 The main component of a fiber product

Given an algebraic map π : X → Y between algebraic sets, recall that we
denote the k-fold fiber product

X ×Y · · · ×Y X︸ ︷︷ ︸
k factors

by
∏k

Y X. As we saw above in Example 1.3, if X is irreducible, it does
not follow that

∏k
Y X is irreducible. Nevertheless, given any irreducible al-

gebraic subset Z of X, there is an irreducible algebraic subset Zk
π of the

fiber product
∏k

Y Z ⊂ ∏k
Y X that is in a precise sense the main component

of
∏k

Y Z. Using the natural inclusion
∏k

Y Z ⊂ ∏k
Y X, we regard Zk

π as an
algebraic subset of

∏k
Y X. In the case that Z is an irreducible component

of X, then Zk
π is an irreducible component of the fiber product

∏k
Y X. A

main result of this article Corollary 2.14 guarantees that if Z is an irre-
ducible component of Dh(π), then Zk

π is an irreducible component of the
fiber product

∏k
Y X for k sufficiently large, e.g., for k ≥ codZ + 1.

Definition/Construction 2.1 Let us now give a definition/construction
of the main component. Let Z be an irreducible algebraic set and let π : Z →
Y be an algebraic map from Z to an algebraic set Y . Note that generically
Z is smooth and πZ : Z → π(Z) is well behaved. Precisely, by [13, Theorem
A.4.20], there exists a Zariski open dense set U ⊂ Z such that

1. U consists of smooth points;

2. W := π(U) is a Zariski open dense set of π(Z) consisting of smooth
points;

3. πU is of maximal rank;

4. πU factors as the composition πU = s ◦ r, where r : U → V is an
algebraic map onto a quasiprojective manifold V with connected fibers,
and s : V → W is a covering map.
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The inclusion map iU of U into Z induces an inclusion map of
∏k

W U

into
∏k

Y Z. Since
∏k

V U is a subset of
∏k

W U , we have an embedding
Ik
U :

∏k
V U → ∏k

Y Z. We define the main component Zk
π of Z in

∏k
Y Z

to be the closure of the image under this inclusion of
∏k

V U in
∏k

Y Z.

Remark 2.2 Note that Z1
π is simply Z and that the main component, Uk

π ,
of U in

∏k
W U is by construction the image of

∏k
V U in

∏k
W U under the

natural inclusion Ik
U .

Before we go further let us give an example of a main component. Let Z
denote C2 and Y be isomorphic to C. Let f : Z → Y be the algebraic map
(z1, z2) → z2

1 . Here U is the set of points on C2 with nonzero first coordinate;
W and V are both isomorphic to C∗, the set of nonzero complex numbers.
The map r : U → V is given by r(z1, z2) = z1 and the map s : V → W is
given by s(v) = v2. The main component of Z ×Y Z consists of all points
(z1, z2; z′1, z

′
2) ∈ C4 with z1 = z′1. Note there is a second component of the

fiber product consisting of all points (z1, z2; z′1, z
′
2) ∈ C4 with z1 = −z′1.

The first fact about the main component of an irreducible algebraic set
is that it is an irreducible algebraic set.

Lemma 2.3 Let Z be an irreducible algebraic subset and let π : Z → Y be
an algebraic map from Z to an algebraic set Y . Then the main component
Zk

π is irreducible.

Proof. We use the notation of the Definition/Construction 2.1. Since Z
is irreducible, U is connected. Since V is connected with r having connected
fibers, it follows that

∏k
V U is connected. Since the fiber product

∏k
V U

is connected and smooth, it is irreducible. Since
∏k

V U is irreducible, the
closure of the image of

∏k
V U in

∏k
Y Z under Ik

U is also irreducible by Lemma
A.2. 2

If Z is an irreducible algebraic subset of an algebraic set X and π :
X → Y is an algebraic map from X to an algebraic set Y , then we have
the restriction πZ : Z → Y of π to Z, and accordingly there exists the main
component Zk

πZ
of

∏k
Y Z. Using the embedding

∏k
Y Z in

∏k
Y X, we see that

Zk
πZ

may be regarded as the main component of Z in
∏k

Y X. We often abuse
notation and denote Zk

πZ
by Zk

π : this causes no confusion in this article.
The following is our first characterization of main components.
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Lemma 2.4 Let π : Z → Y be an algebraic map from an irreducible alge-
braic set Z to an algebraic set Y . There is a Zariski dense open set of y ∈ Y
such that the fiber of the map Πk|Zk

π
over y is

⋃̀

i=1

Kk
i

where
⋃`

i=1 Ki is the irreducible decomposition of π−1(y).

Proof. We use the notation of the Definition/Construction 2.1: it is
straightforward to check the characterization asserted in the Lemma is true
for the map πU : U → W .

For a given point y ∈ Y , the fiber of the induced map Πk :
∏k

Y Z →
Y is π−1(y) × · · · × π−1(y). If the irreducible decomposition of π−1(y) is
K1 ∪ · · · ∪K`, then the irreducible decomposition of Π−1

k (y) is
⋃

(i1,...,ik)∈{1,...,`}k

Ki1 × · · · ×Kik . (7)

Using [13, Corollary A.4.12], it follows that for y in a Zariski open dense set
of Y , the fiber is pure-dimensional. Using this and counting dimensions as
in Lemma A.3, we see that for y in a Zariski open dense set of Y , π−1(y)∩U
is Zariski open and dense in π−1(y) and thus that for y in a Zariski open
dense set of Y , Π−1

k (y) ∩∏k
Y U is Zariski open and dense in Π−1

k (y). Using
this and the fact that the characterization is true for πU : U → W , we are
done. 2

Lemma 2.5 For an irreducible subset Z ⊆ X and an algebraic map π :
X → Y between algebraic sets, the main component Zk

π satisfies the follow-
ing:

1. Zk
π is taken to itself under the natural action of the symmetric group

Sk on
∏k

Y X;

2. the dimension of Zk
π is kh + b where b = dimπ(Z) and h = dim Z − b;

3. the image of the induced map from
∏k

Y Z ⊂ ∏k
Y X onto any one of

the factors X is Z; and

4. if z ∈ Z, then (z, . . . , z) ∈ Zk
π .
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Proof. This follows from the fact that, using the notation from the defin-
ition of Zk

π above, the image of
∏k

V U in
∏k

Y Z is a Zariski open dense set
of Zk

π and the fibers of the map r : U → V are connected.
Since the image of the induced map from

∏k
V U onto any one of the

factors U , in the construction of the main component is equal to U , we
conclude that the image of the induced map from

∏k
Y Z ⊂ ∏k

Y X onto any
one of the factors X is Z.

