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Abstract

Effective flow feature extraction enables users to explore complex flow fields by reducing visual clutter. Existing methods usually

use streamline segmentation as a preprocessing step for feature extraction. In our work, features are directly extracted as a result

of streamline segmentation. In order to achieve this, we first ask users to specify desired features by manually segmenting a few

streamlines from a flow field. Users only need to pick the segmentation points (i.e., positive examples) along a streamline, remaining

points will be used as negative examples. Next we compute multiscale features for each positive/negative example and feed them

into a binary support vector machine (SVM) trainer. The trained classifier is then used to segment all the streamlines in a flow field.

Finally, the segments are clustered based on their shape similarities. Our experiment shows that very good segmentation results can

be obtained with only a small number of streamlines to be segmented by users for each data set. We also propose a novel heuristic

based on the minimum bounding ellipsoid volume to help determine where to segment a streamline.

Keywords: Flow visualization, Flow feature extraction, Streamline segmentation, Support vector machine

1. Introduction

Flow visualization has been a central topic in scientific vi-

sualization for more than two decades. A flow field can be

visualized using different techniques, including glyph-based

[1], texture-based [2], integration-based [3], partition-based

[4], illustration-based [5], and surface-based [6] approaches.

Among these techniques, integration-based flow visualization

is most widely used in practice. For integration-based flow vi-

sualization, particles or seeds are placed in a vector field and

advected over time. The traces or field lines that the particles

follow, i.e., streamlines for steady flow and pathlines for un-

steady flow, depict the underlying vector data. In this paper,

integration-based technique with random seeding is used for vi-

sualization.

However, visual clutter and occlusion is a major issue when

hundreds or thousands of streamlines are rendered to depict a

flow field. This makes it difficult for users to explore the inter-

esting features. Although clustering and displaying the stream-

lines based on their similarities may alleviate this issue, a more

subtle issue is that very often not all parts of a streamline are

equally important: the part of a streamline in the vicinity of a

vortex is more important than the part running through a region

of laminar flow. Furthermore, different domain experts may

have their own criteria on what constitutes an “interesting flow

feature”. This observation inspired us to segment a streamline

based on user-defined features. To the best of our knowledge,

this problem has not been well studied by the flow visualization

community.

To address this problem, we propose a supervised stream-

line segmentation algorithm which allows the extraction of

user-defined flow features. For each data set, users are required

to manually segment only a small number of streamlines in

Figure 1: Given an input pool of streamlines (left), we first segment each

streamline using our previously learned classifier for segmentation points

(middle, the red point is the segmentation point found by our algorithm).

Partial streamline features specified by users will be clustered based on their

similarities (right).

order to define what flow features they want to extract from

the flow field. The user-picked segmentation points along a

streamline will be used to generate positive training examples,

whereas the remaining ones are used to generate negative train-

ing examples. Multiscale feature vectors are computed for each

positive and negative example, and fed into a binary support

vector machine (SVM) trainer. Finally, we use the trained clas-

sifier to determine the segmentation points for all the stream-

lines in the data set. A post-processing step is required for

grouping nearby segmentation points detected by the classifier.

Figure 1 shows an example of extracting user-defined partial

flow features.

The remainder of this paper is structured as follows. Sec-

tion 2 reviews approaches that are most related to our work.

Section 3 presents the details of our algorithm and is divided

into the following subsections: Section 3.1 introduces basic

concepts of supervised learning and SVM, Section 3.2 dis-

cusses the features we use to train a classifier, Section 3.3 ex-

plains how the positive and negative examples are generated,



Section 3.4 explains how the training is conducted, and Sec-

tion 3.5 introduces our segmentation algorithm and necessary

post-processing steps. Section 4 demonstrates the utility of

our algorithm by clustering streamline segments using differ-

ent 3D flow fields. Section 5 compares our method with a

few other state-of-the-art streamline segmentation/feature ex-

traction methods. Finally, Section 6 points out the directions of

our future work.

2. Related Work

Flow feature extraction provides an effective way to reduce

visual clutter. For 2D flows, Schlemmer et al. [7] and Bujack

et al. [8] both leveraged moment invariants to detect 2D flow

features. Wei et al. [9] relied on user-sketched 2D curves to

retrieve similar occurrences from a 3D flow field. The retrieval

might be ambiguous because the 3D streamlines first need to

be projected to 2D curves for similarity comparison. Tao et

al. [10] converted each streamline into a string such that all the

streamlines can be recorded in a suffix tree. The string patterns

detected in the suffix tree correspond to certain flow features.

Users can specify a query string to search for interesting flow

features. Finally, Wang et al. [11] proposed an example-based

flow pattern search approach for the detection of similar flow

feature patterns given a query pattern, where flow patterns are

given by a subset of segments from the set of all streamline

segments.

Streamline clustering and selection provides another way

to reduce visual clutter. Common clustering algorithms such

as nearest neighbor, fuzzy clustering and hierarchical cluster-

ing have been used in the works of [12, 13, 14]. Different

streamline similarity measures have been proposed for stream-

line clustering. Examples include the average of point-by-point

distance [13], the mean of closest point distances [15] and the

thresholded average distance [12]. These similarity measures

are all based on the Euclidean distance, and hence are not

affine invariant. To overcome this shortcoming, similarity mea-

sures based on feature distribution were adopted in the works

of [16, 17, 18]. For a detailed survey of streamline cluster-

ing methods and similarity metrics, we refer readers to [19].

Günther et al. [20] rendered streamlines using different opac-

ity values which are computed to optimize the balance between

information presentation and occlusion avoidance. They also

gave a comparison among the different state-of-the-art stream-

line selection algorithms.

