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Abstract. Given an underactuated tendon-driven finger, the finger posture is underdetermined and can move
freely (“flop”) in a region of slack tendons. This work shows that such an underactuated finger can be operated
in tendon force control (rather than position control) with effective performance. The force control eliminates
the indeterminate slack while commanding a parameterized space of desired torques. The torque will either
push the finger to the joint limits or wrap around an external object with variable torque – behavior that is
sufficient for primarily gripping fingers. In addition, introducing asymmetric joint radii to the design allows
the finger to command an expanded range of joint torques and to scan an expanded set of external surfaces.
This study is motivated by the design and control of the secondary fingers of the NASA-GM R2 humanoid
hand.

This paper was presented at the IFToMM/ASME International Workshop on
Underactuated Grasping (UG2010), 19 August 2010, Montréal, Canada.

1 Introduction

Tendon or cable transmission systems are often used in the
actuation of fingers in high degree of freedom (DOF) hands.
The remote actuation allows for significant reductions to the
size and weight of the fingers, features that are important for
dexterous manipulation. Since the tendons can only trans-
mit forces in tension, the number of actuators must exceed
the DOF’s to achieve fully determined control of the fin-
ger. It turns out that onlyone tendon more than the num-
ber of DOF’s is needed (Murray et al., 1994). If arranged
correctly, then+1 tendons can independently control then
DOF’s while always maintaining positive tensions.

In this sense, ann-DOF finger with onlyn tendons is un-
deractuated, and the finger posture is underdetermined. This
creates a slack space within which the finger posture is un-
controlled. In other words, the finger cannot hold a desired
position and will be free to flop in some region where the
tendons go slack.

Despite this handicap, having a reduced number of actua-
tors is still very attractive. Space or power limitations can be
significant in high DOF hands. Each extra actuator and ten-
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don transmission system increases the demands on space and
maintenance. This work shows that an underactuated finger
with n tendons can be operated in tendon force control (rather
than position control) with effective performance. Desired
joint torques can be commanded to the finger in a feasible
torque space. The slack space is eliminated as the torques ei-
ther push the finger to the joint limits or wrap around an ex-
ternal object. Others in the robotics community have applied
tension control to tendon-driven hands, most notably for the
Stanford/JPL, Utah/MIT, POSTECH, and Robonaut-2 hands
(Salisbury and Craig, 1982; Biggers et al., 1986; Lee et al.,
1994; Abdallah et al., 2010). In these cases, however, only
fully actuated control strategies have been presented. Oth-
ers have presented underactuated grippers, though they do
not use force control (Hirose and Umetani, 1978) or spring
load the joints to eliminate the slack space (Dollar and Howe,
2006).

The ability to independently control the joint torques de-
pends on a finger design that has asymmetric joint radii.
We shall discuss how the radii shape the feasible torque
space. Furthermore, the asymmetric radii allow the finger
to scan external surfaces whose target directions fall within a
feasible set.

Published by Copernicus Publications.

http://creativecommons.org/licenses/by/3.0/


84 M. E. Abdallah and C. W. Wampler: Torque control of underactuated tendon-driven fingers

Figure 1. The secondary fingers of R2 are underactuated.

In short, in asymmetric underactuated fingers, the torques
are fully determined functions of the tendon tensions,
whereas joint positions are not fully determined by the ten-
don positions. Therefore, we propose to control such fingers
by controlling the tendon tensions instead of positions. This
work starts with a thorough analysis of a two-DOF finger be-
fore generalizing the conditions to ann-DOF system.

This study was motivated by the design and control of the
NASA-GM Robonaut-2 humanoid hand, shown in Fig.1.
The secondary fingers of the hand, i.e. the ring and little
fingers, are underactuated to reduce the number of actuators
and allow for a human-sized form factor. The primary objec-
tive of these fingers is to support the dexterous set of fingers
in gripping larger objects.

