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Abstract

The fundamental construct of numerical algebraic geometry is the representation of an
irreducible algebraic set, A, by a witness set, which consists of a polynomial system, F , for
which A is an irreducible component of V(F ), a generic linear space L of complementary
dimension to A, and a numerical approximation to the set of witness points, L ∩A. Given
F , methods exist for computing a numerical irreducible decomposition, which consists of a
collection of witness sets, one for each irreducible component of V(F ). This paper concerns
the more refined question of finding a numerical irreducible decomposition of the intersection
A ∩B of two irreducible algebraic sets, A and B, given a witness set for each. An existing
algorithm, the diagonal homotopy, computes witness point supersets for A ∩ B, but this
does not complete the numerical irreducible decomposition. In this paper, we use the
theory of isosingular sets to complete the process of computing the numerical irreducible
decomposition of the intersection.
Key words and phrases. witness point, witness set, diagonal homotopy, intersection,
irreducible algebraic set, deflation, isosingular set, isosingular point, numerical algebraic
geometry, polynomial system
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Introduction

This paper concerns the computation of the intersection, A ∩ B, of two irreducible algebraic
sets, A and B. Since the intersection of two general algebraic sets can be broken down into
a collection of pair-wise intersections of the irreducible components of those sets, with some
membership testing to eliminate multiple appearances of components or strict containment of
one in another, the pair-wise intersection of irreducibles is seen to be the crux of a general
intersection capability. The method of this paper fits into the framework of numerical algebraic
geometry, a term coined in [30]. The area relies on polynomial homotopy algorithms, often
called polynomial continuation, to reliably and efficiently compute numerical approximations
to the solutions of systems of polynomial equations. Overviews of the field may be found in

∗Department of Mathematics, Mailstop 3368, Texas A&M University, College Station, TX 77843
(jhauenst@math.tamu.edu, www.math.tamu.edu/~jhauenst). This author was supported by Texas A&M Uni-
versity, the Mittag-Leffler Institute, and NSF grants DMS-0915211 and DMS-1114336.
†General Motors Research and Development, Mail Code 480-106-359, 30500 Mound Road, Warren, MI 48090

(Charles.W.Wampler@gm.com, www.nd.edu/~cwample1) This author was supported by NSF grant DMS-0712910
and the Mittag-Leffler Institute.

1

www.math.tamu.edu/~jhauenst
www.nd.edu/~cwample1


[31, 32]. The basics of polynomial continuation for finding isolated solutions are covered in
[15, 16, 18, 31].

In numerical algebraic geometry, an irreducible algebraic set, A ⊂ CN , is represented by a
witness set, W , of the form

W = {F,L,L ∩A}, (1)

where F : CN → CM is a polynomial system such that A is an irreducible component of

V(F ) := {x ∈ CN | F (x) = 0}, (2)

L is a generic linear space of complementary dimension to A (i.e., dimL = N − dimA), and
hence, L ∩ A ⊂ CN is a set of degA isolated points. Of course, in numerical work, the points
L ∩ A are not known exactly but rather are represented by numerical approximations. We call
W = {F,L,L∩A} a witness set ; it contains a witness system, F , and a witness point set, L∩A.

One of the fundamental operations of numerical algebraic geometry is the computation of
a numerical irreducible decomposition, which finds a witness set for each irreducible component
of V(F ). The first algorithm for computing a numerical irreducible decomposition appeared in
[26], with subsequent improvements in [2, 27, 28, 29]. Let the pure i-dimensional component of
V(F ) be denoted Zi (possibly empty for some i), which decomposes into a finite number, ni, of
distinct irreducible components Zij ; that is,

V(F ) =

dimV(F )⋃
i=0

Zi, Zi =

ni⋃
j=1

Zij . (3)

All of the existing algorithms for the irreducible decomposition first compute witness supersets,
Ŵi = {F,Li, Ŝi}, where Li is a generic linear space of codimension i and each witness point

superset Ŝi is a finite set of points such that (Li ∩ Zi) ⊂ Ŝi ⊂ V(F ). Let us denote the local
dimension of algebraic set A at z, as dimz A. To winnow a witness point set from a witness
point superset, a filtering algorithm culls out the junk points Ji = {x ∈ Ŝi | dimx V(F ) > i}.
For points with a low multiplicity bound (obtained as the number of homotopy paths leading to
it), this filtering is most efficiently done using a local dimension test [2]; otherwise, homotopy
membership tests [27] determine if x is in any component of higher dimension, these having
been determined already in sequential order starting at the top dimension. Then the remaining
points, Si = Ŝi \ Ji, are partitioned using monodromy [29] and trace tests [28] to form the
witness point sets for the irreducible components, Sij = Li ∩ Zij , thereby forming the witness
sets Wij = {F,Li, Sij}. It is possible to do this at each dimension independently, but it is
generally more efficient to descend sequentially through all possible values of i using a cascade
approach [9, 21].

Once a witness set for an irreducible algebraic set A is known, one can subsequently apply
other operations of numerical algebraic geometry to it. For example, it is possible to test if
a given point is in A and, if A is positive dimensional, to compute a scattered sampling of
points numerically in A. One can also answer many questions about A, such as its degree and
multiplicity structure. Also, given witness sets for two irreducible algebraic sets, one can test if
either is contained in the other.

One operation that is incomplete in numerical algebraic geometry is intersection. That is,
given witness sets, {FA,LA,LA ∩A} and {FB ,LB ,LB ∩B}, for irreducible algebraic sets A and
B, we wish to compute the intersection A∩B as represented by a numerical irreducible decom-
position. This would consist of a collection of witness sets, one for each irreducible component of
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A∩B ⊂ CN . Similar to the case described above for computing a numerical irreducible decom-
position of V(F ), let Zi be the pure i-dimensional component of A∩B, which has an irreducible
decomposition Zi = ∪ni

j=1Zij . For each dimension i where i-dimensional components Zij of A∩B
could exist, i.e., for max{0,dimA+ dimB−N} ≤ i ≤ min{dimA,dimB}, existing diagonal ho-

motopy methods compute a finite witness point superset, Ŝi, such that (Li∩Zi) ⊂ Ŝi ⊂ (A∩B),
where dimLi = N − i. Diagonal methods work by duplicating the variables from, say, x ∈ CN ,
to (x, y) ∈ C2N , and finding subsets of A × B = {(x, y) | x ∈ A, y ∈ B} such that x = y. The
first such algorithm [23] uses a cascade approach that doubles the number of variables, while a
subsequent reformulation [24] in intrinsic coordinates reduces the number of variables.

The computation of the witness point supersets Ŝi is a crucial first step, but to complete
the numerical irreducible decomposition of A ∩ B, one must eliminate any junk points in the
superset to obtain a witness point set for Zi and then break these set into witness point sets for
the irreducible components Zij . As we shall see, the local dimension test used for eliminating
junk in the standard numerical irreducible decomposition problem no longer applies to the
pairwise intersection problem. Furthermore, for each irreducible component Zij , the witness set
requires a witness system Fij such that Zij is one of its irreducible components. In some cases,
Fij = {FA, FB} suffices, but as we shall illustrate below, this is not true in general.