2

The sets Zk
π are well behaved. For example, Za+b

π is the irreducible
component of Za

π×Y Zb
π that contains Z embedded under the diagonal map.

Note that if dimπ(Z) = dimZ, then Zk
π equals the image of Z in

∏k
Y Z

under the diagonal map.

Remark 2.6 Note that Zk
π need not be the largest or the smallest dimen-

sional irreducible component of the fiber product
∏k

Y Z. We illustrate this
by considering two specific cases, as follows.

Case 1 Let Z := C3 and let π : C3 → C4 be given by (z1, z2, z3) 7→
(z1, z2, z1z3, z2z3). Then, Z2

π = {(z; z′) ∈ C3×C3|z = z′}, so dimZ2
π =

3. There is another component W = {(0, 0, λ; 0, 0, µ), (λ, µ) ∈ C2} of
dimension 2. Thus, in this case Z2

π is the largest component.

Case 2 Let Z := C3 and let π : C3 → C3 be given by (z1, z2, z3) 7→
(z1, z1z2, z1z3). Then, Z2

π is the same in Case 1, but this time there is
a second component W = {(0, λ, µ; 0, λ′, µ′), (λ, µ, λ′, µ′) ∈ C4}. Thus,
in this case dimZ2

π = 3 < dimW = 4.

Other examples could be constructed such that Z2
π is neither the largest

nor the smallest irreducible component. Simply knowing the dimension of
an irreducible component in a fiber product is not sufficient for recognizing
main components.

Lemma 2.5 allows one to recognize which irreducible sets in
∏k

Y X are
main components of irreducible subsets of X. This is formalized as follows.

Theorem 2.7 Let π : X → Y be an algebraic map between algebraic sets.
For a positive integer k, an irreducible algebraic subset W ⊂ ∏k

Y X is the
main component Zk

π of some irreducible algebraic subset Z ⊆ X if and only
if:
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1. W is taken to itself under the natural action of the symmetric group
Sk on

∏k
Y X;

2. the dimension of W is kh+b where b equals the dimension of the closure
of the image of W in Y , and b+h is the dimension of the image of W
in X under any one of the k induced projections qi :

∏k
Y X → X; and

3. given a generic point (w1, . . . , wk) of W ⊂ ∏k
Y X, it follows that

(w1, . . . , w1) ∈ W .

If these conditions are satisfied Z = qi(W ) for any i.

Proof. Necessity is just Lemma 2.5. To prove the sufficiency, we must show
that W = Zk

π for Z ⊂ X. If this is true then qi(W ) = Z for any i. By the
first condition of the theorem we see that the sets qi(W ) are all equal. Since
W is irreducible then, by Lemma A.2, so is the set Z := qi(W ).

Thus we must show that W = Zk
π . Choose a general point β of the

closure T of the image of W in Y and let Wβ be the fiber of W over β.
Let K1, . . . ,K` be the irreducible components of the fiber over β of the
restriction πZ of the map π restricted to the image Z of W in X under
any of the qi for i = 1, . . . , k. All of the components are all of the same
dimension h = dim Z − dimT by [13, Corollary A.4.12]. For a general point
β of T , it also follows that the irreducible components of the fiber Zk

β over β

of the map Πk : Πk
T Z → T are of dimension kh and given by Eq. 7. By the

definition of Z we have that W ⊂ Πk
T Z and Wβ ⊂ Zk

β . By the dimension
condition that dimW = kh+ b, we see that all the components of Wβ are of
dimension kh and thus components of Zk

β . By Lemma A.3 and Lemma 2.4,
it suffices to show that at least one of the components of Wβ is of the form
Kk

i for some i = 1, . . . , `. This follows from Lemma A.4. 2

In § 3, we will use procedures from numerical algebraic geometry to com-
pute irreducible components of fiber products. Theorem 2.7 then gives a way
to recognize which of these are main components so that the corresponding
exceptional loci can be identified. We shall return to this in § 3.

2.2 Splitting off exceptional loci

We start with a simple lemma that characterizes components of the excep-
tional loci.
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Lemma 2.8 Let π : X → Y be an algebraic map between algebraic sets, and
let Z denote an irreducible algebraic subset of X. Then Z is an irreducible
component of Dh(π) if and only if there is a Zariski open dense set U ⊂ Z
such that:

1. for x ∈ U , it follows that dimx π−1(π(x)) = h; and

2. for some y ∈ U there is an open set V ⊂ X in the complex topology
that contains y and such that for y′ ∈ V \ Z, dimy′ π

−1(π(y′)) < h.

Proof. If Z is a component of Dh(π) and U is taken as the Zariski open
dense subset of Z not meeting any other components of ∪j≥hDj(π), then
the conclusions are clear.

Assume now that Z was not a component of Dh(π). The condition, that
dimx π−1(π(x)) = h for a dense set of x, implies that Z ⊂ Dh(π). If Z is
not a component of Dh(π), then it is a proper closed set of a component of
Dh(π), and therefore each point x ∈ Z has points of Dh(π) in arbitrarily
small complex neighborhoods of x as a point in X. 2

Remark 2.9 In Lemma 2.8, it is only needed that U is a complex open set.

Theorem 2.10 Let π : X → Y be an algebraic map between algebraic sets,
and let Z denote an irreducible component of Dh(π). Then, letting Πk denote
the induced mapping from

∏k
Y X to Y , Zk

π is an irreducible component of
Dkh(Πk) of dimension (k − 1)h + dim Z.

Proof. Straightforward. 2

When k is not large enough, Zk
π is not yet an irreducible component of∏k

Y X. One might hope that Zk
π would be contained in some other main

component W k
π that is an irreducible component of

∏k
Y X. If that were true,

we could restrict all our attention at every k to just main components of∏k
Y X. Example 2.11 shows this is not true.

Example 2.11 Let X ⊂ C4 be the solution set of f(v; a, b, c) := av2+bv+c
with the map π : (v; a, b, c) 7→ (a, b, c), so Y := π(X) = C3. X is an
irreducible hypersurface, so dimX = 3. The fibers of X for the map π are
as follows:

1. over general (a, b, c), two points given by the quadratic formula;
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2. over general points in V (b2 − 4ac), a single point with v = −b/(2a);

3. over points (0, b, c) with b 6= 0, a single point with v = −c/b;

4. over points (0, 0, c) with c 6= 0, the empty set; and

5. over (0, 0, 0), the one dimensional set Z = {(λ; 0, 0, 0), λ ∈ C}.