2 Tension control

Suppose that we control the tensions in a tendon-actuated
mechanism. For an open chain linkage with concentric cir-
cular pulleys and negligible friction, the relation between the
actuated joint torques,τ, and tendon tensions,f , is

τ=R f . (1)

Matrix R is known as the tendon map matrix. If the pulleys
are noncircular, the same relation holds, butR then varies
with the configuration of the linkage. That is, ifq is the set
of joint angles for the linkage, we haveτ=R(q) f . Although

Figure 2. A 2 DOF finger with two tendons.x1 represents the
flexor tendon andx2 the extensor.

this relation is true for all tension values, one must remember
that only non-negative tensions are possible. This limitation
means that it is only feasible to access a limited portion of
the joint torque space, as we will discuss further below.

As an illustration, consider the 2 DOF finger shown in
Fig. 2. The tendons wrap around idler pulleys of radiir1

andr2 at the first joint, and radii ofr3 andr4 at the second
joint, terminating on the distal link.r i are all positive scalars.
In this case, the tendon map matrix becomes

R=
[

r1 −r2

r3 −r4

]
. (2)

The dimensionality of the set of feasible torques depends
on the design of the pulleys. For a symmetrical choice of
pulley radii, r1 = r2 and r3 = r4, matrix R is singular. No
matter what tensions are applied, the joint torques stay in a
constant ratioτ1/τ2 = r1/r3. Thus, only a one-dimensional
line in torque space is feasible, and this will be limited to just
a line segment due to actuator saturation limits. In contrast,
for a more general choice of radii,R becomes nonsingular,
and we may invert Eq. (1) to obtain the tensionsf that will
produce a given joint torqueτ:

f =R−1τ. (3)

Again, the limits on the tendon tensions give limits on
what torques can be commanded. IfR is nearly singular,
even moderate torque commands in the singular direction
will require large tensions. Nevertheless, there is a two-
dimensional region of the torque space that is feasible.
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3 Position control

Suppose that we control position of the tendons instead of
their tensions. As long as the tendons remain taut, a stan-
dard virtual work argument implies that the relation between
joint and actuator motion is governed by the same matrixR
involved in the torque-tension relation (Eq.1):

ẋ=RT q̇, (4)

wherex is the set of tendon actuator positions. In the more
general case where the tendons may become lax, it is help-
ful to introduce an intermediate variabley that represents the
tendon extension that would keep the tendons taut, whilex
is the actual extension of the tendon actuators. Then, start-
ing from any configuration in which the tendons are initially
taut, i.e.,x= y, we have

ẋ≤ ẏ=RT q̇. (5)

(By this notation, we mean that the inequality holds for each
row of the matrix expression.) Even if the actuators are held
stationary,ẋ = 0, the finger can move witḣy in the positive
quadrant: ˙y1≥0, ẏ2≥0. Such motions enter theslack region,
a bounded region in which the finger may move freely even
though the actuators are held stationary.

The slack region is described by inequalities at the position
level. We assume that all quantities are measured from an
initial position x = y= q= 0 in which the tendons are taut.
Assuming inelastic tendons, the joint motion is constrained
by the length of tendons:

x≤ y=RT q. (6)

In particular, for the finger of Fig.2, we have

x1 ≤ r1q1+ r3q2 (7)

x2 ≤ −r2q1− r4q2

In general, the intersection of these two inequalities consists
of a wedge that defines the slack region. As the input side
of the tendons (x1 and x2) are displaced, these inequalities
shift and change the slack region. An example is shown in
Fig.3. In the interior of the slack region, the tendons lose ten-
sion, while on either boundary, one tendon is taut, the other
slack. For symmetric designs, the constraints become par-
allel as shown in Fig.4. In this case, the tendons perfectly
oppose each other, so they can be drawn taut, at which point
their constraints in joint space collapse onto each other into
a single line that matches the null-space ofRT . Even though
the tendons will remain taut, they cannot resist motion along
this line.

Figure 3. The slack space (shaded region) is bound by the two
constraints (lines) and the joint limits (box).

Figure 4. The slack space for a symmetric pulley design.

