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Abstract. Let X be a smooth quadric of dimension 2m in P2m+1
C and let

Y, Z ⊂ X be subvarieties both of dimension m which intersect transversely.
In this paper we give an algorithm for computing the intersection points of
Y ∩ Z based on a homotopy method. The homotopy is constructed using a
C∗-action on X whose fixed points are isolated, which induces Bialynicki-Birula
decompositions of X into locally closed invariant subsets. As an application
we present a new solution to the inverse kinematics problem of a general six-
revolute serial-link manipulator.

1. Introduction

This paper introduces a homotopy construction for computing numerical approx-
imations to the intersection of two m dimensional algebraic subsets of a smooth 2m
dimensional quadric. This new method joins the larger family of homotopy tech-
niques, also known as continuation methods, which have proven to be effective for
numerically solving systems of polynomial equations [L, SW]. These methods pro-
vide a means of constructing a homotopy function and a finite set of start points
such that the paths emanating from the start points end in a finite set of endpoints
that contain all isolated solutions of the equations. For efficiency, it is desirable
that the number of homotopy paths is as small as possible, preferably equal to the
actual number of isolated solutions.

Over the years, the pursuit of reduction in the number of homotopy paths has
led to a series of homotopy constructions, each successively recognizing more of the
structure of the given polynomials. Notable milestones are total degree homotopies
[GZ], multihomogeneous formulations [MS1], linear set structures [VC], and polyhe-
dral homotopies [HS, VVC]. The latter completely accounts for the sparse structure
of the monomials in the system, but requires the computation of the mixed volume
of the associated Newton polytopes, a combinatorial problem. Nevertheless, the
approach is general and can be completely automated. Even the polyhedral ho-
motopies may require more than the minimal number of paths, as in practice, the
coefficients of a polynomial system may have interrelations that reduce the number
of isolated roots compared to a system with the same monomials but general co-
efficients. Parameter homotopies [MS2, SW] capture the coefficient relations, but
require an initial solution of a generic problem in the parameterized family, which
is usually obtained by one of the aforementioned general techniques. More recently,
techniques have been introduced for solving systems by introducing the equations
one at a time [SVW, HSW]. This often has the effect of revealing structure at
early stages of the computation, when it is inexpensive to work with fewer vari-
ables and equations, thereby reducing the number of paths and the cost in the final,
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most expensive, stage involving all the equations. These methods do not incur the
cost of the mixed volume computation and they may take advantage of coefficient
relations. For some large, sparse systems, the regeneration equation-by-equation
method [HSW] outperforms the polyhedral approach even though it uses more so-
lution paths. Several computer codes [BHSW, LLT, SMSW, V, WSMMW, WSW]
are available that implement one or more of the homotopies just mentioned.

The method presented in this paper resembles the equation-by-equation ap-
proaches in that less expensive preliminary computations can reveal structure that
reduces the path count, and hence the computational expense, of the final ho-
motopy. The technique is based on the cell decomposition of a quadric induced
by a multiplicative C∗-action. This C∗-homotopy applies when one seeks the iso-
lated points in the intersection of two m-dimensional algebraic subsets of a 2m-
dimensional smooth quadric in P2m+1

C . While this is not as general as the techniques
previously mentioned, the situation arises often in applications, where quadrics are
frequently encountered. The method has the desirable property that it subdivides
the target problem in 2m + 1 dimensions into four subproblems, each in only m
dimensions. The solutions to these subproblems are combined to form the start
points for a final homotopy that solves the target problem. It may happen that one
or more of the subproblems has fewer solutions than its total degree would suggest,
in which case the final homotopy has fewer than the total degree number of paths.

This work was inspired by a geometrical problem from robotics: the inverse
kinematics of a general six-revolute (6R) serial-link robot. The objective in inverse
kinematics is to find all sets of joint angles that place the end-effector of a robot
in a desired location. For general 6R robots, that is, for robots not having certain
simplifying geometries such as intersecting wrist axes, it has been known since 1986
[P] that the problem has 16 solutions (over the complex number field). The early
proofs and the related algorithms for calculating the joint angles depend on rather
intricate algebraic manipulations of the defining polynomial equations. However, in
2005, Selig [S, §11.5] gave a simple, although abstract, proof based on intersection
theory and a cell decomposition of the Study quadric, an elegant representation of
SE(3), the space of rigid-body displacements.

In the work reported here, we turn Selig’s abstract proof into a concrete ho-
motopy method for numerically solving the inverse kinematics problem using just
16 paths in the final homotopy to find the 16 solutions. As the Study quadric is
fundamental to robotics, we expect that an algorithm for 6R inverse kinematics
that makes strong use of the properties of the Study quadric might lead to better
insight on solving other problems in robot kinematics. In fact, as outlined above,
our pursuit of the 6R problem has lead to a solution algorithm that applies much
more generally than to robot kinematics.

This paper is organized as follows. We begin in §2 by describing the C∗-action
on a quadric, that is central to our homotopy construction, and by presenting
the cell decomposition that it induces. In doing so, we introduce the notation
used throughout the paper. After a brief review, in §3, of some basic ideas in
continuation, §4 presents the homotopy construction and the method of determining
start points for the homotopy. The original statement of the algorithm in §4.1 is
made for intersecting algebraic sets determined implicitly by polynomial equations,
while in §4.2 the method is extended to cover the case where the sets are defined
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parametrically. In §5 we show the application of the method to the 6R inverse
kinematics problem.

2. C∗ Actions and Cell Decomposition

Let X be a smooth quadric hypersurface of even dimension 2m in the projective
space P2m+1 over C. Let [q0, . . . , qm, p0, . . . , pm] be homogeneous coordinates1 on
P2m+1. We may assume that X is defined by the equation

(1) Q(q, p) = q0p0 + q1p1 + · · ·+ qmpm = 0.

This is because any smooth quadric is given by a polynomial of the form xT Ax = 0,
where A is a nonsingular, symmetric matrix. Hence, A can be written as A =
A1/2A1/2, where A1/2 is a symmetric matrix with inverse A−1/2. Let N be the
matrix

(2) N =
[

I I
−Ii Ii

]
,

and let q =
[
q0 · · · qm

]
and p =

[
p0 · · · pm

]
be row vectors. Then one may

make the nonsingular change of coordinates x = A−1/2N [q, p]T , whereupon

xT Ax = [q, p]NT N [q, p]T = 4Q(q, p).