Streamline segmentation has been used to facilitate stream-

line similarity comparison [17] and flow pattern extraction

[10, 11]. Lu et al. [17] recursively segmented a streamline

into two most dissimilar segments until either the dissimilar-

ity is below a certain threshold or the current segment is too

short. Tao et al. [10] segmented a streamline such that the ac-

cumulated curvature of each segment does not exceed a certain

threshold. An obvious drawback of their approach is that they

failed to separate straight segments. Wang et al. [11] partitioned

a streamline into so-called minimal segments first, and the final

segmentation is obtained after merging the minimal segments

based on two thresholds: total curvature and average binormal
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Figure 2: Our proposed supervised streamline segmentation framework

direction. However, their approach cannot segment turbulent

streamlines very well. All of these segmentation algorithms

need some manually-tuned thresholds to determine whether to

segment or not at a given point.

The problem of curve segmentation has also been studied in

the computer vision community. However, they usually focused

on segmenting a curve into a combination of representations

such as lines, circular, elliptical and superelliptical arcs, and

polynomials [21]. We cannot apply their methods to streamline

segmentation because we are usually interested in more com-

plicated features such as spirals rather than just, for example,

circular curves.

The minima rule [22] from cognitive science is widely used

by mesh segmentation algorithms [23]. The rule states that hu-

man beings tend to divide a surface into parts at loci of negative

minima of each principal curvature along its associated family

of lines of curvature. However, after extensive research, we

have not found any rules from cognitive science which can help

us segment a 3D curve (e.g., streamlines).

3. Supervised streamline segmentation

In order to obtain a streamline segmentation based on user-

defined features, we leverage supervised learning to train a clas-

sifier to determine whether we should separate a streamline

around a given point. The motivation for using machine learn-

ing is that we want to take multiple features into consideration

when determining whether to segment and generate a complex

decision function based on those features.

Therefore, we propose a user-guided streamline segmenta-

tion framework, which is illustrated in Figure 2. After stream-

lines are traced, we cluster (Section 3.3.1) and simplify (Sec-

tion 3.3.2) all the streamlines. From cluster representatives,

users choose which streamlines to segment manually. A binary

SVM classifier (Section 3.1) is trained (Section 3.4) to classify

segmentation points of a streamline. A post-processing step

(Section 3.5) is carried out to generate final segmentation. The

training process (the dashed line in Figure 2) can be repeated if

users are not satisfied with the segmentation results.

3.1. Support vector machine

The goal of a supervised learning problem is to learn

a function y(x) given a set of training examples {(x1, t1),

· · · , (xN, tN)}, where xi is a feature vector and ti is a target

value. It is up to applications to determine what a feature vec-

tor consists of. The value of ti is usually +1 or −1 for binary

classification problems. For a binary classification problem, a
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Figure 3: Importance of neighborhood size: the blue point may be considered

as a segmentation point if we compare its two neighboring segments whose

end points are marked as green because the segments have different

“complexity”. However, this difference becomes smaller if a larger

neighborhood size is considered (marked by red points).

training example (xi, ti) is called a positive training example if

ti = 1, and a negative training example if ti = −1. The pre-

cise form of the function y(x) is determined during the training

phase. The ability to categorize correctly new examples that

differ from training examples is known as generalization. For

more details on supervised learning, please refer to [24].

For linearly separable training examples, support vector

machine (SVM) [25] learns a linear model of the form y(x) =

wT ·x+b for binary classification problems. The corresponding

decision function is f (x) = sgn(w ·x+b), where w and b are the

normal and the intercept of a hyperplane. In other words, it tries

to find a hyperplane to separate positive examples from nega-

tive ones. Among all the hyperplanes separating the data, there

exists a unique optimal hyperplane, distinguished by the max-

imum margin of separation between any training point and the

hyperplane. The margin is the distance of the closest point to

the hyperplane. The points closest to the hyperplane are called

support vectors.

For non-linearly separable training examples, a kernel trick

is applied which transforms the training data x into a high-

dimensional feature space φ(x) such that a separating hyper-

plane can be found. A commonly-used kernel function is the

radial basis function (RBF) exp(−‖x − x′‖2/2σ2), where σ is a

free parameter.

3.2. Features vectors

Intuitively, the streamline segments on two sides of a seg-

mentation point should “look” differently, hence we focus on

the metrics which evaluate the similarity between two neighbor-

ing segments. We also need to determine the size of neighbor-

hood to be considered during similarity comparison. The im-

portance of neighborhood size is illustrated in Figure 3. Since it

is nearly impossible to choose an appropriate neighborhood size

in advance, we consider different neighborhood sizes. Specif-

ically, we compare respectively the similarity between the two

segments around a point whose lengths are within 5%, 10%,

15% and 20% of the total number of points on a streamline. We

did not use a fixed number of streamline points for neighbor-

hood size because different streamlines in the same flow field

may have very different numbers of points, and our experiment

showed that our approach works well on our test cases.

We consider the following metrics for comparing neighbor-

ing segments: (1) velocity direction entropy ratio, (2) tortuosity

ratio, (3) curvature and torsion histogram difference, and (4)

volume ratio of minimum bounding ellipsoids. In the follow-

ing, we will explain each of these metrics in detail.

3.2.1. Velocity direction entropy

Xu et al. [26] showed that information theory can be applied

to effectively capture important flow features in a vector field.

Instead of measuring the velocity direction entropy for regions

in a vector field [26], we compute the entropy for a stream-

line segment as an indicator of its complexity. The same idea

has been used in Li et al. [18] for streamline similarity com-

parison. Intuitively, the more complicated a streamline is, the

higher its velocity direction entropy value is. To compute an

entropy value for a streamline segment, we need to quantize the

3D vector space into a certain number of bins, count how many

velocity vectors fall into each bin, and compute the entropy by

its definition:

H(x) = −

n
∑

i=1

pi log pi (1)

where n is the number of bins and pi is the fraction of the ve-

locity vectors that fall into bin i. For example, for a straight

line segment, its velocity direction entropy is zero since all the

velocity vectors fall into the same bin, thus making a certain

pi equal to one and the rest equal to zero. To quantize the 3D

vector space, we leverage a sphere partition algorithm [27] and

choose empirically the number of bins to be 50 (same as [18]).

We found that increasing the number of bins is not always

a good idea because it will make a relatively simple-looking

streamline have a big velocity direction entropy because vec-

tors pointing in similar directions fall into different bins. After

the velocity direction entropy is computed for each of the two

neighboring segments, we compute the ratio of the smaller en-

tropy value to the larger one. The ratio will be incorporated into

the feature vector of the point which separates the two neigh-

boring segments.

