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Abstract

In numerical algebraic geometry, algebraic sets are represented by witness sets.
This paper presents an algorithm, based on the regeneration technique, that solves
the following problem: given a witness set for a pure-dimensional algebraic set Z,
along with a system of polynomial equations f : Z Ñ Cn, compute a numerical
irreducible decomposition of V � Z X Vpfq. An important special case is when
Z � A � B for irreducible sets A and B and fpx, yq � x � y for x P A, y P B,
in which case V is isomorphic to A X B. In this way, the current contribution is
a generalization of existing diagonal intersection techniques. Another important
special case is when Z � A � Ck, so that the projection of V dropping the last
k coordinates consists of the points x P A where there exists some y in a new set
of variables such that fpx, yq � 0. This arises in many contexts, such as finding
the singularities of A, in which case fpx, yq can be a set of singularity conditions
that involve new variables associated to the tangent space of A. The combining
of multiple intersection scenarios into one common scheme brings new capabilities
and organizational simplification to numerical algebraic geometry.
Keywords. Numerical algebraic geometry, algebraic set, intersection, regeneration,
witness set
AMS Subject Classification. 65H10, 68W30, 14Q99

1 Introduction

Numerical algebraic geometry concerns the solution of systems of polynomial equations
using numerical methods, principally homotopy methods, also known as polynomial
continuation. The ground field is assumed to be C so that continuity applies. One of
the main accomplishments of the field of numerical algebraic geometry is the capability
to compute a numerical irreducible decomposition of the solution set of a polynomial�Department of Mathematics, North Carolina State University (hauenstein@ncsu.edu,
www.math.ncsu.edu/�jdhauens). This author was partially supported by NSF grant DMS-1262428.:General Motors Research and Development, Mail Code 480-106-224, 30500 Mound Road, Warren,
MI 48090 (charles.w.wampler@gm.com, www.nd.edu/�cwample1)
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system, first accomplished in [25]. That is, given a polynomial system F : CN Ñ C
n:

F pz1, . . . , zN q � ���F1pz1, . . . , zN q
...

Fnpz1, . . . , zN q��� , (1)

one wishes to decompose its solution set

VpF q :� tz P C
N | F pzq � 0u

into a union of its irreducible components1. Any algebraic set has such a decomposition.
A pure-dimensional algebraic set has the same dimension at every point of the set.

Such a set, say A � C
N , is represented in numerical algebraic geometry by a finite set

of data called a witness set. A witness set consists of three entries:

1. a polynomial system, fA, such that A is a pure-dimensional component of VpfAq;
2. a generic affine linear polynomial system, LA : CN Ñ C

dimA; and

3. numerical approximations to the witness point set WA � A X VpLAq, which is a
set of degA points.

Accordingly, we write a witness set for A as the ordered set A � tfA, LA,WAu. The
adjective “generic” in Item 2 is key: there exist linear polynomial systems whose solution
sets do not intersect A as required in Item 3, but these are a proper algebraic subset of
all possible linear mappings from C

N to C
dimA. “Generic” means that LA is not one of

these; it is a member of the dense, Zariski-open subset of linear systems whose solution
sets intersect A in degA points. Clearly, this definition of a witness set also applies
to irreducible algebraic sets. A numerical irreducible decomposition of the solution
set VpF q consists of one witness set for each of its irreducible components.

For any a P WA, we know that a is an isolated point in VpfA, LAq. If A � VpfAq is
irreducible, then the multiplicity of A with respect to fA is equal to the multiplicity of
a with respect to tfA, LAu. If the multiplicity of A is 1 with respect to fA, A is said to
be generically reduced. Otherwise, A is said to be generically nonreduced. The focus is
on the generically reduced case with §3.1 showing that problems involving generically
nonreduced algebraic sets can be solved using the generically reduced case.

Given an irreducible decomposition, one may wish to investigate certain irreducible
components further, and in particular, one might wish to find various kinds of intersec-
tions. For example, if A is an irreducible component of VpfAq and B is an irreducible
component of VpfBq, one may wish to find their common points, AXB. A special case
of this is membership testing, in which one wishes to determine if a given point x� P C

N

is in A. This is equivalent to deciding if AXtx�u � tx�u or AXtx�u � H. Another pos-
sibility is that one might wish to extend the analysis of A to find pA�C

kqXVpgpx, yqq,
1An irreducible algebraic set is an algebraic set that cannot be expressed as the union of a finite

number of its proper algebraic subsets.
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where y P C
k is some set of newly introduced variables. This may occur, for example, if

one wishes to find the singularities of A and gpx, yq � 0 is a set of singularity conditions
that includes new variables associated to tangent directions in A. The system g could
also define other “critical” conditions on A, such as computing critical points of the
distance to a fixed point, e.g., [11], and critical points of a projection, e.g., [7, 19].

In this article, we place all these intersection questions into a common setting. Given
an irreducible set Z and a polynomial system f : Z Ñ C

n, we wish to find V � ZXVpf q.
The examples of the previous paragraph fit this format as follows.

1. For irreducible algebraic sets A,B � C
N , the set AXB is isomorphic totpx, yq P C

2N | x P A, y P B,x � yu � pA�Bq X Vpx� yq,
so we take Z � A�B and f � x� y.

2. Testing if x� P A is a special case of the former with Z � A�tx�u and f � x�x�.
3. For the set pA� C

kq X Vpgpx, yqq, we take Z � A� C
k and f � g.

The treatment of AXB as in Item 1 is called “reduction to the diagonal.” This was used
in [23], where a cascade of homotopies produces witness sets for V � pA�BqXVpx�yq.
Although V is isomorphic to A X B using the maps px, yq ÞÑ pxq and pxq ÞÑ px, xq, it
turns out that extra work can be required to build witness sets for the components of
AXB from those found for V . This was described in [17] using the theory of isosingular
sets from [16]. We discuss relevant details in §4.