So xT Ax = 0 implies that Q(q, p) = 0.
We fix an action of the multiplicative group C∗ = C\{0} on X defined as follows:

for t ∈ C∗
(3) t[q0, . . . , qm, p0, . . . , pm] = [q0, tq1, . . . , t

mqm, t2mp0, t
2m−1p1, . . . , t

mpm].

Note that the action has an inverse given by

(4) t−1[q0, . . . , qm, p0, . . . , pm] = [t2mq0, t
2m−1q1, . . . , t

mqm, p0, tp1, . . . , t
mpm].

For any Y ⊂ X, we use the notations tY and t−1Y to mean the image of Y under
the C∗ action and its inverse.

The action has 2m + 2 fixed points:

F0 = [1, 0, . . . , 0], F1 = [0, 1, 0, . . . , 0], . . . , F2m+1 = [0, . . . , 0, 1].

The quadric X can be decomposed into locally closed invariant subsets in two
different ways ([B-B]):

(5) X =
2m+1⋃

j=0

X+
j =

2m+1⋃

j=0

X−
j ,

where

X+
j = {x ∈ X : lim

t→0
tx = Fj} and X−

j = {x ∈ X : lim
t→∞

tx = Fj}.
We refer to these decompositions as the Bialynicki-Birula decompositions and we
call ∪2m+1

j=0 X+
j the plus-decomposition and ∪2m+1

j=0 X−
j the minus-decomposition. The

plus cells are, for j = 0, 1, . . . , 2m + 1,

X+
j =

{
(qk = 0, k < j) ∩ (qj 6= 0) ∩X, j ≤ m;
(q = 0) ∩ (pk = 0, k > j −m− 1) ∩ (pj−m−1 6= 0), j > m.

1We use square brackets [. . . ] to denote homogeneous coordinates. Each point in Pn corre-
sponds to a line through the origin in Cn+1. For y, z ∈ Pn, the equality y = z means that the
corresponding homogeneous coordinates in Cn+1 are equal up to a nonzero scalar.
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The minus cells are

X−
j =

{
(qj 6= 0) ∩ (qk = 0, k > j) ∩ (p = 0), j ≤ m;
(pk = 0, k < j −m− 1) ∩ (pj−m−1 6= 0) ∩X, j > m.

Precisely one cell from each decomposition is dense Zariski-open in X. These
are X+

0 and X−
m+1 and the corresponding fixed points F0 and Fm+1 are called the

source and the sink, respectively. Hence, for almost all x ∈ X, tx flows to the source
as t → 0 and to the sink as t →∞. For each k 6= m, each decomposition contains
exactly one cell of dimension k. There are however, in both decompositions, two
cells of dimension m:

X+
m = {q0 = · · · = qm−1 = pm = 0, qm 6= 0},(6)

X−
m = {p0 = · · · = pm = 0, qm 6= 0},(7)

X+
2m+1 = {q0 = · · · = qm = 0, pm 6= 0},(8)

X−
2m+1 = {p0 = · · · = pm−1 = qm = 0, pm 6= 0}.(9)

Moreover, the dimensions of the cells are such that

(10) dim(X+
i ) + dim(X−

i ) = 2m, i = 0, . . . , 2m + 1.

Throughout the remainder of this paper, X denotes the quadric in P2m+1 given
by Eq. 1 with the C∗ action given by Eq. 3 and the corresponding Bialynicki-Birula
decompositions as in Eq. 5.

3. Background: Continuation

Polynomial continuation gives a method for computing isolated points in a con-
structible algebraic set. A continuation algorithm has three essential components:
a homotopy that defines a collection of algebraic curves, a set of start points on
these curves, and a prescription for how to advance along the curves from the start
points to a set of endpoints that include all the isolated points in the target alge-
braic set. The most convenient case is when the curves are multiplicity one and
the start points are nonsingular. Then the points can be easily moved along the
curves by predictor/corrector methods based on Newton’s method. While homo-
topy curves of higher multiplicity can also be handled, we limit the scope of the
present discussion to the nonsingular case.

We borrow the definition of a trackable path for the algebraic, nonsingular case
from [HSW], as follows.

Definition 3.1 (Nonsingularly Trackable Path). [HSW] Let H(x, t) : CN × C →
CN be polynomial in x and t and let x∗ be a nonsingular solution of H(x, 0) = 0.
We say that x∗ is nonsingularly trackable (or equivalently we say that we can track
x∗ nonsingularly) for t ∈ [0, 1) from t = 0 to t = 1 using H(x, t) if there is a smooth
map ψx∗ : [0, 1) → CN such that ψx∗(0) = x∗ and ψx∗(t) is a nonsingular isolated
solution of H(x, t) = 0 for t ∈ [0, 1). By the path endpoint, we mean limt→1 ψx∗(t).

Note that in this paper, in contrast to previous papers, we construct the homo-
topy to track the path from 0 to 1, instead of from 1 to 0. If the endpoint of a path
is singular at t = 1, it can be estimated accurately using an endgame algorithm
[SW, Chapter 10].
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Remark 3.2. Suppose that H(x, t) and x∗ are as in Definition 3.1. Then, by
Lemma 7.1.3 (“Gamma Trick”) of [SW, p. 94], the related homotopy function
Ĥ(x, τ) := H(x, t(τ)), where t(τ) : [0, 1] → C is given by

(11) t(τ) =
γτ

1 + (γ − 1)τ
, τ ∈ [0, 1] ⊂ R,

is a homotopy such that x∗ is nonsingularly trackable for all γ ∈ C except for
a finite number of one-real-dimensional rays from the origin. This implies that
choosing γ = e

√−1 θ for a random θ ∈ [−π, π] gives a path φ that is general
with probability one. Accordingly, any nonsingular solution of H(x, 0) = 0 is
nonsingularly trackable. Moreover, if S is the set of all nonsingular solution points
of H(x, 0) = 0, then the set of isolated endpoints for the paths of Ĥ(x, t(τ)) = 0
starting at S is independent of the choice of γ, although the correspondence between
startpoints and endpoints may be permuted. Indeed, this is true for any general
path from t = 0 to t = 1, where “general” means that the path does not include
a finite set of bad points in C. Thus, we may speak of the isolated endpoints
of H(x, t) for startpoints S without specifically citing what general path is to be
followed.