3.2.2. Tortuosity

Tortuosity measures the degree of deviation from a straight

line for a streamline segment. Similar to velocity direction en-

tropy, it is also a measure of streamline complexity. However,

this metric is able to distinguish two dissimilar segments which

have similar velocity direction entropy values (Figure 4), and

has been used for streamline similarity comparison [16, 18].

The tortuosity of a streamline segment is defined as:

T (x) =
α(x)

‖xs − xe‖
(2)

where α(x) measures the arclength of a segment and the denom-

inator is the Euclidean distance between the start and end points

of a streamline segment. We compute the tortuosity ratio in the

same way as velocity direction entropy ratio, thus making the

ratio between zero and one.

3.2.3. Curvature and torsion histogram

A curvature and torsion histogram of a streamline segment

reveals its shape characteristics since curvature and torsion are

two fundamental properties of a curve [28]. Thus, they can

provide the information missing from the above two metrics

(i.e., entropy and tortuosity). For example, two streamlines of
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Figure 4: Tortuosity vs. velocity direction entropy: both curves have similar

velocity direction entropies because their tangent vectors almost point in every

direction in a 2D space. However, the red one looks more complicated than the

blue one and has a higher tortuosity value.

very different shapes may have similar velocity direction en-

tropy values.

We compute discrete curvature and torsion as described in

[29]. An orthonormal frame Xi,Yi,Zi is defined at each stream-

line point pi+1 by

Xi = ai, Yi =
ai+1 − (ai+1 · ai)ai

‖ai+1 − (ai+1 · ai)ai‖
, Zi = Xi × Yi

where ai is the vector from pi to pi+1 and pi are the points along

a streamline.

The discrete curvature κi ∈ [0, π) at each point pi and the

discrete torsion τi ∈ (−π, π] for each segment pi pi+1 are given

by the following formulas:

κi = cos−1(Xi · Xi−1),

τi =

{

cos−1(Zi−1 · Zi) if Zi−1 · ai+1 ≥ 0

− cos−1(Zi−1 · Zi) if Zi−1 · ai+1 ≤ 0

Note that although curvature and torsion at each point can

also be computed via interpolation from the underlying veloc-

ity field [30], we choose not to do so because the training ex-

amples from different flow fields can be used without scaling if

curvature and torsion are computed in the above way. This is

because that the best accuracy of SVM can be achieved if the

same components across different training examples are in the

same unit [31]. Currently, the training examples all come from

the same data set. In the future, we may extend our approach to

consider training examples from multiple data sets.

In order to obtain a histogram describing the shape char-

acteristics of a streamline, we first compute curvature and tor-

sion histograms respectively, and then concatenate the two his-

tograms into a single 1D histogram. We empirically set the

number of bins for curvature histograms to 20 and that for tor-

sion histograms to 40 (i.e., π/20 = 9 ◦/bin), which is enough

for the purpose of similarity comparison. This is because even

though the numbers of bins are increased to 80 and 160 for

curvature and torsion histograms respectively, we did not see a

noticeable difference regarding the clustering results later (re-

fer to Section 3.3.1). Finally, we normalize the 1D histogram to

make it scale-invariant.

We measure the distance between two 1D histograms us-

ing the earth mover’s distance (EMD) [32], which is a cross-bin

distance function. As Lu et al. [17] pointed out, considering

cross-bin relationship leads to a better accuracy of histogram

similarity comparison. Although many approaches have been

proposed to reduce the computation cost of EMD such as [33],

our experiment showed that the L1-distance between two 1D cu-

mulative histograms is a fast yet effective way of approximating

EMD [34]:

d(P,Q) =

n
∑

i=1

|Pcd f (i) − Qcd f (i)|

where Pcd f and Qcd f are the cumulative distribution functions

of the two normalized histograms.

3.2.4. Volume ratio of minimum bounding ellipsoids

For a point p on a streamline and its two neighboring seg-

ments s1 and s2, consider the following three minimum bound-

ing ellipsoids: Es1∪s2
, Es1

and Es2
. The ellipsoids enclose, re-

spectively, all the points which belong to s1 ∪ s2, s1, and s2.

For p to be a segmentation point, we observe that the following

ratio should be small (e.g., less than 1.0):

V(Es1
) + V(Es2

)

V(Es1∪s2
)

(3)

where V measures the volume of an ellipsoid.

For example, in Figure 5 (a), let p be the red point and

s1 (left) and s2 (right) be its neighboring segments. Since s1

is close to a straight line, its bounding ellipsoid has a volume

close to zero. However, the bounding ellipsoid for s1 ∪ s2 is

much larger than that for s1, thus making the above ratio small.

So intuitively, this heuristic can help separate two neighboring

segments with significant complexity difference. It is also a

very good indicator for separating 3D features when there is an

abrupt change in torsion even though those features have simi-

lar complexity. For streamlines which do not have distinct fea-

tures, this ratio can be larger (e.g., close to 1.0). For example,

the ratio is always 1.0 no matter where we separate a straight

line, assuming that 0
0
= 1.0. Another example is a helix which

can be considered as a complete feature by itself. No matter

where we segment the helix, the resulting ratio will always be

close to 1.0. On the other hand, let us look at Figure 5 (b) for

an example which may require segmentation. The streamline

has a lower part which swirls almost in the same plane, and an

upper part which looks like a helix. Again, the bounding ellip-

soid for the lower part degenerates into an ellipse, thus having

a volume of zero. The bounding ellipsoid for the whole stream-

line is much larger than the one only enclosing the upper part.

Section 4.2 will discuss in detail the impact of this heuristic on

the classifier performance and final segmentation results.

We use the algorithm proposed by Kumar et al. [35] to com-

pute minimum volume bounding ellipsoids. At first sight, prin-

ciple component analysis (PCA) [36] seems to be a good way

of computing approximate bounding ellipsoids. However, our

experiment showed that PCA does not perform as well as [35]

in our scenarios. There are of course other bounding shapes

such as cubes or spheres, but ellipsoids can bound a streamline

more compactly than other shapes.