The set D0(π) is the whole set X, while D1(π) = Z ⊂ X. The fiber product
X ×Y X is the set V (av2

1 + bv1 + c, av2
2 + bv2 + c) ⊂ C×C×C3, which has

two irreducible components

• X2
π := {(λ;λ;α, β,−αλ2 − βλ), (λ, α, β) ∈ C3}, and

• W := {(λ; µ; α,−α(λ + µ), αλµ), (λ, µ, α) ∈ C3}.

Meanwhile the main component Z2
π ⊂ X ×Y X is the two-dimensional set

{(λ; µ; 0, 0, 0), (λ, µ) ∈ C2}.

Clearly, Z2
π lies in W and not in the main component X2

π. This shows that
when forming successive fiber products to find D1(π), it is not sufficient to
look only at main components of the intermediate stages. As an aside, we
note that taking another fiber product will promote Z3

π to an irreducible
component of

∏3
Y X.

Because of phenomena like that of Example 2.11, we need to know some
structural facts about the irreducible components of

∏k
Y X. To facilitate

the discussion, we define the following notations.

• For 1 ≤ i ≤ k, let qi :
∏k

Y X → X denote the projection (x1, . . . , xk) 7→
(xi).

• Let Πk :
∏k

Y X → Y denote π ◦ qi (it is the same for any 1 ≤ i ≤ k).

• For an irreducible algebraic subset W ⊂ ∏k
Y X, let b(W ) denote

dimΠk(W ) and let hi(W ) denote the generic fiber dimension of π :
qi(W ) → Y .

• With W as above, let Φ(W ) = (b(W ), max1≤j≤k{hj(W )}). We call
the pair of nonnegative integers (b, h) = Φ(W ) the “type” of W .

• Define the partial ordering≺ on pairs of nonnegative integers as (b, h) ≺
(b′, h′) if b + h < b′ + h′ and h > h′.
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For an irreducible algebraic set Z ⊂ X, the type (b, h) = Φ(Z) is b =
dimπ(Z) and h = dimZ − b, which agrees with the above definition for
k = 1. Moreover, Φ(Zk

π) = Φ(Z).

Lemma 2.12 Let π : X → Y be a dominant algebraic map between irre-
ducible algebraic sets, and let W denote an irreducible algebraic subset of∏k

Y X. Then the generic fiber dimension H(W ) of Πk : W → Y satisfies
H(W ) ≤ h1(W ) + · · ·+ hk(W ), and dimW = b(W ) + H(W ).

Proof. Straightforward. 2

Theorem 2.13 Let π : X → Y be a dominant algebraic map between irre-
ducible algebraic sets. Let Z denote an irreducible algebraic subset of Dh(π)
with (b, h) = Φ(Z). Assume that Zk

π is a proper subset of an irreducible
component W of

∏k
Y X. Then b(W ) > b and hi(W ) < h for 1 ≤ i ≤ k.

Moreover dimW ≤ dimWk
π for some irreducible subset W of X that con-

tains Z as a proper subset and satisfies Πk(W ) = π(W).

Proof. First note that for each i, Wi := qi(W ) is an irreducible subset of X
containing Z. Since Z is an irreducible component of π−1(π(Z)), it follows
that either b < b(W ) or Z = qi(W ) for each W . Since the latter gives the
contradiction that Zk

π = W , we conclude that b < b(W ).
Using property 2) of Lemma 2.8, we conclude that h(qi(W )) < h(Z) = h

for all i. Letting W be one of the qi(W ) of largest dimension, we conclude
that dimW ≤ b(W ) + h(q1(W )) + · · ·+ h(qk(W )) ≤ dimWk

π . 2

Given Z as in Theorem 2.13, besides the bound

kh + b = dimZk
π < dimW,

the types (b′, h′) of irreducible components W of
∏k

Y X that contain Zk
π as

a proper algebraic subset satisfy (b, h) ≺ (b′h′). We record this observation
and the important bound it gives on what is the largest fiber product we
need to consider.

Corollary 2.14 Let π : X → Y be a dominant algebraic map between irre-
ducible algebraic sets. Let Z be an irreducible component of Dh(π) of type
(b, h). If Zk

π is a proper subset of an irreducible component W of
∏k

Y X of
type (b′, h′), then we have (b, h) ≺ (b′, h′). Moreover, Zk

π is an irreducible
component of

∏k
Y X for

k ≥
{

dimX − dimZ + 1, if h = h(X) + 1 or dimZ = dimX − 1;
dimX − dimZ, otherwise.

14



Proof. Since Zk
π is properly contained in W , we must have dimZk

π =
b + kh < dimW . Theorem 2.13 implies both b < b′ and h > h′. Altogether,
these imply (b, h) ≺ (b′, h′). Moreover, Lemma 2.12 implies dimW ≤ b′+kh′

and Theorem 2.13 implies that either Φ(W ) = Φ(X) or (b′, h′) ≺ Φ(X).
Since h > h′, for large enough k, there can be no such W with b + kh <
b′ + kh′, so Zk

π must be an irreducible component of
∏k

Y X. In particular,
this occurs for k ≥ (b′ − b)/(h − h′). Let (B,H) = Φ(X). For a given
(b, h), the worst case for k is the maximum of (b′ − b)/(h − h′) over all
(b′, h′) such that either (b, h) ≺ (b′, h′) ≺ (B, H) or (b′, h′) = (B,H). When
h = H + 1 or dimZ = dimX − 1, the first set is empty, so the worst case is
(b′, h′) = (B,H), from which it follows that k ≥ dimX − dimZ + 1 suffices.
Otherwise, one may confirm that the worst case occurs for h′ = h − 1,
b′ + h′ = B + H − 1, so k ≥ dimX − dimZ suffices. 2

When k is large enough that Zk
π is an irreducible component of

∏k
Y X,

we say that Z has been promoted to irreducibility in
∏k

Y X. Using this
language, we may state the following upper bound on the number of fiber
product operations necessary to find all the exceptional loci in X.

Corollary 2.15 Under the same assumptions as Corollary 2.14, all irre-
ducible components of Dh(π) that could be contained in X for any h will be
promoted to irreducibility in

∏k
Y X for k ≥ b(X).