Finally, suppose that f(x) : CN+1 → CN is homogeneous in x. Then, x may
be viewed as homogeneous coordinates for PN , and solutions to f(x) = 0 define
an algebraic projective variety in PN . To compute on PN , one may select a patch
u(a, x) = a0x0 + a1x1 + · · · + aNxN − 1 for some a = (a0, . . . , aN ) ∈ CN+1 and
compute solutions to {f(x), u(a, x)} = 0 on CN+1. There exists a dense Zariski-
open subset U ⊂ CN+1 such that for a ∈ U the nonsingular isolated solutions of
{f(x), u(a, x)} = 0 in CN+1 are identical with the nonsingular isolated solutions
of f(x) = 0 on PN . We say that any a ∈ U is a generic patch, and one may
obtain a generic patch simply by choosing a at random in CN+1. In this way, a
homotopy function H(x, t) : CN+1 × C → CN that is homogeneous in x defines
homotopy paths in PN , and we may presume for the purpose of computation that
a generic patch is chosen at random. The minor adaptation of the definition of a
trackable path to projective space, and the application of the gamma trick to such
homotopies, is used throughout the rest of this paper without specific mention of a
generic patch, although such a patch will be used in all computations.

4. The Method

Our basic method applies to intersecting sets in general position, as defined in
the following Definition. Later we will remove this condition by giving a technique
to move sets into general position with probability one.

Definition 4.1. Let W ⊆ X be a multiplicity one algebraic set of dimension m.
We say that W is in general position with respect to the plus decomposition (resp.,
minus decomposition) if

(1) for any cell X+
i (resp., X−

i ) of dimension m, W ∩X+
i (resp., W ∩X−

j ) is
finite and nonsingular;

(2) for any cell X+
i (resp., X−

i ) of dimension less than m, W ∩X+
i = ∅ (resp.,

W ∩X−
i = ∅).

The nonsingularity condition in definition 4.1 is the following (non standard) one.
Let L(x) be the set of linear equations that cut out on X one of the m dimensional
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cells X+
m, X−

m, X+
2m+1, or X−

2m+1, as in one of Eq. 6–9. Suppose that the polynomial
system f(x) defines W , that is W is a solution component of V (f,Q), where Q is
the quadric for X, Eq. 1. In item 1 of Definition 4.1, “nonsingular” means that the
Jacobian matrix for {f, L,Q} has full rank at the intersection points. When W is
given as the image of a polynomial map, say f(θ) as in § 4.2 below, “nonsingular”
means that the Jacobian matrix of L(f(θ)) is full rank at the intersection points.

Our method depends on the following lemma.

Lemma 4.2. Let Y ⊂ X and Z ⊂ X be multiplicity one m-dimensional al-
gebraic subsets of X. Assume that Y in general position with respect to the
plus-decomposition of X and Z in general position with respect to the minus-
decomposition of X. Let S be the set of nonsingular isolated points in{

(Y ∩X+
m)× (Z ∩X−

m)
} ∪ {

(Y ∩X+
2m+1)× (Z ∩X−

2m+1)
}

,

and for t ∈ C∗ let H(t) ⊂ Y × Z be H(t) = {(y, z) ∈ Y × Z|ty = t−1z}. Then,
the set S is nonsingularly trackable from t = 0 to t = 1 and its set of endpoints
includes all nonsingular isolated points of Y ∩ Z.

Proof. Let H∗ = {(H(t), t)|t ∈ C∗} ⊂ Y × Z × C∗. The condition ty = t−1z is
algebraic, so H∗ is an algebraic set parameterized by t. Hence, for generic t ∈ C∗,
the number of nonsingular points in H(t) is constant. Moreover, away from t = 0,
the maps t and t−1 preserve dimension, so the codimensions of tY and t−1Z are
each m. Since codim(tY ) + codim(t−1Z) = dim(X), upper semicontinuity implies
that every nonsingular isolated solution of H(t) for t = 1 is the limit of one or more
nonsingular solutions in a neighborhood of t = 1. What remains to be shown is
that the paths beginning at S include all these solutions.

Let π : H∗ → X be the map (y, z, t) 7→ ty, which by construction is identical to
the map (y, z, t) 7→ t−1z. As t → 0, every point x ∈ π(H(t), t) must approach one of
the fixed points. The points in H∗ such that π(y, z, t) → Fi as t → 0 must approach
Si = (Y ∩ X+

i ) × (Z ∩ X−
i ). But since Y and Z are in general position and the

dimensions of the cells obey Eq. 10, only Sm and S2m+1 are non-empty. Thus, as
t → 0, the paths of the nonsingular points in H(t) must approach S = Sm∪S2m+1.
Moreover, the assumption that Y and Z are in general position implies that all the
points in S are nonsingular. Thus, S contains a startpoint on every nonsingular
path of H and S is nonsingularly trackable. ¤

To use Lemma 4.2 in computations, it is convenient to define the map T as
follows.

Let T (x, t) : Cm+1 × C → Cm+1 be the map

(12) (x0, . . . , xm, t) 7→ (tmx0, t
m−1x1, . . . , txm−1, xm).

Lemma 4.3. Let [q, p] be homogeneous coordinates in P2m+1 and let y, z ∈ P2m+1.
If y = [T 2(q, t), p] and z = [q, T 2(p, t)] then ty = t−1z. Conversely, if ty = t−1z,
there exists a [q, p] such that y = [T 2(q, t), p] and z = [q, T 2(p, t)].

Proof. The proposition follows easily from the definitions of the maps t, t−1, and
T (see Eqs. 3,4, and 12). ¤
Corollary 4.4. If for some τ ∈ C, y = [T (q, τ), p] and z = [q, T (p, τ)], then there
exists a value of t such that ty = t−1z. Conversely, if ty = t−1z for some t ∈ C,
there exists [q, p] and τ such that y = [T (q, τ), p] and z = [q, T (p, τ)]. Moreover, a
continuous path in either t or τ maps continuously to at least one path in the other.
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Proof. Only even powers of t appear in T 2. Let t be either branch of
√

τ for the
first direction and let τ = t2 for the converse. ¤

For convenience we will write Tx to mean T (x, t). If we think of x as a
(m + 1) × 1 column vector and T as the diagonal matrix with diagonal elements
tm, tm−1, . . . , t, 1, then Tx is just matrix multiplication. Corollary 4.4 allows us to
replace T 2 by T in our homotopies. This is not necessary for the validity of the
method, but it is numerically advantageous.