3.3. Training examples collection

We aim at achieving the best training accuracy with mini-

mal user input. To this end, we automatically pick some rep-

resentative streamlines for users to segment (Section 3.3.1) and
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(a) (b)

Figure 5: The blue and the brown ellipsoids are the minimum volume

ellipsoids bounding the streamline segments on two sides of the red point. The

minimum volume bounding ellipsoid for the whole streamline is shown as

white ellipsoids.

only require users to specify positive training examples (Sec-

tion 3.3.2).

3.3.1. Automatically picking streamlines for training

After tracing the streamlines using the strategy of random

seed placement, we cluster them based on their similarity such

that users only need to choose from the representative stream-

lines for training. In order to make the clustering fully auto-

matic without users having to specify the number of clusters,

we use affinity propagation [37] for clustering.

Unlike k-means clustering algorithms, affinity propagation

simultaneously considers all data points as potential exemplars

and automatically determines the best number of clusters, with

the preference values for each data point as the only parame-

ters. The algorithm takes paired similarity values as input, ex-

changes real-value messages between data points until it con-

verges to a high-quality set of cluster centers. The preference

value indicates the probability of selecting the corresponding

data point as a cluster center. Using a uniform preference value

indicates that all the data points are considered equally possible

to be cluster centers. As suggested in [37], a smaller preference

value produces a smaller number of clusters.

We construct a 1D histogram for each streamline, and com-

pute the pairwise distances as described in Section 3.2.3. Note

that the similarity values are the negative of the approximate

EMD. The preference value is chosen to be the median of all

the distance values. Figure 6 shows an example of our cluster-

ing results of the tornado data set (refer to Section 4.1).

Note that we are not aiming at achieving the “best” clus-

tering results in this step because users are allowed to provide

more training examples and re-train our segmentation point

classifier later.

3.3.2. Generating training examples

Given a streamline, users need to pick the points where they

want to segment it. For each segmentation point, we compute

the velocity direction entropy ratio, tortuosity ratio, histogram

difference, and volume ratio of minimum bounding ellipsoids

using different neighborhood sizes (Section 3.2), and these val-

ues consist of the feature vector for a positive training exam-

ple. For points not picked by users, they are considered as non-

segmentation points. The same features will be computed for

(b)  = 1.0(a)  = 0.5 (c)  = 1.5

Figure 7: A streamline with 147 points is simplified with different Fréchet

error ǫ (points left after simplification are shown in red): (a) ǫ = 0.5, 25 points

left (b) epsilon = 1.0, 18 points left (c) epsilon = 1.5, 15 points left.

each non-segmentation point and consist of the feature vector

for a negative training example.

Instead of presenting all the points on a streamline to users,

we apply a curve simplification algorithm [38] to reduce the

number of candidates for them to choose segmentation points

from. There are a couple of reasons for doing curve simplifica-

tion:

• Ease training example collection. It is difficult for users

to pick out a segmentation point if the points are too close

to each other. Many points are generated during stream-

line tracing in order for streamlines to have better visual

quality.

• Reduce noisy and redundant training examples. Redun-

dant training examples are generated when nearby points

are chosen as segmentation points because these points

have similar feature vectors. Ambiguity could happen

during the training phase if a nearby point of a segmen-

tation point is chosen to be a non-segmentation point.

• Reduce computation cost. With fewer points on a stream-

line, we have fewer points to test for segmentation points.

Also the cost of training will be reduced since we have

less training examples.

The curve simplification algorithm [38] approximates a

polygonal curve P under the Fréchet error [38] by another

polygonal curve P′ whose vertices are a subset of the vertices

of P. Figure 7 compares the simplification results using differ-

ent Fréchet errors. In our experiment, we choose the default

Fréchet error to be 1.0 because: (1) this value is conservative

enough (i.e., no over-simplification) such that all the points we

want to pick as segmentation points are in the simplified stream-

lines, and (2) reducing its value will result in more points after

simplification, which in turn generates more redundant negative

training examples because the points used as negative training

examples are too close to each other (see next section for de-

tails on how negative training examples are generated). We also

make the Fréchet error adjustable by users in case the default

value does not work well for them.

Since determining where to segment a streamline is often

not a clear-cut decision, we allow users to specify an interval

on a streamline such that any point in that interval could be

a segmentation point. In other words, users may pick a few
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(a) (b) (c)

Figure 6: Streamline clusters and their representatives: the input streamlines of the tornado data set are shown in (a). After applying affinity propagation, six

clusters ((b)-(g)) are obtained and cluster representatives are shown in green.

nearby points to indicate where segmentation occurs. This also

helps alleviate the problem of highly imbalanced training ex-

amples (refer to Section 3.4) since more positive examples are

generated.

3.4. Training

We leverage libSVM [39] to train a classifier for segmen-

tation points. The biggest challenge is imbalanced training ex-

amples: we have far more negative examples than positive ones.

With such training data, we would get a classifier with a high

false negative rate if the standard SVM technique is used. To

address this issue, libSVM allows users to set different penalties

for positive and negative training examples so that a less biased

decision boundary can be obtained. In other words, we could

set a very high penalty for misclassifying the positive exam-

ples and a small penalty for misclassifying the negative exam-

ples. However, our experiment showed that this method does

not work very well for our application.

Instead, we opt for a method described in [40] to handle

highly imbalanced training data for SVM classifiers. It per-

forms undersampling repeatedly until the classification perfor-

mance cannot be improved. For highly imbalanced data, it is

not a good idea to measure classification performance by the

ratio of the number of correctly classified examples to the to-

tal number of examples. For example, assume that we have

three positive examples and 97 negative examples and a classi-

fier which classifies all the examples as negative. Although the

classification accuracy is 97%, it is apparently not a good clas-

sifier. Therefore, we use a measure called “area under receiver

operating characteristics (ROC) curve” (AUC) [41] to measure

classifier performance. An ROC curve is a two-dimensional

graph in which true positive rate is plotted on the Y axis and

false positive rate is plotted on the X axis. In other words,

instead of just focusing on the number of correctly classified

examples, an ROC curve depicts the relative tradeoffs between

benefits (true positives) and costs (false positives). To make it

easier to compare classifiers, ROC performance can be reduced

to a single scalar value representing the expected performance.