Like the earlier cascade algorithm of [30] or the dimension-by-dimension algorithm
of [29, Chap. 13], the regenerative cascade algorithm of [15] generates witness point
supersets for the pure-dimensional components of VpF q. A witness point superset for

the pure i-dimensional algebraic set Vi � VpF q is of the form xWi � Wi Y Ji, where Wi

is a witness point set for Vi and Ji consists of a finite number of points contained in the
union of components of VpF q of dimension greater than i. The full process of numerical
irreducible decomposition consists of the following three steps:

• find a witness point superset xWi for each pure i-dimensional component of VpF q;
• eliminate the “junk sets”, Ji, from xWi to obtain Wi; and

• partition Wi into witness point sets for the irreducible components of dimension i.

The elimination of junk for VpF q can be accomplished using a local dimension test [4]
or, if the multiplicity depth is too large for that to be practical, by using the homo-
topy membership test [26] against all the higher-dimensional solution components. The
break-up into irreducible components is done with monodromy [28] backed up by linear
trace tests [27]. A good general reference to these techniques is [29].

All of the pre-existing methods for generating witness point supersets apply only to
VpF q or, in the case of [23], to pA�BqXVpx�yq. The main contribution of this article
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is to treat the more general case of Z X Vpf q and to illustrate its usefulness on several
examples in §6. In particular, an algorithm patterned after the regenerative cascade
algorithm is presented in §3 for computing witness point supersets for the Z X Vpf q
setting. The last two steps of the decomposition are discussed in §4. Also, as mentioned
above, this section shows that the theory of isosingular sets from [16] can be used to
finish the construction of the witness sets from the witness point supersets.

2 Cross products of irreducible sets

As noted above, it is useful to apply the capability to compute Z X Vpf q to situations
where Z � A�B for irreducible algebraic sets A and B. One could just as well consider
the case where A and B are pure-dimensional but not necessarily irreducible, in which
case Z is the union of the cross products of all pairs of irreducible components taking
one from A and one from B. We shall concentrate on the case of irreducible sets, but one
may see that the same results hold for pure-dimensional sets by applying the arguments
to each pair.

Let A � C
NA and B � C

NB be irreducible algebraic sets and let Z � A�B. Let z

be a set of coordinates on C
NA�NB and let z̄ � �z

1

�
. Then, we have the following facts:

1. Z is an irreducible algebraic set;

2. dimZ � dimA� dimB;

3. degZ � degA � degB; and

4. there exists a dense Zariski open subset U of CdimZ�pNA�NB�1q such that for all
P P U the set WZ :� Z X V pP � z̄q consists of degZ isolated points.

The fact that Z is an algebraic set of dimension dimA � dimB follows directly
from observing that the set of polynomials which vanish on Z is generated by the
polynomials which vanish on A� C

NB and the polynomials which vanish on C
NA �B,

e.g., [9, Exercise 13.13]. This observation regarding the vanishing polynomials also
provides that degpA� C

NBq � degA and degpCNA �Bq � degB.
The irreducibility of Z follows directly from the irreducibility of A and B as follows.

Suppose that Z1 and Z2 are algebraic sets with Z � Z1YZ2. For every a P A, consider
the irreducible set Ba � tau �B. Since Ba � pBa X Z1q Y pBa X Z2q, the irreducibility
of Ba implies that Ba � Z1 or Ba � Z2. Therefore, A � A1 YA2 where

Ai � ta P A | Ba � Ziu.
Since A is irreducible, it follows that A1 � A or A2 � A so that Z1 � Z or Z2 � Z.

Suppose that LA � C
NA and LB � C

NB are general linear spaces of codimension
dimA and dimB, respectively. Then, L � LA � LB is a linear space of codimension
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dimA� dimB � dimZ with

Z X L � pAX LAq � pB X LBq
which consists of degA � degB points. This shows degZ ¥ degA � degB. Bézout’s
Theorem provides the other inequality, namely

degpA�Bq � degppA�C
NB qXpCNA�Bqq ¤ degpA�C

NBq�degpCNA�Bq � degA�degB.

The fourth follows from Facts 2 and 3 and the Slicing Theorems [29, Thms. 13.2.1,13.2.2].
In particular, this proof of the third fact shows that intersecting with a linear space

constructed by the cross product general linear spaces in each set of variables produces
the same number of points as with a general linear space in all variables. Hence, a
witness set for Z � A� B can be easily constructed from witness sets for A and B as
shown in the following lemma.

Lemma 2.1 Let tfA, LA,WAu and tfB , Lb,WBu be witness sets for irreducible and
generically reduced algebraic sets A � C

NA and B � C
NB , and let Z � A�B. Also, let

z̄ � ��xy
1

��, where x and y are coordinates on C
NA and C

NB , respectively. Then, for P

chosen at random from C
pdimA�dimBq�pNA�NB�1q, the homotopy

h0px, y, tq � Z X V

�
t

�
LApxq
LBpyq�� p1� tqpP � z̄q
 (2)

starting with the degA � degB points WA � WB at t � 1 is, with probability one, a
complete homotopy (in the sense defined in [14]) for Z X VpP � z̄q. Moreover, letting
WZ be the set of endpoints of this homotopy at t � 0, tpfApxq, fBpyqq, P � z̄,WZu is a
witness set for Z.

Proof. A complete homotopy for Y means that the paths are all trackable (exist, are
continuous, and advance strictly monotonically with respect to t P p0, 1s; see [14]) and
their set of endpoints (the limits as t Ñ 0 of the paths) include all the isolated points
in Y . In the lemma, Y � Z X VpP � z̄q �WZ . But from the facts above, we know that
WZ is a set of degZ � degA � degB points for generic P P C

pdimA�dimBq�pNA�NB�1q.
By the parameter homotopy theorem [29, Thm. 7.1.1] (also [21]) and Lemma 7.1.2
of [29], homotopy h0 defines degZ trackable solution paths for t P r0, 1q starting at
WZ with endpoints that include all isolated roots of Hpx, y, 1q � 0. But at t � 1,
h0px, y, 1q � 0 has the degZ isolated roots WA �WB , so these must be the endpoints
of the homotopy paths going from t � 0 to t � 1. As stated, the homotopy runs in the
opposite direction, from t � 1 to t � 0, but the genericity of LA and LB along with
the assumption that A and B are generically reduced imply that the points WA �WB

are nonsingular roots of h0px, y, 1q � 0, hence the homotopy paths are nonsingular for
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t P r0, 1s. The final assertion that we have a witness set for Z is merely an observation
that tpfApxq, fBpyqq, P � z̄,WZu fits the definition of a witness set. l