4.1. Implicit Version. While Lemma 4.2 is formulated for abstract algebraic sets
a computational algorithm must use equations and coordinates for Y and Z. We
first treat the common case when these are given implicitly as the solution sets of
polynomial equations; the case where Y and Z are given parametrically is treated
in § 4.2.

In the following, (q, p) ∈ C2m+2 are to be regarded as homogeneous coordinates
for P2m+1, and a generic patch will be appended for computations as discussed in
§ 3.

Theorem 4.5. Let f : C2m+2 → Cm and g : C2m+2 → Cm be systems of homoge-
neous polynomials, and let Y and Z be multiplicity one m dimensional components
of the solution sets of {f(y) = 0, Q(y) = 0} and {g(z) = 0, Q(z) = 0} respectively.
Assume that Y and Z are in general position with respect to the Bialynicki-Birula
decomposition of X. Let h(q, p, t) : Cm+1 × Cm+1 × C → C2m+1 be the system

h(q, p, t) = {f(Tq, p), g(q, Tp), qT Tp}.
Let em = (0, . . . , 1) ∈ Cm+1 and let S+

m, S−m, S+
2m+1, S

−
2m+1 be the nonsingular solu-

tion points for the following four systems

S+
m :{p ∈ Cm+1|f(em, p) = 0, pm = 0}

S−m :{q ∈ Cm+1|g(q, 0) = 0, qm = 1}
S+

2m+1 :{p ∈ Cm+1|f(0, p) = 0, pm = 1}
S−2m+1 :{q ∈ Cm+1|g(q, em) = 0, qm = 0}.

Let S0 = {S−m × S+
m} ∪ {S−2m+1 × S+

2m+1}. Then S0 is nonsingularly trackable for
homotopy h(q, p, t), and its set of endpoints includes all the nonsingular points in
f−1(0) ∩ g−1(0) ∩X.

Proof. First, we must confirm that the points S0 are solutions of h(q, p, 0) = 0. This
is achieved by noting that at t = 0, Tq = (0, . . . , 0, qm) and Tp = (0, . . . , 0, pm),
qT Tp = qmpm. The points in S−m × S+

m satisfy qmpm = 0 with qm = 1, pm = 0.
The points in S−2m+1 × S+

2m+1 satisfy it with qm = 0, pm = 1. The rest of the
theorem is a direct application of Lemma 4.2, with the observation that the points
[q, p] ∈ S0 give pairs (y, z) = ([Tq, p], [q, Tp]) that correspond to points called S in
Lemma 4.2 and the observation that by Corollary 4.4 the paths traced out by the
two homotopies correspond. Finally, by assumption, Y and Z are multiplicity one
and in general position, so by choosing S0 as the nonsingular solution points at the
start, we are sure to include all the start points S for Y and Z. ¤

The systems {f(y) = 0, Q(y) = 0} and {g(z) = 0, Q(z) = 0} could each have sev-
eral irreducible m dimensional components. These may have multiplicities greater
than one, and if so, they may be considered to be in general position if they hit
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the m dimensional cells transversely, they miss the lower dimensional cells, and
no other component meets the m dimensional cells in the same points. With this
notion of general position, the algorithm of Theorem 4.5 can be extended to find
all isolated solutions in the intersection of all m dimensional components in general
position, regardless of multiplicity, by expanding S0 to include all isolated solutions.
For simplicity, we have restricted to just the multiplicity one case.

4.2. Parametric Version. Consider two polynomial mappings f : Cm → X and
g : Cm → X. Let Y = im(f) and Z = im(g), and dim(Y ) = dim(Z) = m.
Assume that Y and Z are in general position with respect to the plus- and minus-
decompositions of X, resp. We wish to compute the nonsingular isolated points W
in {(θ, φ) ∈ C2m|f(θ) ∼= g(φ)}. Here f(θ) ∼= g(φ) means f(θ) 6= 0, g(φ) 6= 0, and
there exists some λ ∈ C∗ such that λf(θ) = g(φ). The points in W map to Y ∩ Z.

In the main example from § 5, the inverse kinematics of a 6R robot, we have
f, g : (P1)3 ↪→ SE(3). After choosing a random affine patch for each copy of P1 and
using the Study quadric to represent SE(3), f and g become polynomial mappings
of the sort considered in this section.

To work with the parametric forms, it is convenient to define the projection maps
from C2m+2 → Cm+1 as π1 : (q, p) → q and π2 : (q, p) → p.

The solution set W can be computed using the parametric version of Lemma 4.2,
as follows.

Theorem 4.6. Let f = (f0, . . . , f2m+1) : Cm → X and g = (g0, . . . , g2m+1) :
Cm → X. Let W be the nonsingular isolated points in {(θ, φ) ∈ C2m|f(θ) ∼= g(φ)}.
Assume that im(f) and im(g) are m dimensional and in general position with respect
to the plus- and minus-decompositions of X, resp. Let S+

m, S−m, S+
2m+1, S

−
2m+1 be the

nonsingular solution points for the following four systems

S+
m :{θ ∈ Cm|fi(θ) = 0, i = 0, . . . ,m− 1, 2m + 1, fm(θ) 6= 0}

S−m :{φ ∈ Cm|gi(φ) = 0, i = m + 1, . . . , 2m + 1, gm(φ) 6= 0}
S+

2m+1 :{θ ∈ Cm|fi(θ) = 0, i = 0, . . . ,m, f2m+1(θ) 6= 0}
S−2m+1 :{φ ∈ Cm|gi(φ) = 0, i = m, . . . , 2m, g2m+1(φ) 6= 0}.

Build a set of points S0 as follows:
(1) For each pair (θ, φ) with θ ∈ S+

m and φ ∈ S−m, append the point
(θ, φ, gm(φ)/fm(θ)) to S0, and

(2) For each pair (θ, φ) with θ ∈ S+
2m+1 and φ ∈ S−2m+1, append the point

(θ, φ, g2m+1(φ)/f2m+1(θ)) to S0.
Let h : C2m+1 × C → C2m+2 be

h((θ, φ, λ), t) = λ

[
Tπ1(f(θ))
π2(f(θ))

]
−

[
π1(g(φ))

Tπ2(g(φ))

]
.