A common method is to calculate the area under the ROC curve,

abbreviated AUC. The value of AUC is always between 0 and

1. Any realistic classifier should have an AUC greater than 0.5.

The pseudo-code for training our segmentation point clas-

sifier is given in Algorithm 1. Initially, aggregation is initial-

ized to only contain positive training examples (Line 2). Then

the algorithm repeats the following steps until classifier perfor-

mance cannot be improved: (1) train a linear SVM on the input

examples which initially is the highly imbalanced training data

(Line 5); (2) remove the negative support vectors found by the

linear SVM from examples and replace the negative examples

in aggregation with them (Lines 6-7); (3) train an SVM clas-

sifier using RBF kernel (see Section 3.1) on aggregation and

check if performance is improved (Lines 8-13).

We follow the suggestions in [31] to perform grid-search

and cross-validation for best classifier performance. Both lin-

ear and RBF SVM require a penalty parameter C, and RBF

SVM also requires another parameter σ. The best values of

these parameters for a given problem are not known before-

hand. Hence, some kind of model selection (parameter search)

must be done. The goal is to identify good parameter values so

that the classifier can accurately predict unknown data. A com-

mon strategy is cross-validation. In v−fold cross-validation,

training data is divided into v subsets of equal size. Sequen-

tially one subset is tested using the classifier trained on the re-

maining v − 1 subsets. A grid-search is performed on C and/or

σ using cross-validation. We perform the grid-search on the
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Algorithm 1 Classifier training procedure

1: procedure TrainSegPointClassifer(examples)

2: aggregation← all the positive training examples

3: bestAUC ← 0

4: while true do

5: linearModel← LinearSVM(examples)

6: aggregation.nS V s← linearModel.nS V s

7: examples.Erase(linearModel.nS V s)

8: segPointClassi f ier ←RBFSVM(aggregation)

9: auc←ComputeAUC(segPointClassi f er)

10: if auc ≤ bestAUC then

11: break

12: else

13: bestAUC ← auc

exponentially growing sequences of C and σ as suggested by

[31]: C = {2−5, 2−3, · · · , 215}, and σ = {2−15, 2−13, · · · , 23}.

3.5. Segmentation and post-processing

Streamline segmentation is straightforward once the above

classifier is obtained. For each streamline, we check for each

point on the simplified streamline whether it is a segmentation

point. It is possible that several nearby points are classified as

segmentation points (Figure 8 (a)). Therefore, we need to group

them and pick one of them as a segmentation point.

The goal is to group segmentation points which are close

to each other in terms of arc length. In order to achieve this

grouping, we use half of the mean of arc lengths between the

segmentation points as threshold TS and group the segmenta-

tion points for which the arc length is less than TS . The same

strategy was also adopted by [42] to group salient points of a

3D mesh.

Formally, assume that S = {si|1 ≤ i ≤ NS } is the set of

segmentation points found for a streamline, then the threshold

TS is defined as:

TS =

∑NS−1

i=1

∑NS

j=i+1
α(si, s j)

NS (NS − 1)

where α(si, s j) measures the arclength between segmentation

points si and s j.

Note that the first and the last point of a streamline have to

be included when computing the threshold TS since they should

be considered as segmentation points as well (i.e., the start point

of the first segment and the end point of the last segment).

A group C of segmentation points is defined as:

C = {si ∈ S : ∀s j ∈ C, α(si, s j) ≤ TS }

The final segmentation point within each group is the one

which has the smallest ratio of minimum bounding ellipsoids.

In other words, for each segmentation point si in a group,

we compute the minimum bounding ellipsoids (refer to Sec-

tion 3.2.4) of its left segment spsi, its right segment sisn, and

both its left and right segments. The segmentation point in this

group is the one which gives the smallest ratio as computed by

(a) (b)

Figure 8: Remove redundant segmentation points: (a) nearby points (in red)

are detected as segmentation points by our trained classifier. (b) only one

segmentation point is left after post-processing.

Equation 3. The point sp (sn) is an arbitrary point from the

previous (next) group along the streamline (since points in the

same group are close to each other, picking an arbitrary point

will not affect segment shape much). Figure 8 shows an exam-

ple result of our grouping algorithm.

4. Results and Discussion

Our experiment was performed on a laptop with an Intel

Core i5-3360M CPU running at 2.8GHz, 8GB main memory

and an AMD FirePro M2000 graphics card. Only a single CPU

thread is used for all the computations.

4.1. Partial flow feature exploration

We validated our segmentation algorithm by clustering the

segments based on their similarities. The similarity between

two segments is measured using the method introduced in Sec-

tion 3.2.3, and then affinity propagation is applied to obtain

the clusters. Three steady flow data sets (Table 1) are used

in our experiment. The tornado data set is procedurally gen-

erated by software. The five critical points data set is a synthe-

sized flow field consisting of two spirals, two saddles, and one

source. Finally, the solar plume data set is from a simulation of

down-flowing solar plumes for studying the heat, momentum

and magnetic field of the sun. For each data set, the pool of

streamlines used during the training stage and the one used for

segmentation were traced separately in order to test the gener-

alization ability of the trained classifier. In the following, we

show the streamlines used for training and the streamline seg-

ment clusters for each data set. The user-picked segmentation

points are highlighted in blue, which are used as positive train-

ing examples. The remaining points in red are used as negative

training examples.

Case Study 1 – Tornado Data Set (Figure 9). Five (t1-

t5) out of 30 traced streamlines were manually segmented by

us. We did not segment the streamline in t4 because it does not

contain any interesting partial feature (e.g., spirals) which we

would like to extract. The clustering results (s1-s7) show that

user-defined features were extracted successfully. For example,

the segments in cluster s1 correspond to the bottom swirl in t1
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whose points have a torsion close to zero. The segments in

cluster s2 look very similar to the one from t5 which has an

inflection point. However, we do notice that a few streamlines

from the cluster s7 failed to be segmented as desired (circled in

purple).