In practice, one reduces to the case that fA : CNA Ñ C
NA�dimA and fB : CNB Ñ

C
NB�dimB via randomization with Bertini’s Theorem. Then, h0 from (2) is defined by

the square homotopy

h0px, y, tq � ���� fApxq
fBpyq

t

�
LApxq
LBpyq�� p1� tqP � z̄���� (3)

Remark 2.2 If the requirement that A and B be generically reduced is dropped, the
homotopy paths still exist by the parameter homotopy theorem for isolated roots [29,
Thm. 7.1.6]. After deflating the paths as in [14], they can be tracked using a standard
nonsingular path tracker. While this is a feasible approach, if either of A or B is generally
nonreduced, we generally prefer to deflate before applying Lemma 2.1 (see §3.1).

Remark 2.3 For several irreducible algebraic sets, say A1, . . . , Ak, it is obvious that
Lemma 2.1 can be applied pk � 1q times in succession to obtain a witness set of
Z � A1 � � � � �Ak. This is not necessary since dimZ � dimA1 � � � � � dimAk and
degZ � degA1 � � � degAk provides that a single homotopy of the form

h10px1, . . . , xk, tq � Z X V
�
ttLA1

px1q, . . . , LAk
pxkqu � p1� tqpP � z̄q� (4)

suffices where the dimension of P is adjusted appropriately and the rest of the notation
should be clear from context.

Remark 2.4 If one of the factors in the cross product is Euclidean, say B � C
k, then

fB is empty and WB is the unique root of an arbitrary full-rank square linear system,
LB : Ck Ñ C

k. Everything proceeds in the same way as for a more general B.

3 Regenerative cascade

The objective of this section is to solve the following problem.

Problem 1 Let Z � C
N be a pure-dimensional algebraic set, with witness set Z �tfZ , LZ ,WZu, and let f : CN Ñ C

n be a polynomial system. For each i � 0, . . . ,dimZ,

compute a witness point superset, xWi, for the pure i-dimensional component of ZXVpf q.
First, let us review some terminology. For x P C

N , we say that x is a nonsolution
of f if f pxq � 0. Recall that rankf is defined as the rank of the Jacobian matrix of
partial derivatives of f evaluated at a generic point of CN .
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With these terms, we may state a slight generalization of the regenerative cas-
cade method of [15] as follows. Let us denote LZ � tL1, . . . , LdimZu, where each of
L1, . . . , LdimZ is a single linear function C

N Ñ C.

Begin Algorithm 1

• Compute r � minprankf,dimZq.
• Choose a generic r � n matrix Λ and define F � tF1, . . . , Fru as the polynomials

formed as F � Λ � f , where F and f are treated as column matrices. See Note 1
below for options.

• Set m � 0 and U0 �WZ .

• While true:

1. Sort Um into Um � xWdimZ�m YXm, where xWdimZ�m are solutions and Xm

are nonsolutions of f .

2. If m � r, exit loop.

3. Set m � m� 1.

4. Form generic linear functions Lm,1, . . . , Lm,dm , each a map from C
N to C,

where dm � degFm. See Note 2 below.

5. For i � 1, . . . , dm:

– Track the solution paths of

hm,ipz, tq �tfZpzq, F1pzq, . . . , Fm�1pzq,
tLmpzq � p1� tqLm,ipzq,

Lm�1pzq, . . . , LdimZpzqu (5)

from t � 1 towards t � 0, starting at the points Xm�1. Use a singular
endgame, if necessary, to compute the endpoints (the limit as t Ñ 0) of
each path.

– Let Tm,i be the endpoints of the homotopy paths for hm,i.

6. End for.

7. Let Tm � Ydm
i�1

Tm,i.

8. Track the solution paths of

hmpz, tq �tfZpzq, F1pzq, . . . , Fm�1pzq,
t

dm¹
i�1

Lm,ipzq � p1� tqFmpzq,
Lm�1pzq, . . . , LdimZpzqu (6)

from t � 1 towards t � 0, starting at the points Tm. Use a singular endgame,
if necessary, to compute the endpoints.
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9. Let Um be the finite endpoints of the homotopy paths for hm.

• End while.

• If r   dimZ, then xWi � H for all i   dimZ � r.

• Return txW0, . . . ,xWdimZu.
End Algorithm 1

Notes:

1. The matrix Λ can be chosen with all entries below the main diagonal as zero. In
addition, the entries in f can be reordered arbitrarily, and it is generally advan-
tageous to place them in descending order by degree, in which case the entries in
F are also ordered by descending degree.

2. Since tL1, . . . , LdimZu are generic, it is acceptable to choose in every case Li,1 � Li.
In that case, homotopy hm,1 is trivial, and no computation is required to find Tm,1:
it is exactly Xm�1.

We will say that Algorithm 1 solves Problem 1 if every homotopy path in the algo-
rithm is trackable and the output is a valid set of witness point supersets for Z X Vpf q.
Theorem 3.1 For random choices of all its generic coefficients, Algorithm 1 solves
Problem 1 with probability one.

Proof. The regenerative cascade method of [15] solves Problem 1 for the case that
Z � C

N for someN . However, examination of the proof of that procedure with reference
to the Simple Bertini Theorem for Systems [29, Thm. A.8.7] shows that it also holds
if Z is any irreducible quasiprojective algebraic set. Furthermore, if Z is the union of
irreducible quasiprojective sets of the same dimension, then there is no difference in
carrying out the algorithm on one of these components at a time versus carrying it out
on the whole set Z, that is, we do not need the witness point set WZ to be decomposed
into witness point sets for the irreducible components of Z. l
3.1 Generically nonreduced sets

The statement of Problem 1 did not require Z to consist of the union of generically
reduced irreducible sets VpfZq, that is, Z might be a union of several irreducible solution
components of VpfZq where some of these might have multiplicity larger than one. If
each component of Z is generically reduced, then we have the desirable property that
every nonsolution point in Xm and every point in Tm produced by the algorithm is
nonsingular with respect to the corresponding polynomial systems. Then, the solution
paths of every hm,ipz, tq � 0 and hmpz, tq � 0 are also nonsingular for t P p0, 1s, so a
nonsingular path tracker suffices.
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In the case that Z has one or more irreducible components that is generically nonre-
duced, we can only say that the points Xm and Tm are isolated, and that the homotopy
paths exist and are trackable in the sense defined in [14]. Some of the paths will be sin-
gular, that is, the Jacobian matrix of partial derivatives of the homotopy function with
respect to z is not full-rank. As detailed in [14], trackable paths can be desingularized
using a deflation operation, after which a nonsingular path tracker can be applied.