Then there is a nonempty Zariski-open subset U ⊂ C(2m+1)×(2m+2) such that for
A ∈ U , S0 is nonsingularly trackable for homotopy A · h = 0, and the endpoints
include all the points in W .

Proof. Because dim(Y ) = m, the fiber f−1(y) in Cm over a generic point in y ∈ Y

is finite. The exceptional subset Ŷ ⊂ Y where the number of nonsingular points in
the fiber is less than the the generic number is a proper algebraic subset. Similarly,
the map g has an exceptional subset of Ẑ ⊂ Z of dimension less than m. Suppose
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that at least one point, say t∗ ∈ C, exists such that all the points in Y × Z, such
that t∗Y = t−1

∗ Z, avoid the exceptional set Ŷ × Ẑ. Then, tY = t−1Z avoids Ŷ × Ẑ
for t in a dense Zariski-open subset U ⊆ C. But by assumption, Y and Z are in
general position, so t∗ = 0 is such a point and S0 is the set of startpoints prescribed
by Lemma 4.2. Accordingly, a general path from t = 0 to t = 1, such as is
generated using the gamma trick of Remark 3.2, induces a set of nonsingular paths
in Cm × Cm that track the corresponding solution paths in Y × Z of Lemma 4.2.
By Corollary 4.4, these paths must satisfy h((θ, φ, λ), t) = 0, where λ is the nonzero
scaling factor establishing equality between points in homogeneous coordinates.
The homotopy function h is a set of 2m+2 polynomials on C2m+2, but since Y and
Z both live in X, the polynomial system cuts out a curve. Thus, by Theorem 13.5.1
of [SW, p.243], for A in a nonempty Zariski-open subset of C(2m+1)×(2m+2), the
system A ·h cuts out the same curve as h and if the curve as a solution component
of V (h) is multiplicity 1, then it is also multiplicity one as a solution component of
V (A · h). So V (h) has a finite set of nonsingular paths whose images are the paths
of Lemma 4.2 with a set of end points that contain the desired set W . ¤

4.3. General Position. Theorems 4.5 and 4.6 assume that Y and Z are in general
position. In an application, this may not be the case for the initial specification
of the problem. However, one can always move Y and Z to general position with
an appropriate change of coordinates. The maneuver involves a random linear
transformation B which preserves the quadric X. Let I denote the identity matrix
and 0 the zero matrix, both square of size m + 1. The quadric X corresponds to a
quadratic form on C2m+2 defined by the (2m + 2)× (2m + 2)-matrix

Q2m+2 =
1
2

(
0 I
I 0

)
.

The transformation B is an element of

SO(Q2m) = {B ∈ SL2m+2(C) : BT QB = Q}.

Let N be the (2m+2)× (2m+2) matrix from Eq. 2 and let R ∈ SO(2m+2) be an
orthogonal matrix. One can generate a random matrix in SO(2m + 2) by choosing
a random skew symmetric matrix C ∈ C(2m+2)×(2m+2), that is, CT = −C, and
using Cayley’s formula: R = (I + C)(I − C)−1. Then, B = N−1RN/

√
2 preserves

the quadric X.

Proposition 4.7. There is a non-empty Zariski open subset U ⊂ SO(Q2m) such
that, for all B ∈ U , B(Y ) and B(Z) are in general position.

Proof. This follows from [K] Corollary 4 (ii). ¤

When working with Y and Z as solution components of f(x) = 0 and g(x) = 0,
resp., one may replace these with Y ′ and Z ′ in general position with probability one
by the change of coordinates f(B−1w) = 0 and g(B−1w) = 0. When working with
Y and Z as the images of polynomial maps x = f(θ) and g(φ), general position
is attained, with probability one, for the sets Y ′ = im(B · f) and Z ′ = im(B · g).
Either way, after finding a point w ∈ Y ′ ∩ Z ′, the corresponding point in Y ∩ Z is
x = B−1w.
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5. An application to kinematics

In this section we give a new solution to the inverse kinematics problem of a gen-
eral six-revolute serial-link manipulator (6R-chain). This problem has been studied
extensively, see [A] for an overview. We do not claim that our method is compet-
itive with the most efficient algorithms devised for the 6R problem, but rather we
view the inverse kinematics of the 6R-chain as a test problem for our algorithm.
We believe that our treatment sheds new light on the geometry underlying the
problem, and that the method is applicable to other problems of kinematics as well
as to problems in other arenas that may involve a smooth quadric.

5.1. The Study quadric. We begin with a discussion of some general concepts,
see [S] for further information. A rigid body motion in 3-space is a composition
of a rotation and a translation, the former is an element of the special orthogonal
group SO3(R) and the latter a vector in R3. These make up the special Euclidean
group SE3(R). This is the semi-direct product of R3 and SO3(R),

SE3(R) = SO3(R)nR3,

with respect to the natural homomorphism SO3(R) → Aut(R3). In other words
SE3(R) is the set SO3(R)× R3 with group operation

(R2, t2) ◦ (R1, t1) = (R2R1, R2t1 + t2).

It is a 6-dimensional Lie group; there are 3 degrees of freedom for the translation
and 3 degrees of freedom for the rotation. We will embed SE3(R) as a Zariski open
set of the so-called Study quadric in P7

R, which is the hypersurface

XR = {[q0, q1, q2, q3, p0, p1, p2, p3) ∈ P7
R : q0p0 + q1p1 + q2p2 + q3p3 = 0}.

More precisely, the image of this embedding is

X
′
R = XR \ {q0 = q1 = q2 = q3 = 0}.

For q = (q0, q1, q2, q3) ∈ R4 and p = (p0, p1, p2, p3) ∈ R4, not both zero, we will use
the notation

[q, p] = [q0, q1, q2, q3, p0, p1, p2, p3] ∈ P7
R.

Consider R4 as the division algebra of quaternions. Let 1 denote the unit element
of the algebra and let {i, j, k} denote the quaternionic units. Then {1, i, j, k} is a
basis for R4 and

i2 = j2 = k2 = ijk = −1.