4 Feasible torques

Not all joint torques are possible due to the nature of both the
tendons and actuators. Due to the tendons, each tendon ten-
sion fi , i =1,...,n, must be nonnegative. Due to the actuators,
each tendon tension also has an upper limit, sayf +i . In short,

0≤ fi ≤ f +i , i =1,...,n. (8)

This rectangular region in tension space gets mapped byR
into an n-parallelotope (the generalization ton dimensions
of a parallelogram.) The 2n vertices of this feasible torque
region are given by evaluatingR f for every combination of
tendon tensions at their respective limits. In particular, letRi

be thei-th column ofR. Then, for a two-link finger actuated
by two tendons, the feasible torque region is a parallelogram
with vertices:

{(0,0),R1 f +1 ,R2 f +2 ,R1 f +1 +R2 f +2 }.

Figure 5 illustrates the case ofr1 > r2 = r3 = r4 with equal
maximum tensions.

It is appropriate to limit the finger operation to the con-
dition that both joint torques have the same direction. In
other words, the joints are both in either flexion or exten-
sion. This covers the behavior of fingers designed for grip-
ping. In Fig.5, the regions that correspond to this condition
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Figure 5. The space of feasible joint torques. It represents the pos-
itive span ofRi , given upper bounds on the tensions. Region (I) in-
dicates when both joints are in flexion. Region (III) indicates when
both joints are in extension.

are regionsI and III . Hence in flexion,τ2 ≤
r1
r2
τ1. While in

extension,τ2≤ τ1.
For the sake of simplicity, the joint torques in the two-joint

finger can also optionally be limited to operate along justR1

or R2, that is, we pull on one tendon while maintaining a
minimal tension on the other. In this case, the torques be-
come parameterized by a single DOF. This mode of operation
causes the joint torques to be both in either flexion or exten-
sion. Such a control mode is well suited for fingers designed
primarily for gripping. While fingers intended for manipu-
lation need to be fully actuated and fully controllable, grip-
ping fingers simply need to flexibly grip objects with variable
strength and variable posture. Hence, one DOF is sufficient
to either specify the grip strength or to fully extend the finger.
The commanded joint torques will thus drive the finger until
it either comes to rest against the joint limits or wraps around
an external object.

5 Design considerations

The tendon configuration greatly affects the feasible joint
torque space, and a bad design can produce a space with un-
desirable characteristics. Consider the same finger in Fig.2,
but suppose we reverse the direction of wrap on the upper
joint. This results in a new tendon map,

R=
[

r1 −r2

−r3 r4

]
. (9)

Although this arrangement is valid in many ways, it pro-
duces a potentially undesirable space of feasible joint torques
– shown in Fig.6. Assumingr1> r2= r3= r4, as before, the
feasible region excludes quadrant three, meaning that the fin-
ger can no longer command both joints simultaneously in ex-

Figure 6. A different tendon arrangement can produce undesirable
results. In this case, both joints cannot be extended simultaneously.

Figure 7. For limited tendon tensions, the torque space is defined
by the above parallelogram. The ratio ofr1

r2
affects the area and

conditioning of the possible solution.

tension, and its ability to simultaneously move both in flexion
is limited.

The size of the joint radii carry several design implica-
tions as well. For a given tendon force and stroke length,
larger radii increase the maximum joint torques while de-
creasing the joint range. Consider Fig.5 again. To obtain
good control off the diagonal, the differences in the radii must
be large enough to leaveR well conditioned. Asr1 increases
with r2 = r3 = r4, vector R1 rotates clockwise and grows in
length. AsR1 rotates, the area of the feasible parallelogram
increases, but the ability to move along the diagonal in flex-
ion is sacrificed. This behavior is demonstrated in Fig.7.

It is important to note that while a more asymmetrical ar-
rangement increases the area of the feasible torque region, it
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also widens the slack region. This is not too much of a con-
cern as long as the finger is under tension control, or if the
actuators are parked near a boundary of the joint space (see
next section). But if the actuators are parked in the middle
of their ranges, the larger slack region may be undesirable.
For example, it may be possible for slack tendons to escape
their guideways such that the mechanism will not return to a
usable state even when the actuators re-tension the tendons.