Proof. The worst case among all (b, h) ≺ (B, H) = Φ(X) for the bound
given in Corollary 2.14 occurs when b = 0 and h = H + 1. 2

This corollary implies that to find all exceptional loci, we will never have
to form a fiber product beyond k = b(X), as that already suffices.

Table 1 illustrates Corollary 2.14 for the case Φ(X) = (8, 2). We place
a 1 in location (8, 2) to indicate that for k = 1,

∏k
Y X = X. Notice that in

accordance with Corollary 2.15, the worst case of k = 8 occurs for (b, h) =
(0, 3).

2.3 A special bound

Though we often need to go to the k-th fiber product for the k predicted in
Corollary 2.14 before a given component of Dh(π) becomes an irreducible
component of the fiber product, it can happen for a smaller k. Here is an
example illustrating this.
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Table 1: Bound on k for promotion to irreducibility for (b, h) ≺ Φ(X) =
(8, 2).

h\b 0 1 2 3 4 5 6 7 8
9 2
8 2 2
7 3 2 2
6 4 3 2 2
5 5 4 3 2 2
4 6 5 4 3 2 2
3 8 7 6 5 4 3 2
2 1

Example 2.16 Consider the system of equations on C7:



y1 − x1

y2 − x2

y3 − x1x3

y4 − x2x3


 = 0. (8)

The solution set X is parameterized by C3. We let π denote the restriction
to X of the projection

(x1, x2, x3, y1, y2, y3, y4) 7→ (y1, y2, y3, y4).

All fibers of the map π : X → π(X) have cardinality one except for the
fiber Z over (0, 0, 0, 0), which is the x3-axis. Using Theorem 2.13, we know
that the one dimensional component Z of D1(π) will lead to a 3-dimensional
irreducible component of X ×Y X ×Y X. The fiber product Z ×Y Z is in
fact a two dimensional irreducible component of X ×Y X.

Examples 2.16 suggests the following useful criterion that applies in the
important special situation dimX = dimπ(X).

Theorem 2.17 Let π : X → Y be a dominant algebraic map between ir-
reducible algebraic sets of the same dimension. Assume that Y is locally
irreducible, e.g., Y = Cm. Let Z denote a proper irreducible algebraic sub-
set of Dh(π) and assume that h is the smallest positive integer such that
Dh(π) 6= ∅. Assume that the general fiber of π consists of d points. Then
Zk

π is an irreducible component of
∏k

Y X for k ≥ d + 1.
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Proof. Note that for j ≤ k and each set map

φ : {1, . . . , k} → {1, . . . , j}

we have maps Iφ :
∏j

Y X → ∏k
Y X sending the j-tuple (x1, . . . , xj) to a

k-tuple (xφ(1), . . . , xφ(k)). Note that if k ≥ d + 1, then the union U of the
images of all these maps contains all points of the fiber over y of

∏k
Y X → Y .

Moreover, by [5, (3.10)], U contains every 0-dimensional component of any
fiber of

∏k
Y X → Y . But, given k general points of an irreducible component

of a general fiber of Z → π(Z), we see by counting dimensions that U does
not contain Zk

π . Thus if Zk
π is not an irreducible component of

∏k
Y X, it

follows from Theorem 2.13 that it is contained as a proper algebraic subset
of an irreducible component W ⊂ ∏k

Y X of dimension ≤ dimW for some
irreducible subset W of X that contains Z as a proper subset and satisfies
π(W ) = π(W). Since U contains all 0-dimensional components of fibers of∏k

Y X → Y , we conclude that W has all fibers positive dimensional. From
this we contradict that Z is a proper subset of W, and that Z is a proper
irreducible algebraic subset of Dh(π) with m the smallest positive integer
such that Dh(π) 6= ∅. 2

3 The Algorithm

Let us assume the set X ⊂ CN+m to be studied is the solution set of a
polynomial system f(v; p) : CN+m → Cm, as in Eq. 1, with the projection
map π : (v; p) 7→ p. If instead the map is given in the form π′ : v 7→ g(v),
we convert it to the assumed form as f(v; p) = p − g(v). In this way, Y
becomes the natural projection of X to Cn, and points in the kth fiber
product,

∏k
Y X, lie in CkN+m with coordinates (x1, . . . , xk; p). Accordingly,

the projection Πk : CkN+m → Cm is just (x1, . . . , xk; p) 7→ (p) and for
i = 1, . . . , k, the maps qi : CkN+m → CN+m are given by (x1, . . . , xk; p) 7→
(xi; p). Note that for x ∈ ∏k

Y X, Πk(x) = π(qi(x)) for i = 1, . . . , k. In the
following, it will be useful to use the Jacobian matrices for these projections,
namely dπ = [0m×N Im], dΠk = [0m×kN Im], and

dqi =
[

0N×(i−1)N IN 0N×(k−i)N 0N×m

0m×(i−1)N 0m×N 0m×(k−i)N Im

]
,

where 0i×j is an i × j matrix of zeros and Ij is a j × j identity matrix.
Clearly, dπ · dqi = dΠk for i = 1, . . . , k.
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Recall that within the framework of numerical algebraic geometry, alge-
braic sets are represented by witness sets. A witness set for pure dimensional
algebraic set A ⊂ Cn consists of deg A isolated points in the intersection
A∩L, where L ⊂ Cn is a general linear subspace of dimension dimL = codA.
If A is not pure dimensional, then a witness set for A consists of a collection
of witness sets for its pure dimensional pieces.

To build algorithms to solve Problem 1.1, i.e., to find the exceptional
loci of X, we will use the following procedures from numerical algebraic
geometry.

Irreducible Decomposition For a polynomial system f(x), find witness
sets for the irreducible components of the solution set of f(x) = 0
[7, 13].

Deflation Suppose w is a witness point for an irreducible component A ⊂
f−1(0) and suppose L(x) is the system of linear equations that iso-
lates w in A. Then, w is a solution of the augmented system F (x) =
{f(x), L(x)}. If A is a reduced component, then the Jacobian matrix
∂F/∂x has full rank and deflation trivially returns f(x). Otherwise,
deflation returns a new system f̂(x, λ) that has an irreducible compo-
nent Â that is reduced and projects to A under the natural projection
(x, λ) 7→ (x), along with the points in Â that project to the witness
points of A. Deflation for isolated solutions of polynomial systems is
discussed in [2] and its use in connection with deflating nonreduced
components was introduced in [13, §13.3.2].