Case Study 2 – Five Critical Points Data Set (Figure 10).

Seven (t1 - t7) out of 60 traced streamlines were manually seg-

mented. A total of eight clusters (s1-s8) were generated after

segmenting each streamline and clustering the resulting seg-

ments. Two swirls (s4 and s5) which are contained in the orig-

inal data set but occluded by other surrounding streamlines are

successfully extracted. They were put into two different clusters

because of their shape difference. The source is also revealed

(s3 and s6). The segmentation took less time (Table 1) for this

data set because each streamline has a smaller number of points

compared with other data sets.

Case Study 3 – Solar Plume Data Set (Figure 11). Some

streamlines from this data set are even more difficult for us to

determine the “best” segmentation. So we manually segmented

14 streamlines in order to extract interesting features instead

of determining the best segmentations. After segmentation and

clustering, we had 13 clusters and only eight of them are shown

in Figure 11 due to space limit. Readers can refer to the ac-

companied video for complete results. It can be seen that the

features specified by us were successfully extracted. For in-

stance, the features similar to the spirals specified by users in t1
and t4 appear in clusters s1, s4 and s6. Furthermore, the cluster

s1 contains the features similar to the letter “J” shape as shown

in t9, t10 and t11. The fact that some spirals appear in cluster

s1 reveals a limitation of our similarity measure. As seen from

the figure, these spirals were successfully separated from the

remaining streamlines, which suggests that our segmentation

algorithm works well. Although segments in clusters s3 to s6

are perceptually similar, they are unfortunately separated into

different clusters because of the similarity measure and cluster-

ing algorithm. The same happened for clusters s7 and s8.

4.2. Feature selection

In the following, we show that the metrics currently in-

corporated into feature vectors are relevant, and in particular,

the volume ratio of minimum enclosing ellipsoids greatly im-

proves the classifier performance. Denote the four metrics ve-

locity direction entropy ratio, tortuosity ratio, curvature and

torsion histogram difference, and minimum bounding ellipsoid

volume ratio by M1, M2, M3, and M4, respectively. Also let

G1 = {M1,M2,M3,M4}, G2 = {M1,M2,M3} and G3 = {M4}.

For each data set, we manually segmented the same set of

streamlines. Three different sets of training examples were gen-

erated using G1, G2, and G3, respectively. Then we trained one

classifier from each set of training examples. Finally, we com-

pare the results before post-processing of segmenting the same

set of streamlines using the three classifiers. By comparing be-

tween the segmentation results obtained from using G1 and G2

respectively, we can intuitively see how much contribution M4

makes to the classifier performance. However, using M4 alone

is not sufficient to get an accurate classifier, which can be ob-

served from the segmentation results using G3.

As Table 2 shows, classifiers trained using G1 generally give

the best segmentation results and require the least amount of

training time. Segmentation results are greatly improved when

the volume ratio of minimum enclosing ellipsoids is incorpo-

rated into feature vectors (compare G1 and G2 columns). How-

ever, using it alone (G3) does not give satisfactory segmentation

results and also requires a much longer training time.

4.3. Parameters

There are two parameters which will affect the final seg-

mentation results: (1) the number of different neighborhood

sizes used during multiscale feature computation (Section 3.2),

and (2) the distance threshold used to group nearby segmenta-

tion points (Section 3.5). The second parameter is computed

based on the segmentation points already found by a classifier,

hence, users should not be allowed to adjust its value. In the

following, we discuss how the first parameter will affect the

performance of a classifier in terms of AUC and training time.

In this experiment, we use the tornado data set to generate

36 positive and 298 negative examples. We consider the follow-

ing neighborhood sizes: 5%, 10%, 15%, 20%, 25%, 30%, 35%,

40%, 45%, 50% of the total streamline points. (Since at most

500 points are generated when tracing streamlines for our data

sets, two neighboring neighborhood sizes differ by 25 points at

most. Note that in our experiment a streamline segment consist-

ing of 25 points is usually too tiny to be visually considered as

a standalone segment.) We combine different neighborhoods in

the following way when computing multiscale feature vectors:

starting from a certain neighborhood size, n consecutive neigh-

borhoods up to 50% of the total number of streamline points are

used. For example, if we start at 5% and n = 4, it means that

the neighborhoods whose sizes are 5%, 10%, 15% and 20% of

total streamline points will be used for computing feature vec-

tors. Table 3 lists the statistics of AUC and training time for

different neighborhood combinations.

Table 3 shows that using only one or two neighborhood

sizes (e.g., columns 1 and 2) can generally give a high AUC

value but with a long training time. We found that the long

training time was due to the fact that libSVM [39] took a long

time to converge and in many cases it even reported the maxi-

mum number of iterations was reached. Moreover, the segmen-

tation results were very bad when only one or two neighbor-

hood sizes were used. This suggests that high AUC values in

these cases were due to over-fitting, so the classifiers did not

generalize well.

As more neighborhoods were considered, the value of AUC

generally increased, so did the training time (e.g., rows 5% and

10%). The training time generally increased by a few seconds.

We checked the segmentation results obtained with the starting

neighborhood size being 5% and 10 consecutive neighborhoods

being used, and found that the segmentation results indeed were

very good. However, segmentation itself took a much longer

time because more computation is required.