6 Position control with external constraints

We have seen that position control of an underactuated finger
can only constrain the finger to a slack region. Without joint
limits or external contact constraints, this region would be
infinite in extent, but with them, the slack region becomes
finite. In fact, under certain conditions, the slack region can
shrink to a point, that is, the underactuated finger can become
fully controlled in position when acting against a constraint.

It takes a minimum of three inequalities to bound a finite
region of the plane, or in general,n+1 inequalities to bound a
finite region inn-space. This is the fundamental reason why
n+1 tendons are required to hold ann-DOF mechanism in
place without any external constraints. But once the mecha-
nism contacts the environment or a hard joint limit, its free-
dom drops andn tendons may become sufficient. However,
the direction of the external constraint matters: it must be
oriented such that the finger can exert a positive force against
it. It is easiest to understand this if the external constraint is
first mapped into an equivalent joint-space constraint. Then
the ability to exert forces on the constraint can be reinter-
preted as the ability to exert joint torques against the joint
space constraint.

The symmetric pulley case, or any case in whichR has
co-rank 1 (meaning that it is singular with a one-dimensional
null space), there remains a complete one-dimensional slack
space. Any single one-sided constraint can only cut this in-
finite line into a ray. It takes two independent constraints in
opposition to reduce the slack region to a single point. We
illustrate this in the next section on joint limits.

6.1 Joint limits

Let’s first examine the situation for the case of joint limit
constraints without additional contact. Figure3 shows the
slack region for the two-joint finger with asymmetric radii.
Notice that if the tendons are pulled sufficiently, the slack
region will shrink to a point somewhere on the boundary of
the joint limit box. Figure8 illustrates a configuration where
the slack region has been reduced to a tiny triangle. A slight
additional tug on either tendon will trap the finger at a point
with q1 at its maximum,q+1 . It is clear that in this manner the
finger can be fully constrained at any point on the southeast
boundary of the joint limits, that is, any point with eitherq1

at its maximumq+1 or q2 at its minimumq−2 .

Figure 8. The asymmetric finger trapped near the maximum ofq1.

Figure 9. The symmetric finger is stable only at full flexion or full
extension.

In contrast, the symmetric finger requires two additional
constraints to become fully constrained. This can occur only
at full flexion (q1 andq2 both at their maxima) or at full ex-
tension (both joints at their minima). This is illustrated in
Fig. 9.

Another way to view the situation is through the feasi-
ble torque space. By reference to Fig.5, one sees that the
asymmetric finger can generate torque in either the positive
τ1 or the negativeτ2 directions and can also generate torque
vectors with components that can resist movement along the
q1 = q+1 or theq2 = q−2 joint limits. In contrast, the symmet-
ric arrangement can only generate torques along the diago-
nal,τ1= τ2, and thus can be stably driven only to the corners
along this diagonal.

6.2 General constraints

Point contact with an external object introduces a new con-
straint and multiple point contacts introduce multiple con-
straints. These may be mapped into the joint space of the
mechanism. Neglecting friction, the mechanism may reach
quasi-static equilibrium in contact if and only if the inward
normal to the contact constraint in joint space is within the
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Figure 10. Equilibrium conditions for a asymmetric finger touch-
ing a general constraint. Constraint inner normal (red) is directed
into the superimposed feasible torque region.

set of feasible torques. In other words, the robot must be able
to exert positive force along the normal to the constraint.

For our example of the 2-DOF finger, it is convenient to vi-
sualize this by overlaying the feasible torque diagram, Fig.5,
onto the constraint curve in joint space, as shown in Fig.10.
In the figure, the feasible torque region has been superim-
posed at two different points along the contact constraint
curve. Since the inner normal at those points are directed
into the feasible torque region, a positive contact force can be
applied normal to the constraint and equilibrium is possible.

We note that if friction is present, then the range of slopes
for the constraint curve where stable contact is possible ex-
pands. By the same token, since friction impedes the finger
from sliding along the constraint, the range of slopes along
which the finger can be driven along the constraint decreases.