When faced with a generically nonreduced component of Z, an alternative is to de-
flate it first before applying the regenerative cascade algorithm. Methods for deflating
a generically nonreduced irreducible set can be found in [16]. Since different irreducible
components of Z may have different deflation sequences (equivalent to Thom-Boardman
singularity sequences [2, 8] and summarized in §4), it is required to partially decompose
Z based on identical deflation sequences. Irreducible components with the same defla-
tion sequence can be simultaneously deflated. The determinantal deflation procedure of
[16], which does not introduce any auxiliary variables, is directly compatible with the
regenerative cascade.

The other deflation procedures summarized in [16] introduce new variables asso-
ciated to tangent directions on the set. For these, the regenerative cascade requires
minor modifications. If we suppose that Z is irreducible and generically nonreduced,
then such a deflation produces a polynomial system g, an irreducible and generically
reduced algebraic set Y � Vpgq, and a projection map π which is generically one-to-one
on Y with Z � πpY q. Thus, one may attempt to perform computations on Y in place
of Z. Following the approach of [12], one needs to change from considering paths which
converge in Y to considering the paths for which the image under π converges. For ex-
ample, for each z P ZzπpY q, there is a path α : p0, 1s Ñ Y such that z � limtÑ0 πpαptqq.
However, αptq must diverge as t approaches 0 since z R πpY q. Here, only the endpoint
of the image under π of the path defined by α was outside of πpY q. By genericity, this
is true for all paths arising in the regenerative cascade method as well.

3.2 Extrinsic and intrinsic homotopy

In both the homotopies hm,i of (5) and hm of (6), the linear functions Lm�1, . . . , LdimZ

stand unperturbed as t varies. The same is true for any linear functions in the system
FZ or among the functions F1, . . . , Fm�1 at stage m of the cascade. Gathering all the
unchanging linear functions into one linear subsystem of the homotopy, one may use
linear algebra to compute the kernel of this subsystem before path tracking commences
and then restrict computation in the path tracker to that subspace. Such an approach is
said to be working intrinsically on the linear subspace. In contrast, an extrinsic method
treats the linear functions just like any other polynomial in the system and, in essence,
re-solves the linear part at each step of the path tracker. If there are enough linear
functions present, then the intrinsic approach is more efficient, but if there are only
a few unchanging linear functions, the extrinsic approach wins. When extrinsic wins,
it is because the number of elements in the representation of a basis for the kernel is
large, which raises the expense of working intrinsically. Intrinsic implementations of
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homotopies are discussed in [24, 14, 15] and specifics on assessing the trade-off between
extrinsic and intrinsic formulations can be found in [17].

4 Completing the decomposition

The output of Algorithm 1 is a witness point superset, xWi, for each pure i-dimensional
component of Z XVpf q. As described in the introduction, two steps remain to produce
a numerical irreducible decomposition, namely:

• eliminate the “junk sets”, Ji, from xWi to obtain Wi; and

• partition Wi into witness point sets for the irreducible components of dimension i.

If Z is an irreducible component of Vpgq such that each irreducible component of ZXVpf q
is an irreducible component of Vpg, f q, then all of the standard numerical algebraic ge-
ometric methods apply. That is, the local dimension test [4] and the homotopy mem-
bership test [26] can be used to identify Ji, the irreducible components can be deflated
at each witness point using positive-dimensional deflation techniques first described in
[29, §13.3.2, §15.2.2], and monodromy [28] backed up by linear trace tests [27] can be
used to decompose Wi. The following example, motivated by [17, Ex. 2.0.2], highlights
some shortcomings of these standard techniques in the context of intersection.

Example 4.1 Consider gpx, y, zq � px�y�zqy with Z � Vpx�y�zq and f px, y, zq � y.
Clearly, ZXVpf q � Vpx�z, yq is a line but Vpg, f q � Vpyq is a plane. In particular, for
each a P C, the local dimension of pa, 0,�aq with respect to Z X Vpf q is 1, but is 2 with
respect to Vpg, f q. Thus, the local dimension test of [4] can not be used for computing the
“junk sets” Ji. Also, each pa, 0,�aq is a smooth point on the plane Vpg, f q � Vpyq show-
ing that standard deflation techniques applied to tg, fu at pa, 0,�aq will fail to provide
a polynomial system with the requisite irreducible component. Without such a system,
the homotopy membership test, monodromy, and linear trace tests can not be employed.

The key to overcoming these shortcomings and enabling the computation of a nu-
merical irreducible decomposition for ZXVpf q is the theory of isosingular sets [16]. Let
g be the polynomial system given at the outset in the witness set for Z; that is, Z is
an irreducible component of Vpgq. After completing the regeneration cascade, we have

witness point supersetsxWi �WiYJi. For each witness point w P Wi with corresponding
irreducible component X � Z X Vpf q, we describe below how to use isosingular theory
to construct a polynomial system fw from w, g, and f such that X is an irreducible
component of Vpfwq. At the largest k such that xWk � H, we know that xWk �Wk; that
is, Jk � H. So we know that every point in Wk is a witness point, not junk, and there-
fore once fw is in hand, monodromy, and linear trace tests discover which of the witness
points form a witness set for X and likewise for all of the components at dimension k.
Via the homotopy membership test, we can use these witness sets to eliminate from the
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lower-dimensional witness point supersets any junk points lying on sets of dimension k,
and in particular, eliminate all junk fromxWk�1. This leaves us in position to decompose
Wk�1 and to proceed in like fashion down through all the dimensions.