For (a0, a1, a2, a3) = a ∈ R4, a∗ denotes the conjugate of a and |a| denotes the
norm of a, i.e.

a∗ = (a0,−a1,−a2,−a3) and |a| =
√

aa∗.

We identify R3 with the subspace

{(a0, a1, a2, a3) ∈ R4 : a0 = 0} = R3 ⊂ R4.

Recall that there is an isomorphism

ψ : P3
R
∼=→ SO3(R).

View P3
R as the unit sphere S3 ⊂ R4 with antipodes identified. Then, for a ∈ S3

and x ∈ R3,
ψ(a)x = axa∗.



ALGEBRAIC C∗-ACTIONS AND THE INVERSE KINEMATICS OF A GENERAL 6R 11

Finally, note that for [q, p] ∈ X
′
R the quaternion pq∗ has real part

p0q0 + p1q1 + p2q2 + p3q3 = 0,

and so it lies in R3 ⊂ R4. Thus we have a map

X
′
R → SO3(R)× R3 : [q, p] 7→

(
ψ(q)
qq∗

,
pq∗

qq∗

)
,

which is in fact an isomorphism. Hence SE3(R) ∼= X
′
R ⊂ XR, which is the promised

embedding. The induced group structure on X
′
R is given by

(13) [q2, p2][q1, p1] = [q2q1, p2q1 + q2p1].

We will however work over the complex numbers. For this purpose observe
that the inclusion R8 ⊂ C8 induces an embedding of P7

R into P7
C. Define the

corresponding quadric

X = {[q0, q1, q2, q3, p0, p1, p2, p3] ∈ P7
C : q0p0 + q1p1 + q2p2 + q3p3 = 0},

and the open set
X
′
= X \ {q2

0 + q2
1 + q2

2 + q2
3 = 0}.

Note that XR ⊂ X and X
′
R = X

′ ∩XR. As above we have a C∗-action C∗×X → X
defined by

(t, q0, q1, q2, q3, p0, p1, p2, p3) 7→ [q0, tq1, t
2q2, t

3q3, t
6p0, t

5p1, t
4p2, t

3p3].

In Section 5.3 we will represent points of X as (8× 8)-matrices. For this aim we
introduce the matrices

Id =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , I =




0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


 ,

J =




0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0


 , K =




0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0


 .

For x = (x0, x1, x2, x3) ∈ C4 we use x̄ to denote the (4× 4)-matrix

x̄ = x0Id + x1I + x2J + x3K.

We now define an injection M from X to P63
C , the set of non-zero (8× 8)-matrices

with complex entries up to multiplication by a scalar:

(14) M : X → P63
C : [q, p] 7→

(
q̄ 0
p̄ q̄

)
,

where 0 denotes the (4 × 4)-matrix with all entries equal to zero. For [q, p] ∈ X,
the first column of M([q, p]) is [q, p], so the inverse of M picks out the first column.
Consider the group C∗×SO(Q6) of non-degenerate linear maps on C8 which preserve
the bi-linear form Q up to a scalar multiple. One can show that M restricted to
X
′
identifies X

′
with a subgroup of C∗× SO(Q6). Moreover, by (13), M restricted

to X
′
R is a group homomorphism:(

q̄2 0
p̄2 q̄2

) (
q̄1 0
p̄1 q̄1

)
=

(
q̄2q̄1 0

p̄2q̄1 + q̄2p̄1 q̄2q̄1

)
.
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5.2. Inverse kinematics of general 6R-chains. A mechanical linkage is a col-
lection of rigid bodies connected by joints. A revolute joint is a hinge with no
restriction on the rotation angle. An m-revolute serial chain linkage (mR-chain)
consists of m + 1 rigid links connected by m revolute joints. Consider a 6R-chain.

[Fig. 1]
One end of the 6R-chain is attached to the ground and at the other end there is a
tool, called the hand, which is intended to move around in space and perform various
tasks. Fix an initial pose of the mechanism with respect to which we measure the
rotation angles of the joints. Place a coordinate frame in the ground link and
another coordinate frame at the hand, as the mechanism takes the initial pose.
The transformation from hand coordinates to ground coordinates is a function of
the rotation angles. These are elements of the unit circle, which is homeomorphic
to P1

R. Thus we have a map

ΦR : P1
R × · · · × P1

R︸ ︷︷ ︸
6

→ SE3(R) ⊂ XR,

mapping a 6-tuple of angles to the corresponding transformation from hand coor-
dinates to ground coordinates. Constructing ΦR is the forward kinematics problem
and computing the fiber Φ−1

R (x), for any given x ∈ X
′
R, is the inverse kinematics

problem (IKP).
Let a position and orientation of the hand be given. To solve the IKP of the

6R-chain we use a device introduced in [S] and explored in [HPS]. One divides
the 6R-chain into two 3R-chains by cutting the middle link. The solutions to the
IKP now correspond to possible poses of the 3R-chains where they reconnect to a
6R-chain.

[Fig. 2]
We will consider a general member of the family of 6R-chains (a general 6R-

chain), in a sense made precise in Section 5.3. Moreover, we will allow the rotation
angles to be complex numbers. This gives rise to a map

Φ : P1
C × · · · × P1

C︸ ︷︷ ︸
6

→ X.

We address the problem of computing the fiber Φ−1(x) for generic x ∈ XR. The
isolated solutions of the IKP of a particular 6R-chain for a particular position and
orientation of the hand can be computed by solving the general problem and using
a coefficient-parameter-homotopy to find the solutions of the special case ([SW]).
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The map Φ is onto and generically 16 to 1. This corresponds to the well known
fact that the generic IKP has 16 solutions ([S] 11.5.1). Fixing x ∈ XR and splitting
the 6R-chain gives rise to maps associated to the 3R-chains:

f : P1
C × P1

C × P1
C → X,(15)

g : P1
C × P1

C × P1
C → X.(16)

These maps are injective and trilinear. In Section 5.3 we give explicit descriptions
of the maps f and g.

Let Y = im(f) and Z = im(g). Then Y and Z are irreducible 3-dimensional
subvarieties of X which intersect in a finite number of non-singular points. The
IKP is reduced to computing

{(θ1, θ2) ∈ (P1
C)

3 × (P1
C)

3 : f(θ1) = g(θ2)}.
The algorithm of Theorem 4.6 can be used to solve this problem. We give a nu-
merical example in Section 5.4.