If the finger is close to the symmetric design, the magni-
tude of the torque vector that can be generated perpendicu-
lar to the main diagonal is greatly diminished. Suppose that
the constraint runs along the main diagonal. Even though in
principle the finger can produce a force normal to the con-
straint, it can at best exert a small force towards it, and this
will be further diminished by any friction in the mechanism.
Furthermore, the torque vectorsR1 and R2 are nearly op-
posed, so the direction of the resultant torque is highly sen-
sitive to small errors in the tendon forces. For the finger to
be well-controlled in sliding contact along such a constraint,
its design must be sufficiently asymmetric to give a well-
conditioned tendon map matrixR.

So far, we have visualized the constraints only in the joint
space. One may also consider the equivalent picture at the
contact point. Letv be the velocity of the contact point and
let F be the force exerted on the environment by the finger
at the contact point. We have the usual velocity and force
relations:

Jq̇= v, τ= JT F, (10)

whereJ is the Jacobian for the contact point. From these and
Eq. (1),

F = J−TR f . (11)

Thus, in operational space, the columns ofJ−TR play the
analogous role as the columns ofR play in building the feasi-
ble torque region. The external constraints that can be stably
contacted with a single point contact are those whose inward
normal lies within the positive range space ofJ−TR.

Two-point contact is another matter. This may occur when
the fingertip is inserted into a corner feature or it may occur
when the inner and outer phalanges each contact an object
within a grasp. Now, the constraints give two inward nor-
mals in the joint-space diagram and the finger gives the two
vectorsR1 and R2, as usual. Each of these defines a feasi-
ble parallelogram, and as long as there is an overlap between
them, there exists sets of tendon forces that stably direct the
finger into the constraint.

7 Higher DOF fingers

Although we have illustrated all the above concepts on a 2-
DOF finger, they apply equally well on anyn-DOF manipu-
lator controlled byn tendons. We discuss here some of the
subtleties of the general case.

The feasible torque space, i.e. the positive range space of
R, determines what kind of constraints can be stably con-
tacted. Suppose we consider only joint limits. IfR hasn
independent columns, i.e., if it is nonsingular, then it takes
only 1 additional constraint to reach an equilibrium among
the total ofn+1 forces, all nonzero. Accordingly, any face
of the joint limit polytope is a candidate for stable position-
ing. However, we need the additional fact that all the tendon
forces are positive and the net torque is directed along the
inward normal of the joint limit constraint (which is to say,
an outward normal of the limit polytope). Only certain faces
are oriented such that this is possible. Letei be an elemen-
tary vector with 1 in thei-th position and zeros elsewhere.
Then, the mechanism can achieve equilibrium on the posi-
tive ei face of the joint limits if and only if there is an all
positive solutionf of

ei =R f , (12)

or in other words, ifR−1ei has all positive elements. When
this condition is satisfied, we will say that the face is “stable”.
The opposing face in the−ei direction is stable if and only
if −R−Tei is all positive, which means that only one of two
opposing faces can be stable.

Where two faces meet, that is, on a (n−2)-dimensional
“edge” of the joint limit polytope, equilibrium is possible if
at least one of the faces is stable. However, there is an addi-
tional freedom to exert forces on both faces simultaneously,
hence the condition to be stable on the edge where theei and
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ej faces meet is that there must exist an all positive solution
(λi ,λ j , f ) to

eiλi +ejλ j =R f . (13)

(The obvious sign adjustment is made for a face in the−ei

direction.) Accordingly, write the solution forf in terms of
λ= (λi ,λ j)T as

f =
[
R−1ei R−1ej

]
λ=Wλ. (14)

If either column is all positive, there is an all positive solution
for f . If any row of W is all negative, then there is no all-
positive solution. All positive rows give a positive left-hand
side no matter what positiveλ is used. So the only problems
are the rows with one positive and one negative entry. To this
end, consider the 2×2 system

w=
[

a −b
−c d

]
λ, (15)

wherea,b,c,d are all positive. It is easy to show that there is
an all-positive solution (w,λ) if and only if

d/c>b/a. (16)

This must be true for every 2×2 minor of W. So scanning
the rows ofW, one picks out the smallestd/c and the largest
b/a. If these satisfy Eq. (16), then the edge is stable. Notice
that it is possible for the edge to be stable even if neither of
the adjoining faces is.