Sampling Suppose we have a witness set w = A∩L for a pure dimensional
algebraic set A. Given a new target slicing space L′, where L and L′

both have dimension equal to codA, Sampling follows the continu-
ation paths from w to the points w′ = A ∩ L′ as L is continuously
moved to L′ along a general path in the Grassmannian of linear spaces
of dimension codA.

Membership Test Given a witness set w for a pure i-dimensional alge-
braic set A ⊂ Cn, one may determine whether z ∈ Cn is in A by
generating a general linear subspace L′ of dimension n − i that con-
tains z and running the Sampling algorithm to obtain w′ = A ∩ L′.
Then, z ∈ A if and only if z ∈ w′. There is a second way of checking
membership, that is sometimes useful in practical examples. Given
a point p ∈ w in a witness set for A, then z ∈ A if there exists an
irreducible algebraic set B such that {p, z} ∈ B, and B ⊂ X, e.g., a
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generic point b ∈ B satisfies the system f(v; p) = 0. This criteria is
used with B a linear space in the example in §4.

Before giving a full algorithm for Problem 1.1, it will be helpful to first
define new sub-algorithms, Image Dimension, Base Dimension, Fiber
Dimension, and Main Component.

Image Dimension determines the dimension of the image of an irre-
ducible algebraic set A ⊂ V (f) under a projection map π, i.e., determines
dimπ(A), given a witness set for A. For convenience, let us denote this as
ImDimπ(A). The procedure is to first apply Deflation to get Â having a
generically maximal rank projection π̂ such that A = π̂(Â). (If the Jacobian
matrix of f is already maximal rank at a witness point of A, then Â = A
and π̂ is the identity.) At a general point of Â, e.g., at one of the deflated
witness points, say ŵ, find a basis B for the tangent space of Â using stan-
dard linear algebra, that is, B = ker(df̂(ŵ)), where ker() finds the kernel
(null space) of a matrix. Then, ImDimπ(A) = rank(dΠk · dπ̂ ·B).

The Base Dimension b(W ) of an irreducible component W ⊂ ∏k
Y X

is just b(W ) = ImDimΠk
(W ).

For 1 ≤ i ≤ k, the ith Fiber Dimension hi(W ) of an irreducible
component W ⊂ ∏k

Y X is hi(W ) = ImDimqi(W )− b(W ).
When W is nonreduced, the base dimension and fiber dimension cal-

culations both need a deflation of W . In an efficient implementation, the
deflation can be generated just once to serve both purposes.

Main Component is based on Theorem 2.7. We suppose that we have
a witness set for an irreducible component W of

∏k
Y X, and we wish to

determine if it is a main component Wk
π for some irreducible set W ⊂ X.

We proceed by testing the conditions set out in Theorem 2.7, as follows.

1. Check if W is invariant under the symmetric group Sk. To do so, we
note that two generators are sufficient to generate all of Sk, namely in-
terchanging the first two elements, (x1, x2, x3, . . . , xk) 7→ (x2, x1, x3, . . . , xk),
and cyclicly advancing all the elements, (x1, x2, . . . , xk) 7→ (xk, x1, . . . , xk−1).
Denote these generators as S and S′. Let w be one of the witness points
for W . Use the Membership Test to see if S(w) and S′(w) are in
W . If so, the first check passes.

2. Compute the Base Dimension b(W ) and Fiber Dimension hi(W ),
1 ≤ i ≤ k. All the hi(W ) must be equal. If not, the test fails. If so,
let h(W ) = hi(W ), and check that dimW = b(W ) + kh(W ).
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3. For one witness point (w1, . . . , wk) of W , use Membership Test to
see if (w1, . . . , w1) ∈ W .

It is sufficient to test all of these at a single witness point, because the
witness points are cut out generically, so if the tests pass for one witness
point, they must pass for all the witness points. If and only if all these
conditions are met, W is a main component Wk

π . As an aside, we note that
one may subsequently test if a point z ∈ Cn is in the set W associated to W
by testing if the k-tuple (z, . . . , z) is in W using the Membership Test.

A basic algorithm for finding exceptional loci simply uses Corollary 2.15.
In brief, one could proceed as follows.

1. Compute the numerical irreducible decomposition of f−1(0). This
produces a list of irreducible components, say X1, . . . , Xr, each repre-
sented by a witness set.

2. Use Image Dimension to find ImDimπ(Xi), i = 1, . . . , r. Let k be
the maximum of these.

3. Form the fiber product system Fk(v1, . . . , vk; p) := {f(v1; p), . . . , f(vk; p)}
and compute the decomposition of its solution set into irreducibles, say
W1, . . . , Ws.

4. Use Main Component to detect which of W1, . . . , Ws are main com-
ponents, thereby also finding the associated sets Wi such that Wi =
(Wi)

k
π. These are the irreducible exceptional loci.

We have used the fact that once the main component of an irreducible
exceptional locus has been promoted to irreducibility, it remains so for higher
fiber products. Thus, in step 2, we determine a k that is large enough to
promote all the exceptional sets to irreducibility.

Example 3.1 Using the algorithm on Example 2.11, one finds that the
system has one irreducible component X = V (av2 + bv + c) with a base
dimension b(X) = 3. Thus, we proceed by forming the tripled system on C6




av2
1 + bv1 + c

av2
2 + bv2 + c

av2
3 + bv3 + c


 = 0,

and compute its irreducible decomposition. The total degree is 27, so the
cascade algorithm has 27 paths, eight of which stop at stage 1 of the cascade
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as degenerate points at infinity, and the other 19 proceed all the way to
stage 3 of the cascade. These are all nonsingular, so they are witness points
for the codimension 3 irreducible components of X ×Y X ×Y X viewed as
a subset of C6. Of these, 3 are of the form v1 = v2 = v3, and 5 each are of
the form v1 = v2 6= v3, v2 = v3 6= v1, and v3 = v1 6= v2. This leaves just
one witness point of the form v1 6= v2 6= v3 for which a = b = c = 0. Only
this witness point passes the Main Component test, and it represents the
exceptional locus D1(π) given by (v; a, b, c) = (λ; 0, 0, 0), λ ∈ C.