The purpose of this paper is to complete the diagonal approach for computing a numerical
irreducible decomposition of a pair-wise intersection. To do so, we provide an alternative ap-
proach to filtering out junk points and show how to generate the witness systems Fij to complete
the irreducible witness sets. The necessary tools are provided by the recently developed theory
of isosingular sets [10]. The existing diagonal homotopy suffices as is when all the irreducible
components of A ∩ B are also irreducible components of V(FA, FB). On the contrary, suppose
C is some irreducible component of A∩B which is not an irreducible component of V(FA, FB).
Then, C may or may not be an isosingular set with respect to {FA(x), FB(x)}, but as we shall
prove, it is always isomorphic to the intersection of V(x−y) with an isosingular set of the related
system {FA(x), FB(y)}. Using this fact, one can compute a witness set for C and, in this way,
complete the numerical irreducible decomposition of A ∩B.

While the completion of the diagonal intersection via isosingular theory is the main purpose
of this paper, a secondary contribution is to present a simplified formulation of the diagonal ho-
motopy. This formulation is advantageous in the construction of a working computer algorithm.

1 Insufficiency of the diagonal homotopy

Although the existing diagonal homotopies compute witness point supersets for an intersection,
this is not enough to produce true witness sets and the irreducible decomposition. As mentioned
above, there may exist an irreducible component C ⊂ A∩B that is not an irreducible component
of the combined system {FA, FB}. A few simple examples follow to illustrate this fact.

Example 1.0.1 Consider the polynomial

f(x, y, z) = (x− 1)(x2 + y2 + z2 − 4)((x− 2)2 + y2 + z2 − 4).

From the factored form of f , one sees that V(f) factors into a plane P1 := V(x − 1) and two
spheres, say S1 and S2. A numerical irreducible decomposition applied to V(f) will produce
three witness sets, with f as the polynomial system appearing in each. Starting with the witness
sets for S1 and S2, one may then proceed, using a diagonal homotopy [23, 24], to find points on
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the intersection S1 ∩ S2. The diagonal homotopy constructs a general plane, P2, and computes
two general points, say {w1, w2} = (S1 ∩ S2) ∩ P2.

It happens that S1 ∩ S2 is a circle that lies inside P1, so it is not an irreducible component
of V(f). Accordingly, {f, P2, {w1, w2}} is not a witness set for S1 ∩ S2. To get a witness set, a
symbolic operation, trivial in this case, is needed to produce a witness system, say

G(x, y, z) = {x2 + y2 + z2 − 4, (x− 2)2 + y2 + z2 − 4},

so that a witness set for S1 ∩ S2 is {G,P2, {w1, w2}}.

It is easy to see that S1 ∩ S2 is in the singular set of V(f), and one might suppose that this
would always happen for examples where the diagonal homotopy fails to yield a true witness
set. However, the next example shows that this is not always the case.

Example 1.0.2 Consider the polynomials f1(x, y, z) = x and f2(x, y, z) = xy. The algebraic set
V(f1) has a single irreducible component, the plane V1 := V(x), while V(f2) has two irreducible
components, V1 and V2 := V(y). The intersection of V1 and V2 is a line: V1 ∩ V2 = V(x, y).
Meanwhile, the solution set of the system {f1, f2} is the plane V1, and each point in V1 ∩ V2 is
a smooth point of V1. So although a diagonal homotopy will produce a general point, say p, on
the line V1 ∩ V2, it again fails to produce a true witness set directly because we do not have a
witness system. Notice also that a local dimension test will say that p lies on a two-dimensional
component of V(f1, f2). Since this does not properly indicate the dimension of the line V1 ∩ V2

which p witnesses, we see that the local dimension test cannot reliably distinguish between junk
points and witness points in a witness point superset produced by a diagonal homotopy.

One of the main contributions of this paper is to give a numeric-symbolic method that takes
the witness point supersets generated by a diagonal homotopy and creates witness sets. As we
see in the examples above, this means that for each component found in a diagonal homotopy,
we may need to modify the given polynomials to produce a witness system, the first entry in
a witness set. We also need a replacement for the local dimension test in order to detect and
expunge junk points from witness point supersets.

2 Deflation and isosingular sets

Deflation refers to procedures for reducing the multiplicity of an isolated solution point or
reducing the generic multiplicity of an irreducible component. Originally, the methods were
aimed solely at isolated solution points. Suppose that x∗ ∈ CN is an isolated point in V(F )
having multiplicity, µ, greater than one. Heuristic methods using derivatives and determinants
in [19, 20] lead to the Leykin-Verschelde-Zhao deflation method [14] that constructs an extended
system {F (x), G(x, λ)} such that V(F,G) has an isolated point (x∗, λ∗) of multiplicity at most
µ − 1. Letting {F (x), G(x, λ)} and (x∗, λ∗) play the roles of the original F and x∗, one may
repeat the construction iteratively until one arrives at a system that has a nonsingular root
corresponding to x∗. Dayton and Zeng [5] used a construction called a Macaulay matrix to help
understand the number of iterations required to reach nonsingularity, and this lead to a higher-
order deflation method in [13] and the closedness-subspace method [33]. (On another track, a
symbolic deflation method was presented in [12].) It was observed in [31] that the LVZ deflation
method, when applied to a witness point isolated by slicing an irreducible component with a
generic linear space, yields a way of treating nonreduced solution components. All of these
methods produce a deflated system in a larger number of variables than the original system,
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and the growth can be considerable when multiple iterations are required. The extra variables,
λ, are related to vectors in the null space of the Jacobian matrix of F .

None of these deflation methods apply directly to a nonsmooth solution point of V(F ) or a
point on an embedded component. This does not matter in the standard numerical irreducible
decomposition, because a generic linear space of complementary dimension meets an irreducible
component in a generic point. But as shown by Example 1.0.1, in the pair-wise intersection
problem it may happen that every point in the intersection is a nonsmooth point of the solution
set of the polynomial system at hand.

Isosingular theory [10] uses a strong deflation operation that is related to the weak deflation
method of [14]. Let JF (x) be the M×N Jacobian matrix of partial derivatives of F : CN → CM ,
and suppose x∗ ∈ V(F ) ⊂ CN . Define dnull (F, x∗) := N − rank JF (x∗), the dimension of
the right null space of the Jacobian matrix evaluated at x∗. In essence, the polynomial system
G(x, λ) appended to F by weak deflation is a necessary condition for dnull (F, x) ≥ dnull (F, x∗),
whereas strong deflation appends a system that enforces a necessary and sufficient condition.
The details of the constructions are not required here.