It is more difficult to assess lower-dimensional facets.
However, let’s examine the extreme case of a vertex. In par-
ticular, let’s consider the vertex where all joints are at their
upper limits. Hence, the question of stability comes to the
existence of an all-positive solution to

Iλ=R f . (17)

If R has an all-positive column, then this equation has all-
positive solutions. However, this is a sufficient but not nec-
essary condition, as is clear from the discussion on edges
above. In general, the question of whether an all-positive
solution exists has no simple solution, but the question can
always be answered using the techniques of Linear Program-
ming. As in the (n−2) dimensional edge case above, it is
clearly necessary that every row ofR have at least one posi-
tive element; otherwise the associated element ofλ is always
negative for nonzero positivef . If we also want the oppos-
ing vertex where all joints are at their minima to be a stable
point, then we need an all-positive solution to−Iλ=R f , or
equivalently,λ= (−R) f . So the same logic that applies toR
in the former case now applies to−R.

Although the condition of an all-positive column is not
necessary, it does offer a simple condition for the design of a
basic gripper finger. For a finger designed to wrap around an
external object in one direction and fully extend in the other
direction, it suffices forR to have one all-positive and one
all-negative column.

8 Conclusions

We have examined possible design and control trade-offs
for underactuated tendon-driven mechanisms, in particular,
n-DOF mechanisms driven by onlyn tendons. One would
like to operate a tendon-driven mechanism without allowing
slack in any tendon. One would also like to reliably drive
the mechanism to certain configurations where the mecha-
nism will be in stable equilibrium. Finally, when the mech-
anism is in contact with the environment, one might like to
be able to move the contact point along the environmental
obstacle. This article examines the trade-offs between these
objectives as they depend on the tendon map matrixR that
relates tendon tensions to joint torques. Our objective is to
present the fundamental ideas, including the idea of a slack
region and torque controllability. To keep the analysis sim-
ple, we ignore friction, which may occur in the finger joints
and tendon transmission elements, and we assume inelastic
tendons. There would be value in developing more a sophis-
ticated analysis that includes these neglected effects.

Mechanisms can be classified according to whetherR is
singular or nonsingular. In the singular case, we assumeR
has rankn−1, leaving a one DOF null-space. (R with lower
rank are not practically useful.) If the elements of this null
vector are all of the same sign, then the tendons can all be
in tension without generating any torque at the joints. Al-
though this is a desirable characteristic, it comes at a price:
the mechanism also has a 1-dimensional slack region that is
limited only by the joint limits of the mechanism. To reach
a stable equilibrium, the mechanism must meet up with at
least two obstacles, either two joint limits or two point con-
tacts with the environment (or one of each).

By choosingR to be nonsingular, the set of feasible
torques becomes ann-dimensional parallelotope (a parallel-
ogram in the case ofn= 2). One can drive the mechanism in
any direction within the positive range space ofR. The slack
region changes to a cone extending from the point where
all tendons are taut. If one locks the actuators in place, the
mechanism can freely move within this cone and the tendons
lose tension. On the good side, the motion is limited in the
sense that it cannot go beyond the vertex of the cone. This
characteristic is valuable, and it gives the mechanism the ca-
pability of reaching a stable equilibrium with only a single
point of contact or a single joint limit.

These concepts are examined thoroughly in the case of a
2-DOF finger. It is shown that to get a nonsingularR that
can both flex and extend the finger, then at least one pul-
ley radius must be different than the others. We call this
an asymmetrical design. We illustrate how the asymmetric
finger can be fully flexed and fully extended and also can
move along two of four boundaries where one joint is at a
limit. It can also scan some external obstacles. We detail
how to tell which joint limits and which obstacle shapes can
be scanned in quasi-static equilibrium. In contrast, a sym-
metric finger can only come to equilibrium when trapped at
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the intersection of two constraints: it cannot move in quasi-
static equilibrium.

We also outline how to analyze the capabilities of mecha-
nisms with more than two joints by an examination of theR
matrix.

Edited by: J. L. Herder
Reviewed by: two anonymous referees
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