The key step of constructing system fw depends on isosingular deflation, for which
we provide only the key concepts here. We refer the interested reader to [16] for a
general overview with [17] providing details related to diagonal intersection.

For a polynomial system G and a point z P VpGq � C
N , IsoGpzq is an irreducible

algebraic subset of VpGq containing z. Since the definition of IsoGpzq depends on the
deflation sequence of G at z, we define this first and then construct IsoGpzq. Let

dnullpG, zq :� dimnullJGpzq � N � rankJGpzq
where JGpzq is the Jacobian matrix of G evaluated at z and nullJGpzq is the right
null space of JGpzq. Let DpG, zq be the polynomial system consisting of G and theprankJGpzq� 1q� prankJGpzq� 1q minors of JG. Define D0pG, zq :� G and, for k ¥ 1,
let DkpG, zq be the polynomial system obtain in this fashion after iterating k times. In
particular, DkpG, zq is the polynomial system for the kth isosingular deflation of G at z.
With this setup, the deflation sequence of G at z is

dkpG, zq :� dnullpDkpG, zq, zq, k � 0, 1, . . .

The algebraic closure of the set of points in VpGq which have the same deflation sequence
as z with respect to G is an algebraic set that may decompose into several irreducible
components. The irreducible set IsoGpzq is the unique such irreducible component that
contains z. In particular, the deflation sequence of points in IsoGpzq is constant on
a nonempty Zariski open subset. Such statement is true for any irreducible algebraic
subset of VpGq.

The following theorem, which is a slight generalization of [17, Thm. 5.1.1], describes
deflating the irreducible components of Z X Vpf q.
Theorem 4.2 Let Z � Vpgq � C

N be a union of irreducible components and f be a
polynomial system defined on Z. Let F px, yq � tgpxq, f pyqu, ∆ � tpx, xq | x P C

Nu,
and πpx, yq � x. If A � Z X Vpf q is an irreducible component, there exists a nonempty
Zariski open set U � A such that for all a P U , A is an irreducible component of
π pIsoF ppa, aqq X∆q. In particular, for a linear space L � C

N of dimension N � dimA

chosen randomly, then, with probability one, the set of witness points AXL is contained
in U .

Proof. Since A � pA � Aq X ∆ is an irreducible algebraic set contained in VpF q,
there is a nonempty Zariski open set U � A such that the deflation sequence with
respect to F is constant on U . Thus, U � πpUq is a nonempty Zariski open subset of
A with U � pU � Uq X ∆. Fix a P U � A. Since A � IsoF ppa, aqq X ∆, there is an
irreducible component W � IsoF ppa, aqq X ∆ with W � πpWq such that A � W and
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A � πpAq � πpWq � W . Thus, W is an irreducible component of π pIsoF ppa, aqq X∆q
containing A. The first part of the theorem will follow by simply showing that A �W .

Since A � Z and Z is a union of irreducible components of Vpgq, there is an irre-
ducible algebraic set Z 1 which an irreducible component of Vpgq such that A � Z 1 � Z.
Similarly, since A � Vpf q, there is an irreducible component V 1 � Vpf q such that
A � V 1. Hence, Z 1 � V 1 is an irreducible component of VpF q with pa, aq P Z 1 � V 1. In
particular, IsoF ppa, aqq � Z 1 � V 1 � Z � Vpf q. Therefore,

A �W � π pIsoF ppa, aqq X∆q � π ppZ � Vpf qq X∆q � Z X Vpf q.
Since A is an irreducible component of Z X Vpf q, it follows that A �W .

If dimA � i, the last statement follows from the the fact that, for a general linear
subspace Li of codimension i, AX Li � U X Li. l

Since each isosingular set is deflatable, Theorem 4.2 provides a prescription for con-
structing polynomial systems that can be used to complete the last two steps of comput-
ing a numerical irreducible decomposition of Z X Vpf q. Although we have no example,
the corresponding irreducible component may be generically nonreduced with respect to
the polynomial system constructed in this fashion. However, one may simply use finitely
many more steps of isosingular deflation or another deflation procedure for irreducible
components, e.g., [29, §13.3.2, §15.2.2], to simplify to the generically reduced case.

The following example demonstrates using Theorem 4.2 on Example 4.1.

Example 4.3 For g, f , and Z as described in Example 4.1, the algebraic set A �
Z X Vpf q � Vpx � z, yq is irreducible. Theorem 4.2 allows us to derive this result
algorithmically as follows. Suppose we have the witness point w � pa, 0,�aq P A and
the polynomials g and f . We wish to find a polynomial system fw such that A is an
irreducible component of Vpfwq. Following the setup in Theorem 4.2, we first form

F px, y, z, x1, y1, z1q � � gpx, y, zq
f px1, y1, z1q � � � px� y � zqy

y1 �
.

For general a P C, one can verify that the deflation sequence of pa, 0,�a, a, 0,�aq with
respect to F is 5, 3, 3, . . . with the corresponding 3-dimensional set

IsoF ppa, 0,�a, a, 0,�aqq � tpb, 0,�b, α, 0, βq | b, α, β P Cu.
This isosingular set is defined by adding the 2 � 2 minors of JF to F . That is,
IsoF ppa, 0,�a, a, 0,�aqq is an irreducible component of VpGq where

Gpx, y, z, x1, y1, z1q � ������ px� y � zqy
y1
y

x� 2y � z

y

������ .
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Theorem 4.2 implies that A is an irreducible component of VpGpx, y, z, x, y, zqq; that is,
fwpx, y, zq � Gpx, y, z, x, y, zq suffices to form a witness set for A. It is easily seen that
this can be simplified to just fwpx, y, zq � tx� z, yu.
5 Special cases

In the introduction, several special cases that are amenable to the techniques of Lemma 2.1
and Algorithm 1 were discussed. We now return to these to elucidate some details.