The values in Table 3 also suggest that the starting neighbor-

hood size should not be set too large because the AUC values

from the row 20% and below are generally not as good as that

from the rows above.
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t1 t2 t3

t4 t5

s1 s2 s3

s4 s5 s6 s7

input

Figure 9: Five streamlines of the tornado data set were manually segmented (t1-t5) to train the classifier. The user-picked segmentation points are highlighted in

purple, which are used to generate positive training examples. The remaining points in red are used to generate negative training examples. The segmentation was

performed on the streamlines which were traced separately from the training streamlines. Seven (s1-s7) clusters of streamline segments were generated. Note that

users can specify a few nearby points as possible segmentation points (e.g., t2)
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t1 t2 t3 t4

t5 t6 t7

input s1 s2

s3 s4 s5

s6 s7 s8

Figure 10: Seven streamlines of the five critical points data set were manually segmented (t1-t5) to train the classifier. Eight (s1-s8) clusters of streamline segments

were generated.
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t1

t2

t3

t4

t5
t6

t7
t8

t9

t10

t11

t12

t13

t14

Figure 11: 14 streamlines of the solar plume data set (t1-t14) were manually segmented for training.
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input

s1 s2

s3 s4

s5
s6

s7 s8

Figure 11 (cont.): Eight (s1-s8) out of 14 clusters of streamline segments of the solar plume data set are shown here. Notice how the interesting features such as

spirals and turbulent features are successfully extracted.
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Table 1: The three flow data sets. The timing results are in seconds.

data set dimension training segmentation

# lines # seg.

lines

# pos/neg

examples

training

time

AUC # lines simp.

time

seg.

time

tornado 64 × 64 × 64 30 5 22/157 3.54 0.99 150 1.99 35.76

five critical pts 51 × 51 × 51 60 7 10/52 3.80 0.90 150 0.60 2.74

solar plume 126 × 126 × 512 80 14 70/414 59.01 0.97 200 5.18 59.32

Table 2: Segmentation results without post-processing using the classifiers trained with different types of feature vectors G1 = {M1,M2,M3,M4},

G2 = {M1,M2,M3} and G3 = {M4}, where M1, M2, M3, and M4 are velocity direction entropy ratio, tortuosity ratio, curvature and torsion histogram difference,

and minimum bounding ellipsoid volume ratio, respectively.

G1 G2 G3 # pos/neg examples &

training times

• data set : tor-

nado

• 28/195

• G1 : 6.59s

• G2 : 8.23s

• G3 : 30.69s

• data set: cray-

fish

• 25/314

• G1 : 20.22

• G2 : 43.32

• G3 : 259.44

• data set: cray-

fish

• 25/314

• G1 : 20.22

• G2 : 43.32

• G3 : 259.44
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Similar findings were also obtained for other data sets.

Therefore, we empirically choose the following neighborhood

sizes, {5%, 10%, 15%, 20%}, when computing multiscale fea-

ture vectors in order to get a balance between good classifier

performance and short segmentation time.

5. Comparison

In this section, we will first compare our supervised stream-

line segmentation method with the other two segmentation al-

gorithms [11, 17], and then compare the partial flow features

extracted by our segmentation algorithm and that by Tao et

al. [10].

Lu et al. [17] proposed an iterative top-down segmentation

algorithm. Their algorithm recursively segments a streamline

into two most dissimilar segments until either the dissimilarity

is below a certain threshold ts or the number of points contained

in current segment is less than tl. We implemented their algo-

rithm using the EMD distance between the two curvature and

torsion histograms (see Section 3.2.3) as the dissimilarity mea-

sure.

The major issue of their approach is that these two parame-

ters are not intuitive for users to adjust manually, which is illus-

trated by Figure 12 (leftmost column). The streamlines in rows

(a) and (b) are from the tornado data set, and that in rows (c)

and (d) are from the solar plume data set. Setting tl and ts to

50 and 1.0 resulted in over-segmentation for the streamlines in

rows (a) and (b). Increasing tl to 100 avoided generating a small

segment for the streamline in row (a), but also left the stream-

line in row (b) not segmented at all. The over-segmentation

problem for the streamline in row (c) cannot be solved easily

by increasing tl. By carefully adjusting the value of ts from

0.95 to 1.0, the part which looks like a spiral was separated out

successfully. However, the U-shape at the bottom failed to be in

its own segment. As seen in the rightmost column, our method

does not suffer from these problems. Finally, it is hard to say

which segmentation is better for the streamline in row (d) be-

cause the extra segmentation point from Lu’s method occurred

in a turbulent region. Both segmentations look acceptable to us.

In conclusion, this approach is not good for general streamline

segmentation but for the cases where a streamline needs to be

divided into segments for further processing such as [17].

The streamline segmentation algorithm by Wang et al. [11]

is a bottom-up approach. A streamline is first split into minimal

segments which are bounded by points of absolute local cur-

vature minima. The minimal segments are then merged based

on a two-phase compatibility test. First, two neighboring seg-

ments are mergeable if they have similar average orientations,

i.e., if the angle between the two segments’ average binormal

directions is less than tα. Second, a segment with a low total

curvature less than tκ is merged with its two neighboring seg-

ments. The merging algorithm iteratively processes segments

based on a priority queue that is ordered by the total segment

curvature. To implement this algorithm, we measure the binor-

mal direction of a segment between two consecutive points as

the cross product of the velocity vectors at those points.

Wang et al. [11] claimed that their segmentation algorithm

meets the following three requirements: (1) a segmentation

should be feature preserving in that important features should

be preserved, (2) a segment should be distinct enough to de-

scribe a complete feature, and (3) streamlines describing sim-

ilar flow features should be segmented consistently. However,

we found that their algorithm cannot guarantee to meet these

requirements. For example, their algorithm produced over-

segmentation for the streamline in row (a) because some min-

imal segments have a relatively large total curvature. After

changing the value of tκ from 1.0 to 1.8, the problem was allevi-

ated but the final segmentation still does not look natural. The

segmentation result in row (b) looks acceptable. The streamline

in row (c) was also over-segmented with tκ = 1.4, however, in-

creasing its value to 1.5 failed to preserve the spiral feature. Fi-

nally, the over-segmentation of the streamline in row (d) cannot

be easily solved due to the turbulent nature of the enlarged area:

the neighboring minimal segments have very different average

binormal directions and also a large total curvature. Therefore,

this approach may work well for flow fields which do not have

many turbulent regions (as illustrated in [11]), but it is not a

good choice to segment turbulent streamlines.