There is a determinantal version of strong deflation that does not expand the variable set. In
this version, the equations that are appended are the determinants of the (N−d+1)×(N−d+1)
minors of JF (x), where d = dnull (F, x∗). Let D(F, x∗) denote the new polynomial system
derived by appending these determinants to F (x), and let Dk(F, x∗) be the result of iterating
this procedure k times. By convention, D0(F, x∗) = F (x). At every stage, x∗ is still a solution
of Dk(F, x∗) = 0. Then, given F and x∗ ∈ V(F ), one obtains an infinite sequence of integers,
dk(F, x∗), called the deflation sequence of x∗ with respect to F , defined as

dk(F, x∗) = dnull (Dk(F, x∗)), k = 0, 1, . . . (4)

This sequence is the same as the Thom-Boardman singularity type of x∗ in the theory of smooth
mappings [1, 4]. For the purposes of this paper, the determinantal form of strong deflation is
preferred over other forms given in [10] that introduce auxiliary null-space variables λ. In
particular, when auxiliary variables are introduced, the original point x∗ is a projection of the
final point (x∗, λ∗), which complicates matters when x∗ is a point on some positive dimensional
set that we wish to subject to further operations.

Determinantal strong deflation can be viewed as a purely symbolic process, but when x∗

is given numerically, it becomes a numeric-symbolic process. This is because the derivatives
and the determinants are formed symbolically, but at each deflation step, the size of the minors
entering the determinants is an integer found by evaluating the rank of the Jacobian matrix
numerically using a singular value decomposition. It is assumed that the point x∗ is known
accurately enough so that the sequence of ranks is decided correctly. For this purpose, it may
be important to use extended precision arithmetic to compute x∗ and the singular values.

Among all the points in V(F ), there is some subset of points that have the same deflation
sequence as x∗. This set may have several irreducible components, one of which must contain
x∗. The algebraic closure of this component is called the isosingular set of x∗ with respect to F ,
written IsoF (x∗). As the deflation sequence is the same on a dense Zariski-open subset of any
irreducible algebraic set, say Z, we may define dk(F,Z) = dk(F, x∗) and IsoF (Z) = IsoF (x∗),
where x∗ is any generic point of Z. An isosingular set with respect to F is defined to be any set
that is invariant under the function IsoF , that is, any set Z such that Z = IsoF (Z). For easy
reference below, we list a few of the properties of isosingular sets in the following theorem.

Theorem 2.0.3 (Isosingular Properties) Suppose Z is an isosingular set with respect to
polynomial system F . Then all of the following hold.
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1. The deflation sequence of Z is nonincreasing and nonnegative.

2. There exists a finite k∗ such that the deflation sequence of Z stabilizes to dk(F,Z) =
dk∗(F,Z) = dimZ for all k ≥ k∗. We call k∗ the isosingular stabilization index of Z.

3. For k∗ as in Item 2, Z is a generically reduced,1 irreducible component of Dk∗(F,Z).

4. Irreducible components are isosingular.

5. For any polynomial system F , V(F ) has a finite number of isosingular sets.

Proof. All of these claims are proven in [10]. 2

It is important to note that there exists a computable test to determine when the stabilization
value k∗ of Item 2 is reached [10].

Item 3 will have important consequences in our treatment of the pair-wise intersection prob-
lem. As described in Section 4, this gives us a method of constructing a polynomial system that
has the set as an irreducible component. This is the witness system that we need for the first
entry in a witness set for the component.

3 Simplified diagonal homotopy

The algorithms of [23, 24] use cascading diagonal homotopies to compute witness point supersets
for the intersection of two algebraic varieties. Unfortunately, the formulations presented in
these papers are more complicated than necessary due to an overuse of randomization. In this
section, we present simplified formulations of diagonal homotopies, one extrinsic as in [23] and
one intrinsic as in [24].

Given two irreducible algebraic sets A,B ⊂ CN , our objective is to find A ∩ B. The basic
maneuver in a diagonal homotopy is to shift the focus to the set

X = A×B = {(x, y) ∈ C2N | x ∈ A, y ∈ B} (5)

and find within this set the points where x = y. That is, defining

∆ = {(x, x) | x ∈ CN} = V(x− y) ⊂ C2N , (6)

we seek the components of X ∩∆. This suffices because the irreducible components of X ∩∆
are isomorphic to those of A∩B. To be precise, let Zij be the irreducible components of A∩B
in the manner of (3), and let Zij be those for X ∩∆. Then, defining the maps

π∆ : ∆→ CN : (x, x) 7→ (x), (7)

π−1
∆ : CN → ∆ : (x) 7→ (x, x), (8)

it is clear that subscripts can be assigned such that Zij = π∆(Zij) and Zij = π−1
∆ (Zij) for every

irreducible component. Consequently, the new objective is to find witness sets for the irreducible
components, Zij , of X ∩∆.

We assume that at the outset A and B are given in terms of witness sets WA = {FA,LA, SA}
and WB = {FB ,LB , SB}, respectively. That is, let FA : CN → Cna and FB : CN → Cnb be

1An irreducible component Z of V(F ) is said to be generically reduced if there is a nonempty Zariski-open
subset U ⊂ Z such that each point u ∈ U has multiplicity one with respect to F .
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polynomial systems, and suppose A ⊂ V(FA) ⊂ CN and B ⊂ V(FB) ⊂ CN are irreducible
components with dimA = a > 0 and dimB = b > 0. By Items 3 and 4 of Theorem 2.0.3, we can
assume without loss of generality that A and B are generically reduced components of F−1

A (0)
and F−1

B (0), respectively. For a set of polynomials p = {p1, . . . , pn}, let R(p, k) be a new set of
k polynomials, each one a random linear combination of p1, . . . , pn. By Theorem 13.5.1, Item
(2) in [31, p.243], we may “square up” FA and FB by replacing them with R(FA, N − a) and
R(FB , N − b), resp., so after renaming these, we have FA : CN → CN−a and FB : CN → CN−b,
with generically reduced, irreducible components A and B, respectively.

We will also assume that A 6⊂ B and B 6⊂ A which can be verified using the witness sets WA

and WB together with a homotopy membership test. By renaming if necessary, we can assume
that a ≥ b and hence dimA ∩B < b. Moreover, dimension counting reveals that any nonempty
component of A ∩ B must have dimension at least κ := max{0, a + b − N}. Hence, our first
objective will be to find witness point supersets for the pure i-dimensional components, Zi, of
A ∩ B, for κ ≤ i ≤ b − 1. By the discussion above, this is equivalent to finding witness point
supersets for Zi, the pure i-dimensional components of X ∩∆.

To proceed, we introduce notation for the vector space of a set of polynomials. For polyno-
mials p1, . . . , pn, let 〈p1, . . . , pn〉 be the vector space of linear combinations of p1, . . . , pn; that is,
each element of 〈p1, . . . , pn〉 has the form

a1p1 + · · ·+ anpn, (a1, . . . , an) ∈ Cn.

Accordingly, sets of k elements from 〈p1, . . . , pn〉 form a space

〈p1, . . . , pn〉k := 〈p1, . . . , pn〉 × · · · × 〈p1, . . . , pn〉︸ ︷︷ ︸
k times

,

which has a parameterization as Ck×n. If we let P = {p1, . . . , pn}, then the notations 〈P 〉 and
〈p1, . . . , pn〉 are taken to mean the same thing. The randomization operation R(P, k) means to
pick at random a member of 〈P 〉k.

With this notation, Lemma 3.1 of [23] (a generalization of Theorem 13.5.1 of [31]) implies
that there is a nonempty Zariski-open set Ui ⊂ 〈x− y〉a+b−i, κ ≤ i ≤ b, such that for Di ∈ Ui:

1. any i-dimensional irreducible component Zij of X ∩∆ is also an irreducible component of
X ∩ V(Di); and

2. for k > i, the k-dimensional irreducible components of X ∩∆ and X ∩V(Di) are the same.