The foregoing algorithm is not practical for many systems of interest,
because the total degree of the fiber product system Fk will be too large.
Clearly, it is wasteful to use the same worst case k to find every irreducible
exceptional locus, as some might appear for a much smaller k than others.
Moreover, the system Fk will have solution components that mix up the
irreducibles X1, . . . , Xr when it is sufficient to examine only the unmixed
fiber products

∏k
Y Xi. Finally, as seen in Example 3.1, the basic algorithm

finds many components of
∏k

Y X that cannot be main components because
they have unequal dimensions under the projections qi.

It is likely that a better approach can be devised by using diagonal inter-
sections (see [9, 10, 11]) to sequentially build up

∏k
Y Xi for k = 2, then k = 3,

etc., stopping according to the more refined conditions of Corollary 2.14. By
repeatedly applying diagonal intersections with the same component, one
avoids mixing fibers across the different components.

If one is interested only in exceptional loci having certain base and fiber
dimension pairs, then a more refined approach is possible. For any particu-
lar (b, h) pair of interest, Corollary 2.14 gives an upper bound, say k, on the
number of fiber products necessary to promote any such set, say Z, to irre-
ducibility. Moreover, we can slice out isolated points of the main component
Zk

π by intersecting it with a linear space of the form

Lb,h,k =
b⋂

i=1

Li(π)
h⋂

i=1

L1
i (q1) · · ·

h⋂

i=1

Lk
i (qk), (9)

where each Li(π) and Lj
i (qj) is the pullback of a generic hyperplane in

the image space of the indicated projection. This can be relatively efficient
because the structured slice respects a natural sparsity of the problem, hence
multihomogenization or sparse polytope methods can come into play. Let
us call this a “multislice” approach. A multislice can contain points on sets
other than main components, so the points must still be checked using Main
Component.
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The multislice technique can be used repeatedly to target each possible
pair (b, h) ≺ (B,H). In many cases, this can result in fewer total homotopy
paths than required by the basic algorithm.

4 Example: Rulings on a Quadric

This section reports on the application of fiber products to study rulings
on a quadric surface in C3. The calculations were done using an extension
of HomLab, a suite of routines written in Matlab as an accompaniment to
the book [13]. The routines run in double precision and use a power series
endgame to accurately compute singular endpoints. CPU times are reported
for an HP x4000 with a 2GHz Xeon CPU running Windows XP.

A classic result from algebraic geometry is that most quadric surfaces in
C3, e.g., the ones that have smooth closure in P3, are doubly ruled. This
serves as a good test example for our fiber product approach: we know that
a random line hits a general quadric in two isolated points, and we wish
to find the lines that lie entirely in the surface. Let q(x) : C3 → C be a
quadric polynomial, whose coefficients are chosen at random from P9. To
parameterize the lines in C3, we use a vector u ∈ C3 along the line and a
point v ∈ C3 on the line, so the points x ∈ C3 that lie on the line are those
that satisfy the system

u× (x− v) = 0, (10)

where “×” denotes the vector cross product (outer product) operator in
three-space. (This vector equation is a system of three scalar equations, but
it places at most two constraints on x, because uT (u × (x − v)) = 0 for
any x.)

The system we wish to analyze is

f(x; u, v) = {q(x), u× (x− v)} = 0. (11)

The projection of interest is π : (x;u, v) 7→ (u, v). We know that D0(π)
consists of two points of V (q) over each generic point in (u, v) ∈ C6. Rulings
of V (q) are points in D1(π).

So as to test the fiber product algorithm, let us proceed as if we know
nothing of the classical theory of rulings on quadrics. We begin by comput-
ing an irreducible decomposition of V (f) ⊂ C9. This is a system of four
quadratic equations, so Irreducible Decomposition using the cascade al-
gorithm of [6],[13, chap.14] initiates with 16 paths. The cascade results at
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each dimension are as follows, where “Dim” is dimension, “Paths” is the
number of solution paths used to check that dimension, #Ŵ is the number
of points found in the witness superset, #Ŵsing is the number of these whose
Jacobian is less than full rank, #N is the number of nonsolutions that carry
over to the next level of the cascade, #∞ is the number of paths ending
at infinity, nfe is the average number of function evaluations per path, and
“nfe” is the total number of function evaluations for all the paths at that
dimension. The total run time is about 22 sec, using a “tableau” description
of f expanded into its monomials.

Dim Paths #Ŵ #Ŵsing #N #∞ nfe nfe
8 16 0 0 10 6 151.63 2426
7 10 0 0 10 0 57.20 572
6 10 6 0 4 0 65.60 656
5 4 4 4 0 0 69.25 277

The top dimensional component is dimension 6 and degree 6 with all non-
singular witness points. The 4 singular points at dimension 5 are “junk,”
that is, they lie in the set found at dimension 6.

Let Z = V (f). The above calculation shows that dimZ = 6 and subse-
quent trace testing shows that it is one irreducible set. To reduce the total
degree of the system before forming fiber products, it is useful to “square
up” f using random linear combinations of the equations. Since Z is codi-
mension 3, three linear combinations of the functions in f are sufficient to
have Z as a component. That is, we use

f̂(x; u, v) = R ·
(

q(x)
u× (x− v)

)

where R ∈ C3×4 is chosen at random. This is a system of 3 quadratic
polynomials, and Z is an irreducible component of V (f̂).

Next, we use Image Dimension to find that B = b(Z) = 6, hence
H = h(Z) = 0. We know from Corollary 2.15 that finding the irreducible
decomposition of

∏6
Y Z will suffice to find all exceptional loci. However, it

is clear that the lowest possible base dimension is b = 2, because if (u, v, x)
is a solution, so is (λu, v + µu, x) for any (λ, µ) ∈ C2. Accordingly, just
analyzing

∏4
Y Z will suffice.

However, since dimπ(Z) = dimZ, it may be that Theorem 2.17 gives a
tighter bound on the number of fiber products we need. In fact, we know
that a general line strikes a general quadric in two points, so Theorem 2.17
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Table 2: Bound on k for promotion to irreducibility for rulings on a quadric.
h\b 2 3 4 5 6
2 2 2
1 3∗ 3 2
0 1

∗ reduced from 4 by Theorem 2.17.

applies with d = 2. Accordingly,
∏3

Y Z suffices to find the lowest nonempty
Dh(π).

This preparatory work, summarized in Table 2, tells us that if rulings
exist on the quadric, then they will be discovered by an irreducible decom-
position of

∏3
Y Z. The 9 polynomials for the fiber product are:

F̂ (x1, x2, x3; u, v) =





f̂(x1;u, v)
f̂(x2;u, v)
f̂(x3;u, v)



 , (12)

We use F̂ to distinguish this system from the system F of 12 polynomials
that would result from using f instead of f̂ .