Since the above two methods cannot segment individual

streamlines into different features satisfactorily for our data

sets, we now compare our method with FlowString ([10]) on

flow feature extraction. Tao et al. [10] represented each stream-

line as a string and the substrings which appear frequently are

considered as interesting flow features. Two parameters, mini-

mum length and minimum frequency, can be adjusted by users

to search for frequent substrings. The FlowString library is

available at [43], and is used during our comparison.

Figure 13 shows the features extracted by FlowString for

tornado (a-f) and solar plume (g-l) data sets, respectively. For

each of the two data sets, the same set of streamlines was traced

as the input used in the previous case studies (Section 4.1). It

can be seen that FlowString has the following shortcomings

compared to our method:

• FlowString may return many similarly-looking patterns.

For example, three types of features (corresponding to

three different substrings) out of 19 are shown in Fig-

ure 13 (a)-(c), which look similar to each other (the re-

maining features also look similar, and hence are not

shown to save space). The features are extracted with

minimum frequency and minimum length set to 100 and

3 respectively. For the tornado data set, the features

found by our method were clustered into 7 distinguish-

able groups (Figure 9).

• Users need to adjust the value of minimum frequency

(minimum length) to search for the desired features. For

instance, the features in Figure 13 (e)-(f) were only avail-

able when we decreased the value of minimum frequency

from 100 to 50 . For the solar plume data set, only two

types of features ((g)-(h)) were extracted when minimum

frequency and minimum length were set to 100 and 4 re-

spectively. The spiral features in (j)-(l) did not appear

unless the minimum frequency was set to a small value
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Table 3: AUCs and training times (in seconds) for the classifiers trained using different combinations of neighborhood sizes. The training was conducted on 36

positive and 298 negative training examples generated from the tornado data set.

starting

neigh.

size

# consecutive neighborhoods (AUC/training time)

1 2 3 4 5 6 7 8 9 10

5% 0.95/46.0 0.99/30.1 0.93/8.7 0.92/8.7 0.94/12.2 0.97/12.1 0.97/5.8 0.97/5.6 0.96/5.1 1.0/8.1

10% 1.0/69.4 0.98/28.9 0.97/10.8 0.97/6.3 0.98/8.5 0.96/8.5 1.0/11.8 1.0/10.5 1.0/15.1

15% 1.0/83.1 0.97/36.6 0.92/7.1 0.94/8.6 0.99/10.9 0.97/11.9 0.94/13.8 0.98/12.4

20% 0.99/171.3 0.96/41.6 0.92/18.8 0.90/23.6 0.93/17.3 0.90/16.6 0.91/14.0

25% 0.98/162.0 0.959/63.5 0.958/49.8 0.94/47.8 1.0/63.1 0.96/39.4

30% 0.98/95.6 0.93/44.9 0.91/28.1 0.92/98.1 0.88/64.8

35% 0.90/49.9 0.909/23.3 0.92/29.2 0.91/34.6

40% 1.0/160.2 0.90/34.1 0.93/64.0

45% 0.91/34.5 0.95/58.9

50% 1.0/93.2

(a)

(b)

Figure 12: A comparison on streamline segmentation between [11, 17] (first two columns) and our method (last column). The streamlines in row (a) and (b) are

from the tornado data set, and those in rows (c) and (d) from the solar plume data set. The segmentation points are highlighted in red.
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min_freq = 100,  min_len = 4 min_freq = 10, min_len = 3

min_freq = 100, min_len = 3 min_freq = 50,  min_len = 3

min_freq = 10, min_len = 3

(a) (b) (c) (d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 13: The features extracted by FlowString [10] for tornado (a-f) and solar plume (g-l) data sets, respectively.

of 10. In contrast, since our method already segments

each streamline into different features, the final segment

clusters usually include all the desired features.

• The features matched by FlowString often correspond to

incomplete features. This problem is clearly illustrated in

Figure 13 (d)-(e), where partial spiral features were ex-

tracted (e.g., the spiral in the red circle). The same prob-

lem also occurs for the spirals extracted in (j)-(l). How-

ever, our method is able to find more complete features

(see Figure 9 and 11).

The advantage of FlowString over our method is that it is

fully automatic (no user intervention is required) and it does not

require computing as many features as our method (although it

requires registration computation for each pair of segments).

Finally, we do want to point out a limitation of our method

: a classifier trained on one data set cannot be applied to an-

other data set which has very different streamlines. In order to

get a classifier which can work across multiple data sets, a cen-

tral database may be required to store all the training examples

similar to [44], and incremental training should be performed.

6. Conclusions and Future Work

In this paper, we propose a novel streamline segmentation

algorithm based on user-defined features using machine learn-

ing. To the best of our knowledge, this is the first work in

flow visualization which leverages supervised training for fea-

ture extraction. We also make another contribution by propos-

ing a very effective heuristic for streamline segmentation: the

volume ratio of minimum enclosing ellipsoids.

Our algorithm automatically picks a few representative

streamlines for users to segment. The user input is then turned

into feature vectors, which in turn are trained to obtain a clas-

sifier for segmentation points. Streamline segmentation then

becomes a process of segmentation point testing via the classi-

fier. Finally, a post-processing step is applied to remove nearby

segmentation points found by the classifier.

The results are encouraging, and we point out the following

directions for future work:

• Identify more effective metrics besides the ones men-

tioned in Section 3.2 and incorporate them into feature

vectors. It would be interesting to work with experts

from human perception or cognitive science to find out

the rules which human beings use to segment streamlines,

or 3D curves in general.

• Apply this approach to time-dependent data. Segmenting

pathlines and clustering similar pathline segments would

allow us to better understand features in unsteady flow

fields.

• Generate a hierarchical segmentation for each streamline.

Our current approach only generates a single segmen-

tation. However, human beings tend to segment a geo-

metric object in a hierarchical manner (e.g., hierarchical

mesh segmentation [23]).

• Improve computation speed. All the experiments were
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done using a single CPU thread. We would like to lever-

age CUDA/OpenCL for real-time streamline segmenta-

tion.

The implementation details of our approach is available at

http://www.nd.edu/∼cwang11/streamline-segmentation.html
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