Furthermore, by Bertini’s Theorem (see Theorem B.1 of [23]), we have that there is a nonempty
Zariski-open subset U ′ ⊂ 〈x− y〉a+b−i × 〈x, y, 1〉i, κ ≤ i ≤ b, such that for (Di, Li) ∈ U ′i :

3. the points in X ∩ V(Di, Li) that do not lie in ∆ are isolated and nonsingular.

Pick a (Di, Li) in U ′i . Then, Items 1 and 2 tell us that the isolated points in X ∩V(Di, Li) that
lie in ∆ are, under the projection π∆, a witness point set for the pure i-dimensional component
Zi of A ∩B.

Because the intersection of a finite number of nonempty Zariski-open sets is still nonempty
Zariski-open, there is a nonempty Zariski-open set Ũκ in 〈x− y〉a+b−κ such that for Dκ ∈ Ũκ,
choosing Di as the first a + b − i elements of Dκ, κ ≤ i ≤ b − 1, means that Di is in Ui, the
sets where Items 1 and 2 hold. In this way, if we choose once and for all Dκ ∈ 〈x− y〉a+b−κ

at random, then with probability one, we have also selected all the Di systems generically in
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the respective Ui. Similarly, we may choose one system of (b − 1) general linear equations
Lb−1 ∈ 〈x, y, 1〉b−1 and use i of these as the general linear system for Li in Item 3 above.

To be more explicit, for i = κ, κ+ 1, . . . , b− 1, let

Di =
[
δ1 δ2 · · · δa+b−i

]
,

Li =
[
`b−1 `b−2 · · · `1

]
.

For i = κ, κ+ 1, . . . , b− 1, define Ei : C2N → C2N as

Ei(x, y) = {FA(x), FB(y), Di, Li}
= {FA(x), FB(y), δ1, δ2, . . . , δa+b−i, `i, `i−1, . . . , `1}

(9)

Notice that Ei and Ei−1 differ only in that `i becomes δa+b−i+1; all other polynomials in the list
remain the same.

Since each δi is a special kind of linear while each `i is a general linear, the isolated solutions
of Ei = 0 can be tracked in a parameter homotopy taking `i to δa+b−i to find the isolated
solutions of Ei−1. This is the key to setting up a cascade of homotopies to find witness supersets
at every dimension. We will not prove the details here, as the arguments are essentially the
same as those given in [23] for the original diagonal cascade method. However, in the next two
subsections, we will write down the explicit homotopy formulations we use, one extrinsic and
one intrinsic.

3.1 Extrinsic formulation

Define SX = {(x, y) | x ∈ SA, y ∈ SB}, a set of degX = (degA) · (degB) points. We know that

WX = {(FA(x), FB(y)),LA × LB , SX}

is a witness set for X. From this witness set, we can compute the intersection of X with any
linear subspace of complimentary dimension by setting up a homotopy that moves from LA×LB
to the target linear subspace. Letting LA and LB be linear systems such that LA = V(LA) and
LB = V(LB), a valid homotopy is HX,i : C2N × C→ C2N defined as

HX,i(x, y, t) = {FA(x), FB(y), γt
[
LA(x) LB(y)

]
+ (1− t)

[
Di(x, y) Li(x, y)

]
}, (10)

where γ is a random point in C. The homotopy starts at t = 1 with the points SX and tracks
degX solution paths as t moves monotonically in (0, 1], approaching t = 0 in the limit. For
any γ not lying on one of a finite number of rays from the origin in C, the endpoints of these
homotopy paths that lie on ∆ form a witness point superset for dimension i. Computing all the
intersections X ∩V(Di, Li), i = κ, . . . , b− 1, in this way gives a witness point superset for every
possible dimension.

Instead of computing each witness point superset in an independent homotopy starting from
WX , it is more efficient to organize a cascade of homotopies in which a witness point superset for
dimension i is computed starting with the results of the previous homotopy for dimension (i+1).
The cascade starts out by using HX,b−1(x, y, t) from (10) to get a witness point superset for
dimension (b− 1) and then proceeds down the dimensions using the sequence of homotopies:

Hi+1,i(x, y, t) = tEi+1(x, y) + (1− t)Ei(x, y), i = b− 2, b− 3, . . . , κ. (11)
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From (9), we may rewrite this as

Hi+1,i(x, y, t) = {FA(x), FB(y),δ1, δ2, . . . , δa+b−i−1,

(1− t)δa+b−i + t`i+1, `i, `i−1, . . . , `1},
(12)

which emphasizes the fact that just one equation in the homotopy varies with t. Let Tb−1 and
Ti be the set of endpoints of the homotopy paths of HX,b−1 = 0 and Hi+1,i = 0, resp. For
i = κ, . . . , b− 1, sort these into two distinct sets:

• Ŝi = Ti ∩∆ is a witness point superset for dimension i; and

• Ni = Ti \∆ is the subset of so-called non-solutions.

Then, Ni is the set of starting points for homotopy Hi,i−1. By Item 3 above, the points Ni are

nonsingular, which makes the paths easy to track. Note that by Item 2, all the points in Ŝi are
solutions on components of dimension at least i and they remain so as we descend the cascade.
These points cannot lead to lower dimensional components, which is why we do not need to use
them as start points for the succeeding homotopies.

Several phenomena contribute to the efficiency of a cascade approach, as follows.

• The number of homotopy paths decreases by #(Ŝi) at each stage of the cascade. Also, the
endpoints of any paths that diverge to infinity are eliminated as start points for subsequent
stages.

• By dropping Ŝi from the set of start points for Hi,i−1, the number of junk points in Ŝi−1

is reduced, thus reducing computation in the next phase where we winnow true witness
point sets from the witness point supersets.

• The system (Di+1, Li+1) differs from system (Di, Li) in only one equation, which tends to
result in shorter paths than those for the homotopy HX,i, thereby reducing the time spent
tracking paths.

3.2 Intrinsic homotopies

The homotopies HX,i and Hi+1,i are said to be extrinsic, because the linear equations (Di, Li)
appear explicitly. An intrinsic homotopy eliminates these equations by working instead with
a set of basis vectors for the associated linear spaces. Since these basis vectors are computed
just once when forming the intrinsic homotopy, this reduces the size of the linear system solved
in each step of path-tracking to the dimension of the intrinsic linear space, i.e., to the number
of basis vectors. However, this reduction comes at a cost: the Jacobian matrix for the new
intrinsic variables must be evaluated using the chain rule. We will evaluate this cost trade-off
after describing the intrinsic homotopy.