The results of the cascade algorithm for generating witness supersets are
as follows. The calculation required about 14 minutes of CPU.

Dim Paths #Ŵ #Ŵsing #N #∞ nfe nfe
14 512 0 0 280 232 249.02 127498
13 280 0 0 280 0 59.77 16736
12 280 0 0 280 0 54.06 15137
11 280 0 0 280 0 63.51 17782
10 280 0 0 280 0 61.01 17083
9 280 8 0 272 0 67.86 19002
8 272 32 24 240 0 84.92 23099
7 240 80 80 160 0 82.03 19688
6 160 160 80 0 0 73.03 11684

The highest dimensional set is dimension 9 having degree 8. Examination
of the witness points reveals immediately that u = 0 for all these points.
It is clear that this is the set which we denote as U , defined as U = {0} ×
C3 × V (q(x1)) × V (q(x2)) × V (q(x3)). It is not a ruling, as u = 0 does
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not correspond to a line, but it nonetheless reveals this component in D2(π)
having base dimension b(U) = 3 and fiber dimension h(U) = 2.

At dimension 8, there are 32 candidate witness points, 24 of which are
singular. The singular ones are all in U . The remaining 8 are figments of the
randomization: they lie in V (F̂ ) but not in V (F ). These are of no interest
to us.

At dimension 7, there are 80 candidate witness points, all singular. These
break up into 48 in U and 32 that are not in V (F ).

Finally, at dimension 6 we have the candidate witness points of greatest
interest. Eighty of 160 are singular, again with 48 in U and 32 not in V (F ).
This leaves 80 nonsingular witness points.

The next step is to check the 80 points against the conditions x1 = x2,
x2 = x3, and x3 = x1. Any point satisfying one of these conditions is not
of interest, as a general slice of the main component will have independent
xi from the fiber. A check shows that there are 18 points that satisfy each
of x1 = x2 6= x3, x2 = x3 6= x1, and x3 = x1 6= x2. Six more satisfy
x1 = x2 = x3. These are nothing more than the original degree 6 set Z with
(u, v, x) mapped to (u, v, x, x, x).

This leaves just 20 witness points as candidates for rulings of the quadric.
All have x1 6= x2 6= x3 6= x1. Using Image Dimension and Fiber Di-
mension, we find that all have b = 3 and h1 = h2 = h3 = 1. Monodromy
with traces shows that the points break up into two irreducible components
of degree 10 each: call these sets W1 and W2. We use Membership Test
on one point (u, v, x1, x2, x3) of each of them to verify that (u, v, x2, x1, x3)
and (u, v, x3, x1, x2) are also on the component. Finally, we need to check
that point (u, v, x1, x1, x1) is in the set. In principle, we could also use a
homotopy membership test for this, but (u, v, x1, x1, x1) is a highly singular
point, which makes accurate path tracking difficult. Instead, we may use
the fact that since h = 1, the fibers must be lines, so it suffices to check that
for random α, β,

F̂ (u, v, x1, (1− α)x1 + αx2, (1− β)x1 + βx3) = 0.

This equality holds and thereby confirms that the closure of the set includes
the point (u, v, x1, x1, x1) in the limit as (α, β) → (0, 0). These conditions
are satisfied for a test point from each of W1 and W2, thus showing that
both are the main components of a set in D1(π).

Under the equivalence (u, v) ≡ (λu, v + µu) for our representation of
lines in C3, the base dimension b(Wi) = 3, i = 1, 2, implies that these are
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each a one dimensional family of distinct lines. A one dimensional family of
rulings sweeps out a two dimensional surface, so its closure must be equal
to the closure of the whole quadric. Altogether, this shows that there are
two rulings of the quadric, each being degree 10 in the formulation we study
here.

None of the checking or sorting steps takes more than a 10 seconds of
CPU; the computation is completely dominated by the cascade generation
of the witness supersets.

5 Conclusions and Discussion

Exceptional sets where fibers have dimensions higher than the generic fiber
dimension are of interest in mathematics and in application areas, such as
the theory of overconstrained mechanisms. We show that fiber products
promote such sets to become irreducible components, whereupon they can
be found using techniques from numerical algebraic geometry for computing
the irreducible decomposition. We provide an upper bound on the number
of fiber products necessary to promote an exceptional set to irreducibility,
depending on the base and fiber dimensions of a generic fiber and of the
exceptional set. In any case, the Bth fiber product, where B = b(X),
will promote even the smallest exceptional set in X to irreducibility. When
b(X) = dimX, then the (d+1)th fiber product, where d is the cardinality of
a generic fiber, is guaranteed to promote the exceptional set of smallest fiber
dimension to irreducibility. This can sometimes provide a tighter bound and
thereby limit the amount of computation.

An irreducible decomposition of a fiber product may contain components
other than the exceptional loci we seek. We show that each irreducible
component of the exceptional loci has a corresponding main component in a
fiber product of sufficiently high order, and we give procedures for identifying
these components. The methods are illustrated by finding the rulings of a
general quadric in C3.

The largest drawback of our approach is the rapid escalation of the total
degree of the system of equations as successive fiber products become nec-
essary. The simplistic approach of finding the irreducible decomposition of
a fiber product

∏k
Y X with k set to the worst case is too expensive for many

systems of practical interest. Our future work will concentrate on how to
best use successive diagonal homotopies to eliminate unproductive calcula-
tions and how to integrate this with the multislice technique for targeting
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one (b, h) pair at a time.

A Some background on algebraic sets

In this appendix, we collect some definitions and lemmas that are needed
throughout this article, particularly in the definition and characterization of
the main component of a fiber product of an algebraic set with itself.

By a Zariski open set U of an algebraic set X is meant a set of the form
X \ A where A is an algebraic subset of X. The Zariski open sets form a
topology, which usually has many fewer open sets than the usual complex
topology induced on X as a subset of CN or PN . We refer [13, §12.1.1] for
more on these two topologies.

In this article we ignore multiplicities, i.e., we only deal with reduced
algebraic sets. Thus for example, the set defined by z2 = 0 on C2 is the
same as the set defined by z = 0 on C. Although we ignore multiplicities,
the algorithms in this article work with sets of arbitrary multiplicity. Nu-
merical computations with sets of multiplicity at least two may be reduced
to computations with multiplicity one sets, at the expense of an increase in
the number of variables, by the use of deflation, see [2] and [13, §10.5] for
the isolated case and [13, §13.3.2] for the positive dimensional case.