5.3. The parametric equations. We will now give a detailed description of the
maps (15) and (16).

Let (x, y, z) be the standard coordinates on R3. For any coordinate v ∈ {x, y, z}
we let Rv(θ) denote the rotation of an angle θ about the v-axis and Tv(d) the
translation of a distance d in the v-direction.

Number the links of the 6R-chain 0 through 6 and number the joints so that joint
i connects link i− 1 with link i, for i = 1, . . . , 6. As the mechanism is in the initial
pose, place coinciding coordinate frames Ai−1 fixed in link i−1 and Bi fixed in link
i with origin on the rotation axis of joint i and z-direction parallel with the rotation
axis of joint i (i = 1, . . . , 6). Also, place a global coordinate frame B0 in the ground
link (link 0) and a hand frame A6 in the final link (link 6). For i = 0, . . . , 6, let
Li ∈ SE3(R) denote the transform from Ai-coordinates to Bi-coordinates. Because
Ai and Bi are both fixed in link i, Li depends only on the particular design of the
6R-chain. The Denavit-Hartenburg convention is to place Bi where the common
normal between joint axes i and i+1 meets joint i, with its x-axis aligned with that
common normal. In case the joints are parallel, a common normal is not unique,
but any common normal can be used. Moreover, the initial pose is chosen so that
the common normals are all parallel. With these choices, the transforms Li can be
decomposed as

Li = Tx(ai) ◦Rx(φi) ◦ Tz(di),

where ai, φi and di are geometrical constants that describe link i, known respec-
tively as the link i’s length, twist and offset.

As joint i turns by angle θi, the transform in SE3(R) from Bi-coordinates to
Ai−1-coordinates is Rz(θi). We can now write down the solution to the forward
kinematic problem of the 6R-chain:

ΦR : P1
R × · · · × P1

R︸ ︷︷ ︸
6

→ SE3(R) ⊂ X,

where ΦR maps (θ1, . . . , θ6) to

L0 ◦Rz(θ1) ◦ L1 ◦Rz(θ2) ◦ L2 ◦Rz(θ3) ◦ L3 ◦Rz(θ4) ◦ L4 ◦
Rz(θ5) ◦ L5 ◦Rz(θ6) ◦ L6.
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Fix a position and orientation of the hand H ∈ SE3(R). We split the 6R-chain
by picking any S1 ∈ SE3(R) and defining S2 = L−1

3 ◦ S1, so that S1 ◦ S−1
2 = L3.

Observe that Rz(θi)−1 = Rz(−θi). The 3R-chains give rise to maps

m1,m2 : P1
R × P1

R × P1
R → X,

such that
ΦR(θ1, . . . , θ6) = H ⇔ m1(θ1, θ2, θ3) = m2(θ4, θ5, θ6).

These are defined by

m1(θ1, θ2, θ3) = L0 ◦Rz(θ1) ◦ L1 ◦Rz(θ2) ◦ L2 ◦Rz(θ3) ◦ S1,

and

m2(θ4, θ5, θ6) = H ◦ L−1
6 ◦Rz(−θ6) ◦ L−1

5 ◦Rz(−θ5) ◦ L−1
4 ◦Rz(−θ4) ◦ S2.

Note that the right-hand sides are both of the form

M0 ◦R1 ◦M1 ◦R2 ◦M2 ◦R3 ◦M3,

where M0,M1,M2,M3 are constants.
By a general 6R-chain we mean one such that the Li, i = 0, . . . , 6, are general

points on XR. We consider the IKP for a general 6R-chain where the fixed H ∈ XR
is also generic. We use the map M defined in (14) to define the maps (15) and
(16) from m1 and m2. The rotation Rz(θ) considered as a quaternion is cos(θ/2)+
k sin(θ/2). Thus, as a point of X, Rz(θ) is

(cos(θ/2), 0, 0, sin(θ/2), 0, 0, 0, 0).

To simplify the notation we write

M(c, s) = M((c, 0, 0, s, 0, 0, 0, 0)), for (c, s) ∈ P1
C.

We generate the maps (15) and (16) as follows. For x0, x1, x2, x3 ∈ XR, define

f : P1
C × P1

C × P1
C → X, f((c1, s1), (c2, s2), (c3, s3)) =

M(x0) ◦M(c1, s1) ◦M(x1) ◦M(c2, s2) ◦M(x2) ◦M(c3, s3) ◦ x3,

where the product is matrix multiplication and x3 is considered a column vector.
For generic x0, x1, x2, x3 ∈ XR, f is well defined and it is an embedding of P1

C ×
P1
C × P1

C into P7
C which is trilinear. In the same manner, for x4, x5, x6, x7 ∈ XR,

define

g : P1
C × P1

C × P1
C → X : g((c4, s4), (c5, s5), (c6, s6)) =

M(x4) ◦M(c4, s4) ◦M(x5) ◦M(c5, s5) ◦M(x6) ◦M(c6, s6) ◦ x7.

Before applying Theorem 4.6 we must move Y = im(f) and Z = im(g) into
general position. This is achieved by changing coordinates with the use of a random
element of the group SO(Q6).

5.4. A numerical example. We proceed to a numerical example of the algorithm
of Theorem 4.6 applied to the IKP of a randomly generated 6R-chain. We have
implemented it using the “user-defined homotopy” option in the Bertini program
[BHSW]. Throughout we will use the notation of Theorem 4.6 and § 5.3.
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The design parameters of this example are:

a1 = 0.9463, a2 = 0.7637, a3 = 0.5588,
a4 = 0.1838, a5 = 0.4979, a6 = 0.5178,
d1 = 0.9942, d2 = 0.8549, d3 = 0.9624,
d4 = 0.6789, d5 = 0.4035, d6 = 0.9350,
φ1 = 0.4795, φ2 = 0.2318, φ3 = 0.3963,
φ4 = 0.7051, φ5 = 0.5586, φ6 = 0.7566.

As fixed position and orientation of the hand we have chosen

H = (−0.5324,−0.7003,−0.3329,−0.3397, 2.7897, 0.0405,−2.3180,−2.1845).