Both HX,i and Hi+1,i are of the form

H(x, y, t) = {FA(x), FB(y), tG1(x, y) + (1− t)G0(x, y)}, (13)

where G1, G0 : C2N → Ca+b are systems of linear equations. Moreover, these systems have
been chosen general enough that they are full-rank systems. Accordingly, the solution sets can
be fully characterized by linear functions Ψ1,Ψ0 : C2N−(a+b) → C2N . That is, there exists
u0, . . . , u2N−(a+b), v0, . . . , v2N−(a+b) ∈ C2N such that
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V(G0) = {u0 +
∑2N−(a+b)
j=1 ujzj | z = (z1, . . . , z2N−(a+b)) ∈ C2N−(a+b)} and

V(G1) = {v0 +
∑2N−(a+b)
j=1 vjzj | z = (z1, . . . , z2N−(a+b)) ∈ C2N−(a+b)}.

We may rewrite this in matrix form as Ψ1(z) = v0 + V z, where V =
[
v1 · · · v2N−(a+b)

]
.

Similarly, we may write Ψ0(z) = u0 + Uz where U =
[
u1 · · · u2N−(a+b)

]
.

Let Φ(z, t) = tΨ1(z) + (1 − t)Ψ0(z). Then, defining π1 : (x, y) 7→ (x) and π2 : (x, y) 7→ (y),
the intrinsic homotopies we use are:

H(z, t) = {FA(π1(Φ(z, t))), FB(π2(Φ(z, t)))}. (14)

If we had that
H(π1(Φ(z, t)), π2(Φ(z, t)), t) = H(z, t),

then the two homotopies would have the same paths and the justification for the transformation
from extrinsic to intrinsic form would be immediate. Unfortunately, this is not the case, so
we must provide another form of proof. Note that in [24], some rather involved linear algebra
was used to formulate intrinsic homotopies that had exactly the same solution paths as their
extrinsic counterparts. We take a different approach here.

Since at any fixed value of t ∈ C the set Qt = {Φ(z, t) | z ∈ C2N−(a+b)} ⊂ C2N is a linear
space, one could construct a continuous path Γ(t) ⊂ 〈x, y, 1〉a+b (a path in the space of (a+ b)
linear equations) such that Qt = V(Γ(t)). The validity of an intrinsic homotopy using Φ(z, t) is
proved by showing that Γ(t) forms a valid extrinsic homotopy.

Consider first the homotopy HX,b−1(x, y, t) and its corresponding intrinsic homotopy, which
we denoteHX,b−1(z, t). For the solution paths ofHX,b−1(z, t) = 0 to have the desired properties,
all we need is that the corresponding path Γ(t) is general in 〈x, y, 1〉a+b for t 6= 0, landing in
〈x− y〉a+1 × 〈x, y, 1〉b−1 at t = 0. Clearly, Γ(t) is in 〈x, y, 1〉a+b for all t and due to the way
Φ(z, t) is constructed, we know that Γ(1) and Γ(0) satisfy the starting and ending conditions. To
guarantee that Γ(t) stays general as t goes from 1 to 0, we send it along the real-one-dimensional
path

t = p(τ) :=
γτ

1 + (γ − 1)τ
, τ ∈ [0, 1], (15)

for a generic γ ∈ C. Since the parameter space is Cartesian, Lemma 7.1.3 (“Gamma Trick”)
of [31] guarantees that the path in parameter space is general for all γ ∈ C except for a finite
number of one-real-dimensional rays from the origin.

For each homotopy Hi+1,i(x, y, t), the corresponding intrinsic homotopy will be denoted
by Hi+1,i(z, t). For each of these, we need that the corresponding path Γ(t) is generic in
〈x− y〉a+b−(i+1) × 〈x, y, 1〉i+1 for t 6= 0 and lands in 〈x− y〉a+b−i × 〈x, y, 1〉i at t = 0. Again,
the construction of Φ(z, t) satisfies the conditions at t = 1 and t = 0, but it remains to be shown
that the path remains in the appropriate subspace for the whole path. But this is clearly true,
because the equations {δ1, δ2, . . . , δa+b−(i+1)} are common to both G1(x, y) and G0(x, y). These
are homogeneous linear functions, so for example,

δ1(Φ(z, t)) = δ1(tΨ1(z) + (1− t)Ψ0(z))

= tδ1(Ψ1(z)) + (1− t)δ1(Ψ0(z)) = t · 0 + (1− t) · 0 = 0.

To make sure the one-real-dimensional path from t = 1 to t = 0 path is generic, we again use
the “gamma trick” of (15).
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3.3 Cost trade-off

We compare the costs of using an intrinsic homotopy versus an extrinsic one based on the number
of multiplications needed to perform one step of Newton’s method, which dominates the cost of
path tracking. The intrinsic homotopies are evaluated in a straight-line fashion. In particular,
one first computes (x, y) = Φ(z, t) and then FA(x) and FB(y). Both the extrinsic and intrinsic
homotopies evaluate FA(x) and FB(y), so we may neglect that cost. The extrinsic homotopy
works with 2N variables, (x, y) ∈ C2N , whereas the intrinsic one works with 2N − (a + b)
variables, z ∈ C2N−(a+b). To execute a step of Newton’s method, we need to evaluate the
Jacobian matrices J(x,y)H(x, y, t) and JzH(z, t) and perform one linear solve. The Jacobian
for the extrinsic homotopy evaluates JxFA(x) and JyFB(y), while the intrinsic one uses these
post-multiplied by matrices ∂x/∂z and ∂y/∂z, respectively. So the intrinsic homotopy incurs
an extra (2N − (a + b))2N multiplications. Solving using standard Gaussian elimination with
partial pivoting costs (2N − (a + b))3/3 + O((2N − (a + b))2) for the intrinsic homotopy and
(2N)3/3 + O(N2) for the extrinsic one. If we define α such that a + b = αN , then comparing
only the cubic terms, the break even point occurs when (2 − α)2(5 − α) = 8. Accordingly,
ignoring the lower-order terms, the intrinsic homotopy is less expensive when α ≥ 0.645, i.e.,
when a+ b ≥ 0.645N .

4 From witness point sets to witness sets

After computing the witness point supersets, Ŝi using the algorithm described in Section 3, we
want to eliminate junk points to obtain the pure i-dimensional witness point set, Si ⊂ Ŝi and
then decompose this into witness point sets, Sij , for the irreducible components, Zij of X ∩∆.
Then, we have witness point sets Sij for the irreducible components Zij of A ∩ B using the
projection Sij = π∆(Sij). We also need to find a witness system, Fij , for each Zij , such that
Zij is an irreducible component of V(Fij). The following subsection shows how isosingular sets
are relevant to these goals.

4.1 Isosingularity of witness sets

Theorem 4.1.1 (Main Result) Let FA : CN → Cna and FB : CN → Cnb be polynomial sys-
tems with irreducible components A ⊂ V(FA) and B ⊂ V(FB). Define F (x, y) = {FA(x), FB(y)}
and ∆ = {(z, z) | z ∈ CN}. Suppose that Z is an irreducible component of A ∩ B and
Z = π−1

∆ (Z). Then, there is a nonempty Zariski open set U ⊂ Z such that for all u ∈ U ,
Z is an irreducible component of IsoF ((u, u)) ∩∆.

Proof. Since Z is an irreducible algebraic set contained in V(F ), there is a nonempty Zariski
open set U ⊂ Z such that for every (u, u) ∈ U , Z and (u, u) have the same deflation sequence
with respect to F . Define U = π∆(U), which is a nonempty Zariski open subset of Z, and fix
u ∈ U . Since (u, u) ∈ U , we know that Z ⊂ IsoF ((u, u)) which yields

Z ⊂ IsoF ((u, u)) ∩∆.