Let π : X → Y be an algebraic map between algebraic sets, i.e.,

1. X and Y are algebraic sets; and

2. π is an algebraic map, i.e., π is a map whose graph Γ is an algebraic
subset of X × Y with the map Γ → X, induced by the product pro-
jection, an isomorphism.

Example A.1 For a typical example of how an algebraic map between
affine algebraic sets arises, let X be the set of solutions of the system f(v; p)
of polynomials on CN+m from Eq. 1 with v ∈ CN and p ∈ Cm. Letting
π denote the restriction to X of the projection CN × Cm → Cm given by
(v; p) 7→ p, we have by Chevalley’s Theorem, as discussed above, that π(X)
is a constructible algebraic set. Note that the closure π(X) of π(X), which
as discussed above is the same in either the Zariski or complex topology,
is an algebraic subset of Cm and hence affine. Taking Y to be any affine
algebraic subset of Cm containing π(X), e.g., π(X) or Cm, gives an example.

The constructible sets on an algebraic set X are the sets obtained from
the algebraic subsets by closing up under the operations of complementation
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and finite unions. These sets include the Zariski open sets plus many other
sets, e.g., {

(x, y) ∈ C2|x 6= 0
} ∪ {(0, 0)} .

Given an algebraic map f : X → Y between algebraic sets, the image π(X)
need not be an algebraic set, but it is always constructible by Chevalley’s
Theorem [13, Theorem 12.5.6]. Given a constructible subset C ⊂ X of
an algebraic set X, the closure C of C in either the Zariski or complex
topology are the same, and there is a Zariski open and dense subset U ⊂ C
that is contained in C. These results, which are discussed in [13, §12.5]
allow us quickly reduce questions about constructible sets to questions about
algebraic sets.

General or generic points play a key role in applications of numerical
analysis to the solution of polynomial systems. Classically, there are different
interpretations of what this means. Referring to [13, Chapter 4] for details,
we summarize what this means. Roughly speaking, a general or generic
point of an irreducible algebraic set X is a point in a Zariski open and
dense set U ⊂ X such that some finite set of properties hold for points of
U . For example, given polynomial f1(x), . . . , fn(x) on CN such that there
are no common solutions of the fi(x), Bertini’s Theorem states that there
is a nonempty Zariski open set U ⊂ Cn such that for (c1, . . . , cn) ∈ U , the
solution set of c1f1(x)+· · ·+cnfn(x) is either empty or a smooth codimension
one algebraic set. Finite intersections of nonempty Zariski open subsets of
an irreducible Zariski open set are nonempty Zariski open, and hence dense.
Typically in constructions we successively restrict to smaller and smaller
Zariski open sets on which successively stronger properties hold. Though it
is not without interest what the detailed properties of these sets are, a major
strength of numerical methods is that a numerically computed “random
point” on an irreducible algebraic set behaves for practical purposes like a
general point theoretically should behave.

As we successively go to smaller and smaller Zariski open sets, we typi-
cally retain the same name for the set.

Lemma A.2 Let f : A → B be an algebraic map from an algebraic set A
to an algebraic set B. Then the closure f(A) of f(A) in the complex and
Zariski topology are the same. If A is irreducible, then so is the algebraic
set f(A)

Proof. The first assertion follows from Chevalley’s Theorem [13, Theorem
12.5.6] and [13, Lemma 12.5.3]. The irreducibility statement is [13, Corollary
12.5.7]. 2
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Lemma A.3 Let Z1 and Z2 be irreducible algebraic subsets of an algebraic
set X. Let π : X → Y be an algebraic map from X to an algebraic set Y .
Assume that πZ1 is a dominant map, i.e., that π(Z1) is dense in Y . Then
either Z1 = Z2 or there is a Zariski open and dense set V ⊂ Y such that
given y ∈ V , π−1

Z1
(y) and π−1

Z2
(y) have no common irreducible components.

Proof. Y is irreducible by Lemma A.2. In the course of the proof we
will intersect a finite number of Zariski open and dense subsets of Y : such
an intersection remains Zariski open and dense.

If π(Z2) is not dense in Y , the conclusion is immediate. Therefore we can
assume without loss of generality that both of πZ1 and πZ2 are dominant.
Thus by [13, Corollary A.4.12], for i = 1, 2, there is a Zariski open and dense
set Vi of Y such that for y ∈ V ,

1. dimZi = dimY + dimπ−1
Zi

(y); and

2. π−1
Zi

(y) is pure dimensional, i.e., each component of π−1
Zi

(y) has the
same dimension.

These properties hold for the Zariski open and dense set V3 := V1∩V2. From
these properties we see that π−1

Z1
(y) and π−1

Z2
(y) having a common irreducible

component for a Zariski open and dense set of y ∈ Y would imply that
dimZ1 = dimZ2. Thus if Z1 6= Z2 it follows that the intersection Z ′ of Z1

and Z2 is of dimension strictly less that dimZ1. Applying [13, Corollary
A.4.12] to πW for any irreducible component W of Z ′, we conclude that
dimπ−1

W (y) < dimπ−1
Z1

(y) and hence also dimπ−1
Z′ (y) < dimπ−1

Z1
(y) for a

Zariski open and dense set of y ∈ Y . Since π−1
Z′ (y) and π−1

Z1
(y) are pure

dimensional for a Zariski open and dense set of y ∈ Y , they can have no
common components. 2

Lemma A.4 Let G = K1 ∪ . . . ∪ K` be a decomposition of an algebraic
set into irreducible components. Then an irreducible component K of Gk is
of the form Kk

i for some i = 1, . . . , ` if and only if given a general point
(x1, . . . , xk) ∈ K it follows that (x1, . . . , x1) ∈ K.

Proof. The “only if” half of the lemma is immediate. So we assume that
given a general point (x1, . . . , xk) ∈ K it follows that (x1, . . . , x1) ∈ K. We
need to show that K is of the form Kk

i .
The irreducible components of Gk are of the form

Ki1 × · · · ×Kik
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for (i1, . . . , ik) ∈ {1, . . . , `}k. Since none of the Ki belong to the union of
the remaining Ki, it follows that a general point of anyone of the Ki does
not belong to any of the remaining Ki. Therefore the only sets of the form
Ki1 ×· · ·×Kik satisfying the hypothesis of the lemma are of the ones of the
form Kk

i . 2
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