5.1 Diagonal intersection

To compute A X B � C
N for irreducible algebraic sets A and B described via witness

sets, one may first apply Lemma 2.1 to obtain a witness set for A � B and then findpA�Bq X Vpx� yq using Algorithm 1. There are special items to note about this case.
First, the system f � x � y is linear and so is F � Λ � f in Algorithm 1. This has

two implications:

• the homotopies hm,i of (5) are always trivial if we choose the option of Note 2 of
Algorithm 1; and

• the intrinsic approach discussed in §3.2 is very effective for solving hm in (6). In
fact, only one linear function is perturbed in each hm.

Second, since pA�Bq XVpx� yq and AXB are isomorphic, their pure-dimensional
components exist at the same dimensions. The largest possible dimension is D �
minpdimA,dimBq. Since Algorithm 1 starts at dimZ � dimA� dimB and descends,
this means that the witness point supersets for dimension D� 1,D � 2, . . . ,dimZ gen-
erated by the algorithm are empty. Instead of starting with Lemma 2.1 and proceeding
through several unproductive stages of Algorithm 1, one can target directly the dimen-
sion D to avoid wasted computation. Let d � N �D � maxpdimA,dimBq. A suitable
homotopy is for targeting dimension D is

h20px, y, tq �
��������������

fApxq
fBpyq

γt

�
LApxq
LBpyq�� p1� tq����������

F1px, yq
...

Fdpx, yq
Ld�1px, yq

...
LdimA�dimBpx, yq

����������
�������������� , (7)

where γ is chosen at random from the unit circle in C. This homotopy starts from the
points WA�WB . In effect, this combines Lemma 2.1 with d levels of Algorithm 1—each
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of which would have degA � degB homotopy paths—into just one homotopy with that
number of paths. Since the target functions F1, . . . , LdimA�dimB are all linear and since
the linear system tLA, LBu cuts out degZ isolated points on Z at t � 0, the homotopy
is seen to succeed with probability one using the Gamma Trick [29, Lemma 7.1.3]. (The
gamma trick is a generalization of a technique first introduced in [20].)

5.2 Membership testing

Another special case is testing whether a given point, say x�, is a member of an irre-
ducible set A. Membership is true if AX tx�u � tx�u, else AX tx�u � H. So this is a
special case of the diagonal intersection: we wish to compute pA � tx�uq X Vpx � x�q.
Since dimtx�u � 0, one sees that (7) directly targets a system tF1, . . . , FdimAu. But
this system is just Λ � px� x�q for generic Λ P C

dimA�N , so the homotopy (7) becomes

h20px, tq � � fApxq
tLApxq � p1� tqΛpx� x�q� , (8)

where the gamma trick is no longer needed since LApxq is fully generic in the only vari-
ables appearing, namely x. Note that this one homotopy completes the entire procedure,
as there are no more dimensions left for the cascade.

One can see that this test is exactly the homotopy membership test introduced in
[28] and discussed in [29, §15.4]. While the approach of this paper does not improve on
the existing membership test, it is unifying to see the test arise naturally as a special
case of our treatment of diagonal intersection.

6 Examples

Let us look at several examples putting these techniques to work using the tools imple-
mented in Bertini [5].

6.1 Critical curve of a surface

In algorithms to compute cell decompositions of the real points contained in a complex
algebraic curve [19] or surface [7], a key computation is to find the critical set of a
real projection of the given algebraic set. In the case of a curve, critical points mark
where the real projection of the real curve reverses direction, hence these points become
the endpoints of cells that map bijectively to intervals of the projection coordinate.
Similarly, the critical curve of a surface marks where the surface folds over, as viewed
from a projection onto a plane. To be more precise, assume A � C

N is an irreducible and
reduced algebraic surface, an irreducible component of VpfAq. Without loss of generality,
we may assume that fA consists of pN � 2q polynomials; if not, it can be randomized
down to that by Bertini’s Theorem. Also, let π : AÑ C

2 be a real projection, given as
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πpzq � R � z for some R P R
2�N . Denote the Jacobian matrix of partial derivatives of

fA as JfA, a pN � 2q �N matrix. Define

Mpzq � �JfApzq
R

�
.

Then, the critical curve we seek is K � A X VpdetpMpzqqq. Note that VpfAq might
consist of several irreducible components, in which case it would be wasteful to find
the entire solution set VpfA,detpMpzqqq � VpfAq X VpdetpMpzqqq when we are only
interested in K.

Clearly, if we have precomputed a witness set for A, then Algorithm 1 applies to find-
ing its critical curve. An alternative formulation of the critical condition is Mpzqξ � 0
for ξ P P

N�1. Thus, we may compute pA�P
N�1qXVpMpzqξq, where PN�1 can be treated

in C
N by choosing a random projective patch. In this form, one applies Lemma 2.1 to

compute a witness set for A� P
N�1 before initiating the regenerative cascade.

Consider in particular the surface Vpgq from [7], where

g � rpx� 0.35q2p1� x2q � y2s2 � z2 � 0.00531441,

which is an irreducible and reduced surface of degree eight. Then, detpMq is a single
degree seven polynomial, and Algorithm 1 executes six homotopies (5)—we are using
Note 2 of Algorithm 1—each with eight paths, followed by a single homotopy (6) having
56 paths. Twenty of these paths have finite endpoints, which form a witness point set,
WK , for the critical curve. So a witness set for the critical curve is tpg,detMq, L2,WKu,
where L2 is the second linear function in the witness set for A, still standing unper-
turbed after Algorithm 1 finishes. In the methodology of [7], the cell decomposition
of the surface also requires the computation of the critical points of K, which can be
accomplished with another application of Algorithm 1.

6.2 Dual variety

For each v P P
N , one can consider the hyperplane in P

N defined by Vpx � vq. Let qPN be
the set of all hyperplanes in P

N , which is the dual variety to P
N and isomorphic to P

N .
For an irreducible variety V � P

N , consider the tangent space incidence correspondence

T pV q � tpP,Hq | P P V,H is tangent to V at P u � P
N � qPN

with projection maps π1pP,Hq � P and π2pP,Hq � H. Clearly, π1pT pV qq � V . In
fact, there is a unique irreducible component U � T pV q such that π1pUq � V . With
this setup, the dual variety of V is the variety π2pUq � qPN . That is, the dual variety of
V is the closure of the set of all hyperplanes which are tangent to V at a smooth point
of V . The other irreducible components of T pV q map under π1 to various subsets of the
singular points of V . See [10, Ex. 15.22] for more details on the tangent space incidence
correspondence and dual varieties.
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As in §6.1, we may perform our computations on P
N on a random projective patch

in C
N�1. In particular, given a witness set for V � P

N , Algorithm 1 applies to finding a
numerical irreducible decomposition of T pV q. One may then produce a pseudo-witness
set (as defined in [12]) using the approach of [13]. In particular, one is able to compute
the degree of the dual variety and perform membership tests on it.