This is the value of the 6R map ΦR in the 6-tuple of angles

(θ1, θ2, θ3, θ4, θ5, θ6) = (1.9910, 1.9249, 1.0701, 1.9277, 0.2313, 0.1029),

which implies that this set of angles is among the solutions to the inverse kinematics
problem for this mechanism with fixed position and orientation of the hand given by
H. The computations were done using the coordinates ci on the six affine patches
{si 6= 0} ⊂ P1 (putting si = 1), i = 1, . . . , 6.

The sets S+
3 , S−3 ,S+

7 and S−7 were computed with standard homotopy methods,
and the solutions are listed in Table 1.

Table 1. The sets S+
3 , S−3 , S+

7 and S−7 .

S+
3 c1 c2 c3

Solution 1 0.3304− 0.7293i −0.0718 + 1.0697i −0.4382− 0.8478i
Solution 2 0.5640 + 1.3898i 0.0718− 1.0697i −0.0044 + 0.8686i

S−3 c4 c5 c6

Solution 1 −0.0985 + 0.9496i −0.0769 + 0.0348i −0.1026− 1.2854i
Solution 2 0.0518− 1.0274i 0.0393 + 1.2852i −0.3454− 1.2910i
Solution 3 0.0465 + 0.8510i 0.0304− 1.2764i −0.3176 + 1.3372i
Solution 4 0.0206− 0.9694i −0.0652− 0.0280i −0.0695 + 1.2938i

S+
7 c1 c2 c3

Solution 1 0.0000 + 1.0000i 0.0000− 1.0586i 0.0000 + 1.0000i
Solution 2 0.0000− 1.0000i 0.0000 + 1.0586i 0.0000− 1.0000i
Solution 3 0.0000 + 1.0000i 0.0000 + 0.3548i 0.0000− 1.0000i
Solution 4 0.0000− 1.0000i 0.0000− 0.3548i 0.0000 + 1.0000i

S−7 c4 c5 c6

Solution 1 0.0380− 1.3648i −0.0658 + 1.1880i 0.1816− 1.3533i
Solution 2 −0.3337 + 0.5389i 0.0998− 1.2287i −0.8221 + 1.7786i

Running the main homotopy with starting points according to Theorem 4.6 gives
us 16 non-singular solutions to the IKP. The solutions are listed in Table 2, where
(θ1, . . . , θ6) are the rotation angles of the joints given in radians.

6. Conclusion

The paper provides a new algorithm to compute the intersection of two m-
dimensional subvarieties of a 2m-dimensional quadric Q ⊂ P2m+1, taking advantage
of a C∗-action on Q. The algorithm gives a new solution to the inverse kinematics
problem of a general 6R-manipulator. In future work, it would be interesting to
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Table 2. The 16 solutions to the IKP.

Solution 1 Solution 2 Solution 3
θ1 2.2431 1.9910 −1.7363 + 1.6583i
θ2 1.7050 1.9249 2.7542− 0.8059i
θ3 2.0862 1.0701 0.0553 + 1.4781i
θ4 0.3765 1.9277 2.7598− 1.5359i
θ5 1.3117 0.2313 −3.0066− 1.6609i
θ6 −0.5586 0.1029 0.1598 + 0.9059i

Solution 4 Solution 5 Solution 6
θ1 −1.7363− 1.6583i 2.9220− 0.1992i 2.9220 + 0.1992i
θ2 2.7542 + 0.8059i −2.6170− 0.8767i −2.6170 + 0.8767i
θ3 0.0553− 1.4781i −2.0190 + 0.1863i −2.0190− 0.1863i
θ4 2.7598 + 1.5359i 2.1718 + 1.4016i 2.1718− 1.4016i
θ5 −3.0066 + 1.6609i 0.6217− 1.1119i 0.6217 + 1.1119i
θ6 0.1598− 0.9059i −0.3667 + 0.8687i −0.3667− 0.8687i

Solution 7 Solution 8 Solution 9
θ1 1.6953− 0.5095i 1.6953 + 0.5095i 1.2877− 0.6327i
θ2 1.9757− 1.2651i 1.9757 + 1.2651i 2.1810 + 0.6016i
θ3 3.0877 + 0.2628i 3.0877− 0.2628i 0.3962− 1.3499i
θ4 −1.1266 + 1.9280i −1.1266− 1.9280i 2.9120 + 0.5212i
θ5 2.4595 + 0.3528i 2.4595− 0.3528i 0.2444 + 1.2075i
θ6 −0.7309− 0.8688i −0.7309 + 0.8688i 0.3190− 0.4047i

Solution 10 Solution 11 Solution 12
θ1 1.2877 + 0.6327i −0.1134− 1.6041i −0.1134 + 1.6041i
θ2 2.1810− 0.6016i 1.4939 + 1.9975i 1.4939− 1.9975i
θ3 0.3962 + 1.3499i 0.7873− 3.4032i 0.7873 + 3.4032i
θ4 2.9120− 0.5212i −0.8994 + 2.6077i −0.8994− 2.6077i
θ5 0.2444− 1.2075i −1.5518− 2.4267i −1.5518 + 2.4267i
θ6 0.3190 + 0.4047i 2.7578 + 1.9916i 2.7578− 1.9916i

Solution 13 Solution 14 Solution 15
θ1 −2.7292− 0.8410i −2.7292 + 0.8410i −1.7811− 2.9217i
θ2 2.7231− 0.6786i 2.7231 + 0.6786i 2.6204− 0.7202i
θ3 1.7327 + 1.6594i 1.7327− 1.6594i 1.7095 + 2.6362i
θ4 −1.6578 + 0.0624i −1.6578− 0.0624i −0.1269− 0.4056i
θ5 1.3343− 0.5607i 1.3343 + 0.5607i −1.7362 + 2.2733i
θ6 −0.5095 + 0.4606i −0.5095− 0.4606i 0.4227− 0.7266i

Solution 16
θ1 −1.7811 + 2.9217i
θ2 2.6204 + 0.7202i
θ3 1.7095− 2.6362i
θ4 −0.1269 + 0.4056i
θ5 −1.7362− 2.2733i
θ6 0.4227 + 0.7266i

consider the more general problem of intersecting two subvarieties of a rational
homogeneous space X that have complementary dimensions.
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