Thus, there exists an irreducible component W ⊂ IsoF ((z, z)) ∩∆ such that Z ⊂ W. Consider
W = π∆(W). We clearly have Z ⊂ W and, since W is isomorphic to W, W is an irreducible
algebraic set.

11



Since A × B ⊂ V(F ) is an irreducible component with (u, u) ∈ A × B, we know that
IsoF ((u, u)) ⊂ A×B. This yields

Z ⊂ W ⊂ IsoF ((u, u)) ∩∆ ⊂ (A×B) ∩∆

and hence Z ⊂W ⊂ A∩B. Since Z is an irreducible component of A∩B and W is an irreducible
algebraic set, we must have Z = W . Therefore, Z =W, and hence Z is an irreducible component
of IsoF ((u, u)) ∩∆. 2

The immediate upshot of Theorem 4.1.1 is that it gives a way of finding the polynomial
systems that complete the witness sets for irreducible components. We codify the procedure in
the following corollary.

Corollary 4.1.2 Suppose F and Z are as in Theorem 4.1.1. For any z ∈ Z, let Gz(x, y) =
Dk∗(F (x, y), (z, z)), where k∗ is the isosingular stabilization index of (z, z), and let Gz(x) =
Gz(x, x). Then, there is a nonempty Zariski open set U ⊂ Z such that for all u ∈ U , Z is an
irreducible component of V(Gu).

Proof. By Theorem 2.0.3, Item 2, IsoF ((z, z)) is an irreducible component of V(Gz). By
Theorem 4.1.1, Z = π−1

∆ (Z) is an irreducible component of IsoF ((u, u)) ∩ ∆. The corollary
follows by restricting Gz(x, y) to the diagonal, ∆, and then using the isomorphism Z = π∆(Z).

2

We note that the assumptions made in Section 3, namely that A and B were generically
reduced and the dimensions of A and B were compatible with the number of polynomials in
FA and FB , respectively, were only made for computational convenience. In particular, these
assumptions yielded homotopies that were square and solutions paths that were nonsingular for
t = p(τ), 0 < τ ≤ 1. These assumptions are not needed to apply Theorem 4.1.1 meaning that
we could use one set of polynomial systems to perform the computations in Section 3 and use
the original set of polynomial systems when applying Theorem 4.1.1.

Example 4.1.3 Reconsider Example 1.0.2, where FA(x, y, z) = x and FB(x, y, z) = xy with
irreducible components A = {(0, y, z) | y, z ∈ C} and B = {(x, 0, z) | x, z ∈ C}, respectively. In
light of Corollary 4.1.2, consider

F (x1, x2, x3, y1, y2, y3) =

[
FA(x1, x2, x3)
FB(y1, y2, y3)

]
=

[
x1

y1y2

]
and Z = A ∩B = {(0, 0, α) | α ∈ C}.

Since, for every a ∈ C, IsoF ((0, 0, a, 0, 0, a)) = {(0, α, β, 0, 0, γ) | α, β, γ ∈ C}, we have U = Z
and IsoF ((0, 0, a, 0, 0, a)) ∩∆ = {(0, 0, α, 0, 0, α) | α ∈ C}. In particular, for any a ∈ C,

G(0,0,a)(x, y) =


x1

y1y2

y1

y2

 and G(0,0,a)(x) =


x1

x1x2

x1

x2

 .
Clearly, Z = A ∩ B is a generically reduced, irreducible component of V(G(0,0,a)). We may

replace G(0,0,a) with G′(x) =
[
x1 x2

]
.
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4.2 Completing the decomposition

At the end of the diagonal cascade, we have witness point supersets Ŝi, i = κ, . . . , b−1. Consider
a point (z, z) ∈ Ŝi. It is either:

• a generic point of some i-dimensional irreducible component, say Zij , of X ∩∆; or

• a junk point, i.e., a point on some component(s) of dimension k > i.

In the first case, the genericity of (z, z) is assured, with probability one, by the random choice
of the linear space Li. Points of this type belong in the witness point set for Zij . In the second
case, there is no guarantee that x is a generic member of any higher-dimensional irreducible
component: in fact, it often will be in the singular set of one or more such components.

Consider the following preliminary decomposition procedure for dimension i. It consists of
the following steps.

Preliminary Decomposition:

1. For each point (z, z) ∈ Ŝi use the determinantal deflation procedure to find the system
G(x, y) = Dk∗(F (x, y), (z, z)) where k∗ is the isosingular stabilization index. In so doing,
we also find the point’s first deflation sequence dk(F, (z, z)), k = 0, 1, . . . , k∗.

2. Let G(x) := G(x, x). For each point also find G∗(x) = D`∗(G(x), z), where `∗ is the
isosingular stabilization index, thereby determining the point’s second deflation sequence
dk(G, z), k = 0, 1, . . . , `∗.

3. Sort all the points of Ŝi into subsets of points that have the same first and second deflation
sequences. Each subset has an associated G∗(x).

Since true witness points are generic on their associated irreducible component, all the witness
points on the same irreducible component must fall into the same subset after this preliminary
decomposition. Moreover, Corollary 4.1.2 tells us that G(x) is a witness system for that com-
ponent, while by Theorem 2.0.3, Items 3 and 4, G∗(x) meets the stronger condition that the
irreducible component is generically reduced with respect to it. Furthermore, by Theorem 2.0.3,
Item 2, we have that the stabilization value, d`∗ , of the second deflation sequence is the dimension
of the irreducible component.

Remark 4.2.1 Due to the last observation above, any point in Ŝi whose deflation sequence (first
or second) dips below the current dimension, i.e., dk < i, must be junk and can be immediately
eliminated. This may happen because although a junk point lies on some higher dimensional
component(s), it may be a singular point such that its isosingular set is of lower dimension.

Remark 4.2.2 Our experience is that the second deflation sequence ends with `∗ = 0, but we
have no proof that this will always be the case.

Remark 4.2.3 Each point (z, z) ∈ Ŝi lies in V(Li(x, y)) ∩∆, hence its projection z = π∆(z, z)
lies in the linear space V(Li(x, x)) ⊂ CN . The genericity of Li(x, y) implies that Li,∆(x) :=
Li(x, x) is also generic, so Li,∆(x) serves as the linear space for witness sets in the original
coordinate space, CN . For notational simplicity, we use Li(x, x) in writing witness sets below.

Remark 4.2.4 In the special case where a point (z, z) ∈ Ŝi has k∗ = `∗ = 0, the point z is
a nonsingular solution of {F (x, x), Li(x, x)} = 0. Thus, z does not lie in a higher-dimensional
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component and must be a true witness point. Moreover, F (x, x) = {FA(x), FB(x)} serves as a

witness system for the component witnessed by z. Note that the subset of all such points in Ŝi
forms a witness point set for a pure i-dimensional algebraic set, but it may comprise a union of
irreducible components that still needs to be factored to obtain the irreducible decomposition.