To demonstrate, consider the homogeneous polynomial system adapted from [22]:

gpx, y, z, wq � � g1px, y, z, wq
g2px, y, z, wq � � � px2 � y2 � z2q2 � w4

xyz � w3

�
.

Clearly, Vpgq decomposes into two irreducible sextic curves in P
3 and we compute a

witness set for one the curves, namely

V � tpx, y, z, wq P P
3 | x2 � y2 � z2 � w2 � xyz � w3 � 0u.

We setup the regenerative cascade framework as follows. For P � px, y, z, wq P V � P
3

and H � pX,Y,Z,W q P qP3, we will write that H is tangent to V at P if P P H, i.e.,
xX � yY � zZ � wW � 0, and

rank

�� H

∇g1pP qT
∇g2pP qT �� � 2.

where ∇gipP q is the gradient vector of gi evaluated at P . By enforcing this rank
condition using a null space formulation, we take

f px, y, z, w,X, Y, Z,W, ℓ0 , ℓ1, ℓ2q ������� xX � yY � zZ � wW

ℓ0

���� X

Y

Z

W

����� ℓ1∇g1px, y, z, wq � ℓ2∇g2px, y, z, wq ������ .

and Z � V � qPN � P
2. Then, T pV q is simply the image of Z X Vpf q obtained by

projecting onto px, y, z, w,X, Y, Z,W q, i.e., eliminating ℓi, which can be numerically
computed using [13].

By working on a random projective patch in each of the three projective spaces, the
regenerative cascade approach produced witness sets for the seven irreducible surfaces of
ZXVpf q. Six of these surfaces are planes which arise from the six points of intersection
of the two irreducible sextic curves in Vpgq, namelyp�1, i, 0, 0q, p�1, 0, i, 0q, p0,�1, i, 0q
where i � ?�1. With respect to tg, fu, each of these planes are generically nonreduced
but can be deflated. The remaining surface, S � P

3 � qP3 � P
2, has degree 72 whose

projection is a degree 24 surface U � T pV q � P
3�qP3 with π1pUq � V . The dual variety

of V , namely π2pUq, is a degree 18 surface in qP3.
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6.3 Sphere packings

A sphere packing is an assemblage of rigid spheres in tangential contact such that
no internal motion of the assembly is possible without breaking at least one contact.
(Rigid motion of the whole assembly is allowed.) These are of interest, for example, in
designing colloids formed by suspensions of microspheres. By coating the spheres with
DNA, one can promote adhesion between them in patterns that bias the formation of
certain packings, thereby controlling the properties of the resulting colloid [18]. One
approach to predicting which clusters will form starts by determining all possible sphere
packings of up to N spheres, with N � 10 being the largest case completed so far [1].
It is assumed that all spheres have the same diameter, which we take to be unit length.

A packing can be specified by numbering the spheres 1 to N and listing which
ones are in contact. One representation of the contact list is an adjacency matrix, an
N �N matrix with a 1 in the pi, jq-th element if spheres i and j touch, and 0 elsewhere.
Renumbering the spheres while maintaining the same contacts produces an isomorphism
between adjacency matrices. Finding all packings of N spheres requires sifting through
all possible isomorphic groups to find those which are realizable (the solution is real and
no two spheres intersect in more than a single point) and rigid.

Rigidity requires at least 3N � 6 contacts, since each sphere center has three coor-
dinates, each contact exerts one algebraic constraint, and the rigid assembly retains six
degrees of freedom of rigid motion. Some packings have greater than 3N � 6 contacts;
the smallest N where this occurs isN � 10 [1]. Also, it is possible for a packing to be sin-
gular in the sense that the assembly is a solution of multiplicity greater than one to the
system of contact constraint equations. The smallest such packing occurs at N � 9 [1].
Arkus et al. call this packing “non-rigid,” which is reasonable considering that the sin-
gularity will allow a physical system, which can violate the contact conditions slightly,
to vibrate in the direction associated to the null-space of the system Jacobian matrix.
Thus, by their usage of the term, rigidity requires multiplicity one, while packings are
assemblages that are isolated solutions of the system of contact equations.

Let us consider a single N � 9 case defined by the following contact pairs:t1-2, 1-3, 1-4, 1-5, 2-3, 2-4, 2-6, 3-5, 3-6, 3-7, 3-8,
4-5, 4-6, 4-9, 5-7, 5-9, 6-8, 6-9, 7-8, 7-9, 8-9u,

which is a graph with 9 vertices and 21 edges which, if realized as a polyhedron, has 14
triangular faces. With 3N � 6 � 21 contacts, this case has the possibility of producing
minimally constrained rigid packings. We can break this into two pieces by cutting
along the closed path 3-5-4-6-3 to obtain subgraph 1 with vertices 1, . . . , 6 and edgest1-2, 1-3, 1-4, 1-5, 2-3, 2-4, 2-6, 3-5, 3-6, 4-5, 4-6u,
and subgraph 2 with vertices 3, . . . , 9 and edgest3-5, 3-6, 3-7, 3-8, 4-5, 4-6, 4-9, 5-7, 5-9, 6-8, 6-9, 7-8, 7-9, 8-9u.
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Each of these has 3N � 7 edges, so solution sets must be at least one-dimensional.
To solve subgraph 1, we take vertices 1,2,3 to be a unit equilateral triangle with

known vertices, and solve for the remaining three. Letting vi be the 3-vector of coordi-
nates for vertex i, we have eight edge equations of the form

Di,j :� pvi � vjqT pvi � vjq � 1 � 0.