These facts justify the following procedure for eliminating all junk points and performing a
partial numerical irreducible decomposition of A ∩B.

Partial Decomposition:

1. Find the top dimension: If all Ŝi = ∅, i = κ, . . . , b − 1, then A ∩ B = ∅, and we are
done. Otherwise, there must be a largest i, call it i∗, among these such that Ŝi is not
empty. Then, i∗ = dim(A ∩ B). Since there are no components of higher dimension, all

the points in Ŝi∗ are true witness points; that is, Si∗ = Ŝi∗ and Si∗ = π∆(Si∗).

2. Reduce the top dimension: Apply the preliminary decomposition to Si∗ . Note that
since there are no higher dimensional components, each reduction must end with d`∗ = i∗.
Using the witness systems provided by the preliminary decomposition, form the witness
sets for the top dimension: W̃i∗j = {G∗i∗j(x), Li∗(x, x), Pi∗j}, j = 1, . . . ,mi∗ .

3. Descend the dimensions: For i = (i∗ − 1), . . . , κ do the following.

(a) Split off nonsingular points: Remove the points conforming to the conditions of

Remark 4.2.4 from Ŝi and place their projections under π∆ in a witness set W̃i0 =
{F (x, x), Li(x, x), Pi0}.

(b) Eliminate junk: For each remaining point (z, z) ∈ Ŝi perform homotopy member-

ship tests from each witness set W̃ı̃,j , all ı̃ > i, j = 0, . . . ,mı̃, stopping whenever a
membership is detected. If z is a member of any of these higher-dimensional compo-
nents, it is a junk point, and so is (z, z), meaning we discard it. Otherwise, we retain
(z, z) in Si.

(c) Reduce singular points: Apply the preliminary decomposition procedure above
to Si, obtaining a coarse subdivision of Si into mi distinct sets, say Si = ∪mi

j=1Pij ,

each with a corresponding witness system G∗ij(x). Form the witness sets W̃ij =
{G∗ij(x), Li(x, x), Pij}, j = 1, . . . ,mi.

Final Decomposition: After the foregoing procedure, any of the witness sets W̃ij , i = κ, . . . , i∗,
j = 0, 1, . . . ,mi, might represent more than one irreducible component. To complete the nu-
merical irreducible decomposition, one may apply monodromy and trace tests as described in
[28, 29]. After this is done, one has a complete numerical irreducible decomposition into witness
sets Wij corresponding to the decomposition of A ∩B into irreducible components Zij :

A ∩B =

i∗⋃
i=κ

Zi, Zi =

ni⋃
j=0

Zij , ni ≥ mi. (16)

Remark 4.2.5 In the Partial Decomposition procedure, the order of Steps 3b and 3c could
be reversed. In that case, Remark 4.2.1 may be useful in eliminating some junk points. The
choice of which order is most efficient for eliminating junk points depends on the number of
higher dimensional witness points (known) and the stabilization indices, k∗ and `∗, for the test
point (unknown at the outset). Both procedures run to completion for true witness points, so
the order does not matter for those.
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5 Examples

We first present a basic example in C4 and then report on an example arising in kinematics.
Both of these examples used Bertini v1.3.1 [3] for the homotopy computations.

5.1 A basic example

Consider the polynomial systems FA, FB : C4 → C2 defined by

FA(x, y, z, w) =
[

xz2 + 5x2 + xw − 7y2 − x
yzw − 3x2 + 2y2 + yz − 2y

]
and FB(x, y, z, w) =

[
xz2 − 3x2 + xw + 11y2 − x
yzw + 9x2 − 5y2 + yz − 2y

]
.

It is easy to verify that V(FA) and V(FB) each decompose into the union of the plane V(x, y)
and a degree 7 surface, which we denote A and B, respectively, with A 6⊂ B and B 6⊂ A.

Starting with witness sets for A and B, the first step is to track 49 paths using the homotopy
HX,1 defined by (10). This yields the sets Ŝ1 consisting of 4 points and N1 consisting of 40

points. The remaining five paths diverged to infinity. Since Ŝ1 6= ∅, we know dim(A ∩ B) = 1

and that each point in Ŝ1 is a witness point, i.e., S1 = Ŝ1.
Starting with the points in N1, the next step is to track 40 paths using the homotopy H1,0

defined by (12). This yields the set Ŝ0 consisting of seven points, three of which are the endpoint
of a unique path and the other four are the endpoint of seven paths. The remaining 19 paths
diverged to infinity.

We now proceed to the preliminary decomposition of S1. Each of the four points in S1 has a
first deflation sequence of 6, 2, 2, . . . with k∗ = 1 and a second deflation sequence of 1, 1, . . . with
`∗ = 0. Hence, each point has the same associated system G∗, which is constructed as follows.
Let F : C8 → C4 be constructed from FA and FB as in Theorem 4.1.1 and fix α ∈ S1. Since
dnull (F, (α, α)) = 6, let G be the system obtained by appending the 3× 3 determinants of the
Jacobian of F to F . There are

(
4
3

)
·
(

8
3

)
= 224 such determinants, 128 of which are zero and only

48 of the remaining 96 are independent. Since `∗ = 0, we have G∗(x) = G(x) = G(x, x).
Using G∗, we can now perform a homotopy membership test to eliminate junk from the

witness point superset Ŝ0. This test found that all seven points in Ŝ0 lie on a one-dimensional
component in A ∩B yielding that there are no zero-dimensional components.

In the final decomposition phase, we used the trace test on the four points in S1 yielding
two irreducible curves of degree 2, say C1 and C2. With G∗ as the witness system, we may now
form a witness set for each of C1 and C2, using the linear system L(x) := L1(x, x) from (10)
along with the corresponding witness points.

Since the final decomposition phase produces witness sets for C1 and C2, these can be used
for further computations on those sets. In particular, we can proceed to compute C1∩C2, which
turns out to consist of three isolated points.

5.2 Griffis-Duffy platform of type II

Griffis-Duffy platforms are special cases of Stewart-Gough platforms, a kind of parallel-link
mechanism in which six extensible legs with spherical joints at each end support a moving
platform above a stationary base. In a general configuration, the extensions of the six legs
can be actuated to move the platform to obtain any translation and orientation within a six-
dimensional subset of SE(3), and when the leg lengths are locked, the mechanism becomes rigid.
This is useful, for example, as the motion base in a flight simulator, and the mechanism finds
other applications in industrial robotics.
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The Griffis-Duffy special case of the Stewart-Gough platform occurs when the spherical joints
on the base form a triangle, with the center of three of the joints at the vertices and one each of
the other three along the edges, and the same is true for the moving platform. Moreover, a leg
attached to a vertex in the base is attached to an edge in the moving platform and vice versa,
with the connections proceeding in sequence around the triangles. The forward kinematics of
these mechanisms, that is, the determination of the location of the moving plate given the leg
lengths, is simpler than for the general Stewart-Gough platform, which motivated a patent of the
device by its eponymous inventors [6]. Subsequently, Husty and Karger [11] noticed that if the
base and upper plate are both equilateral and the joints on the edges are placed at the midpoints,
then the mechanism becomes architecturally singular. This means that no matter what location
the upper plate is placed in when the leg lengths are locked, the mechanism still moves along
a curve. This is the type I variant of special Griffis-Duffy platforms. A subset of these, the
type II variant, occurs when the upper and lower triangles are congruent and the leg lengths are
all equal, in which case the motion curve factors into several irreducible components. In [11],
symbolic methods were used to determine the irreducible decomposition, which was confirmed
with minor corrections by the numerical irreducible decomposition computed in [22]. It is
interesting to note that when the leg lengths of the type II mechanism are equal to the altitude
of the triangles, the mechanism can fold into a configuration where the triangles coincide. The
real motion curves of this foldable Griffis-Duffy platform were computed as an example in [17].

We shall consider the type II Griffis-Duffy platform as the squared leg length, `, varies.
The polynomial system describing the kinematics of the mechanism depends upon ` ∈ C and
[e1, . . . , e4, g1, . . . , g4] ∈ P7. We dehomogenize by working on a random coordinate patch defined
by P (e1, . . . , e4, g1, . . . , g4) = 0 where P : C8 → C is an affine random linear polynomial. We first
consider the polynomial system F = {f1, . . . , f7, P}, where each fi is defined in the Appendix A,
as a system on C9. The irreducible decomposition of V(F) consists of a not physically meaningful
3-fold and 17 two-dimensional components: twelve planes, one sextic, three surfaces of degree
11, and one of degree 13. Among these, there are two surfaces of degree 11 which do not lie in
a coordinate hyperplane, which we denote as A and B.

Since f6 ∈ 〈f1, . . . , f5〉, we used the polynomial system FA = FB = {f1, . . . , f5, f7, P}, which
consists of 7 polynomials in 9 variables, to perform the homotopy computations. Starting with
witness point sets for A and B and tracking the 121 paths of the homotopy HX,1 defined by

(10), one obtains Ŝ1 containing five points and N1 containing 114 points. The remaining 2 paths

diverged to infinity. Since Ŝ1 6= ∅, we know dim(A ∩ B) = 1 and that each point in Ŝ1 is a

witness point, i.e., S1 = Ŝ1.
Using the homotopy H1,0 defined by (12) and tracking the 114 paths emanating from the

points in N1, one obtains Ŝ0 containing six points and N0 containing 66 points. The remaining
42 paths diverged to infinity.

We now turn to the preliminary decomposition for S1 = Ŝ1. The first two terms in the first
deflation sequence is 8, 8 for two points in S1 and 8, 2 for the other three points. This implies
that A∩B must contain at least two irreducible curves. Since a membership test using F shows
that the two points with first two terms 8, 8 are contained in the not physically meaningful
3-fold, we will only consider the other three points.

The first deflation sequence of these three points is 8, 2, 2, . . . with k∗ = 1 and a second
deflation sequence of 1, 1, . . . with `∗ = 0. The trace test yields that these three points form a
witness point set for an irreducible curve C of degree 3. Membership tests show that each point
in Ŝ0 lies in C, so there are no isolated solutions.

Let π : C9 → C be the map defined by π(`, e1, . . . , e4, g1, . . . , g4) = `. The approach of [7]
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implies that π is generically a two-to-one map from C to C with critical points at ` = 1/3 and
` = 3. The real Stewart-Gough platforms in C correspond to the set π−1([1/3, 3]) ∩ C. In
Figure 1, we display the configuration of the mechanism for one of the two points in π−1(`)∩C
for selected values of ` between 1/3 and 3. The lighter shaded triangle is the stationary base
and the darker one is the moving platform. As ` increases, the two triangles remain coplanar
with their centers coincident, and the moving platform rotates 180◦ in the clockwise direction.
The other point of π−1(`) ∩ C, not illustrated, has the same starting and ending configuration,
but rotates in the counter-clockwise direction.

Each surface, A and B, is the union taken as ` varies of the self-motion curves obtained with
the legs locked at length

√
`. As such, the configurations shown in Figure 1 represent the points

where a self-motion curve from A meets a self-motion curve from B.

` = 1/3 ` = 2/3 ` = 1

` = 4/3 ` = 5/3 ` = 2

` = 7/3 ` = 8/3 ` = 3

Figure 1: Griffis-Duffy type II platforms on the curve C for various `
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6 Discussion

In the presentation of this paper, we have exclusively relied on the determinantal form of strong
deflation. As compared to other forms presented in [10], this avoids introducing auxiliary vari-
ables. This simplifies intersections after deflation—otherwise one must intersect projections that
drop away the auxiliary variables—and all other things being equal, having fewer variables is
generally beneficial for reducing computation. However, determinantal strong deflation has the
downside that it may introduce a large number of equations, as the number of minors can be
large. In practice, it appears that only a few of the minors are independent, so it may be hoped
that symbolic methods can be developed for reducing the number of minors that are introduced
at any stage. If this hope goes unrealized, in some situations it may be better to use the other
forms of deflation. This is an open issue that deserves further study.

7 Conclusion

The completion of the diagonal homotopy brings to numerical algebraic geometry the full ca-
pability of performing all Boolean operations on algebraic sets, thereby extending the reach of
the methods to a full treatment of constructible algebraic sets. The key step in this completion
is contained in Theorem 4.1.1, which applies isosingular theory [10] to the diagonal homotopy
framework first established in [23].
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A Stewart-Gough platform system

The polynomials for the Stewart-Gough platform, which are presented using the variables `, e1,
e2, e3, e4, g1, g2, g3, g4, are as follows. If r =

√
3, E = e2

1 +e2
2 +e2

3 +e2
4, and G = g2

1 +g2
2 +g2

3 +g2
4 ,

the polynomial system is {f1, . . . , f7} defined as

f1 = 7e2
1/3− 4re1e2/3 + e2

2 + e2
3/3 + 3e2

4 − re1g3/3 + 3e1g4 − e2g3 − re2g4 + re3g1/3 + e3g2

− 3e4g1 + re4g2 +G− `E
f2 = 7e2

1/3 + 4re1e2/3 + e2
2 + e2

3/3 + 3e2
4 − re1g3/3 + 3e1g4 + e2g3 + re2g4 + re3g1/3− e3g2

− 3e4g1 − re4g2 +G− `E
f3 = e2

1/3 + 3e2
2 + e2

3/3 + 3e2
4 + 2re1g3/3 + 2re2g4 − 2re3g1/3− 2re4g2 +G− `E

f4 = 7e2
1/3− 4re1e2/3 + e2

2 + e2
3/3 + 3e2

4 − re1g3/3− 3e1g4 − e2g3 + re2g4 + re3g1/3 + e3g2

+ 3e4g1 − re4g2 +G− `E
f5 = 7e2

1/3 + 4re1e2/3 + e2
2 + e2

3/3 + 3e2
4 − re1g3/3− 3e1g4 + e2g3 − re2g4 + re3g1/3− e3g2

+ 3e4g1 + re4g2 +G− `E
f6 = e2

1/3 + 3e2
2 + e2

3/3 + 3e2
4 + 2re1g3/3− 2re2g4 − 2re3g1/3 + 2re4g2 +G− `E

f7 = e1g1 + e2g2 + e3g3 + e4g4
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