But since v1, v2, and v3 are known, it is advantageous to rewrite these as

D2,4 �D1,4 � 0, D3,5 �D1,5 � 0, D3,6 �D2,6 � 0,

D2,4 � D3,5 � D3,6 � D4,5 � D4,6 � 0,

so that we have a system of 3 linear and 5 quadratic equations. A numerical irreducible
decomposition of this system gives 5 irreducible components:

• a two-dimensional component of degree 4 with v3 � v4;

• a one-dimensional component of degree 2 with v2 � v5 and v1 � v6;

• a one-dimensional component of degree 4 with v2 � v5;

• a one-dimensional component of degree 4 with v1 � v6; and

• a nondegenerate one-dimensional component, call it A, of degree 4.

Only component A is of interest, because the others all have at least two spheres that
occupy the same position.

Subgraph 2 can be treated similarly, this time treating the triangle 3-7-8 as known.
For clarity of presentation, rename vertices 3,4,5,6 as 31, 41, 51, 61, as these are clones of
the ones in subgraph 1. So the system of equations to be solved is

D51,7 �D31,51 � D61,8 �D31,6 � D7,9 �D8,9 � 0,

D41,51 � D41,61 � D41,9 � D51,7 � D51,9 � D61,8 � D61,9 � D7,9 � 0,

with v41 , v51 , v61 , and v9 as unknowns. The solution set of this system has 9 degenerate
irreducible components: one of dimension 2, degree 32; four of dimension 1, degree
2; and four of dimension 1, degree 4. None of these is realizable for similar reasons
as we saw for solution components of subgraph 1. (The subgraph formed by vertices
3,5,6,7,8,9 is isomorphic to subgraph 1, so this should be expected.) There is one final
nondegenerate irreducible solution component that is dimension 1, degree 12. Call it B.

To assemble the two pieces into one packing, it is required that the relative positions
of vertices 3,4,5,6 be the same for both. But by construction, the edges along the loops
3-5-4-6-3 and 31-51-41-61-31 are already unit length, so all that remains is to make the
diagonals equal. That is, we wish to solvepA�Bq X VpD3,4 �D31,41 , D5,6 �D51,61q.
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(a) (b)

Figure 1: A sphere packing for N � 9 showing (a) spheres in contact, and (b) smaller
spheres with rods indicating contact pairs. Dark spheres indicate the cutting loop 3-5-
4-6-3.

This problem consists of solving two quadratic equations defined on A � B, a two-
dimensional set of degree 4 � 12 � 48. This is a considerably smaller problem than if we
were to naively solve the original system having 21 edges, which after fixing one triangle
and taking differences as in subgraph 1 becomes a system of 3 linear and 15 quadratic
equations. Thus, the total degree of the original system is 215 � 32,768 compared to
only 48 � 22 � 192 for the incremental approach.

Using Lemma 2.1 to get a witness set for A�B followed by Algorithm 1 to intersect
it with the two quadratics, we obtain 28 points, of which 14 are real. Three final checks
of the real solutions are necessary. First, testing that the spheres must only intersect in
a point eliminates 10 of the 14 real solutions. Second, a congruence check is necessary
since having all six distance pairs equal to one for vertices (3,4,5,6) and for p31, 41, 51, 61q
does not necessarily mean that these are congruent: one tetrahedron could be the mirror
image of the other. This test eliminates 2 of the remaining 4 solutions. Finally, testing
for “non-rigidity” shows that the remaining 2 solutions are indeed rigid. When the parts
are assembled to form one packing, holding spheres 1,2,3 in place, these two solutions are
mirror images through the plane of spheres 1,2,3. However, as can be seen in Figure 1,
the packing is achiral (mirror self-symmetric), so these two solutions are both instances
of the same arrangement. In summary, this particular set of contact pairs for N � 9 has
exactly 1 realizable and rigid sphere packing, which is presented in Figure 1. For better
visibility, the same packing is also shown using smaller spheres with the addition of rods
that indicate the pairwise contacts. Spheres 3, 4, 5, and 6 have been darkened in the
figure to show how the full assembly was cut into two pieces for solving incrementally.

Finally, we note that for clarity we have shown subgraphs 1 and 2 each being solved
from scratch all in one blow. But the methods of this paper could have been used
more extensively to also solve these by adding new vertices one at a time. Also, since
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subgraph 2 has a subgraph that is isomorphic to subgraph 1, the interesting solution
component B of subgraph 2 could have been derived by adding one vertex to solution
component A of subgraph 1. Such maneuvers could be used extensively in a program
to find all sphere packings, as the graphs for larger N typically contain subgraphs that
are common to graphs for smaller N .

7 Conclusions

Although Lemma 2.1, Theorem 3.1, and Theorem 4.2 represent only mild advances in
the theory of numerical algebraic geometry, they have significant practical implications.
With these techniques, after first computing numerical irreducible decompositions of
two systems fA and fB to get, say, irreducible components A1, . . . , AnA

of VpfAq and
B1, . . . , BnB

of VpfBq, one can pick out desired components and find witness supersets
for the components of, say, pAi � Bjq X VpfCq, where fC is a third polynomial system
defined on Ai �Bj . By avoiding cross products with any other solution components of
VpfAq or VpfBq other than just Ai and Bk, computation can be greatly reduced as com-
pared to the naive approach of analyzing VpfApxq, fBpyq, fCpx, yqq. The technique gen-
eralizes naturally to work on cross products of any number of irreducible algebraic sets.

A useful special case is solving pA�C
kqXVpfCpx, yqq where x and y are coordinates

on A and C
k, respectively. As the underlying solution technique is regeneration, we call

this special case “regeneration extension,” since it extends a solution from irreducible
component A of VpfAq to find the components of VpfApxq, fCpx, yqq that project into A

under the natural projection: px, yq ÞÑ pxq.
It is also unifying to observe that pA�BqXVpx� yq gives the diagonal intersection

technique of [23], while pA�tx�uqXVpx�x�q gives the homotopy membership test of [28].
Once a witness superset is obtained at each possible dimension, standard techniques—

isosingular deflation, membership testing, monodromy, and traces—can be used to pro-
duce a numerical irreducible decomposition of the targeted set.
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